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1. Introduction

In this paper, we introduce some domain decomposition methods for saddle
point problems with or without a penalty term, such as the Stokes system and the
mixed formulation of linear elasticity. We also consider more general nonsymmetric
problems, such as the Oseen system, which are no longer saddle point problems but
can be studied in the same abstract framework which we adopt.

Several approaches have been proposed in the past for the iterative solution of
saddle point problems. We recall here:

- Uzawa’s algorithm and its variants (Arrow, Hurwicz, and Uzawa [1], Elman and
Golub [24], Bramble, Pasciak, and Vassilev [10], Maday, Meiron, Patera, and
Rgnquist [38]);

- multigrid methods (Verfiirth [54], Wittum [55], Braess and Blomer [7], Brenner
(11]);

- preconditioned conjugate gradient methods for a positive definite equivalent prob-
lem (Bramble and Pasciak [8)]);

- block—diagonal preconditioners (Rusten and Winther [50], Silvester and Wathen
[51], Klawonn [31]);

- block—triangular preconditioners (Elman and Silvester [25], Elman [23], Klawonn
[32], Klawonn and Starke [34], Pavarino [43]).

Some of these approaches allow the use of domain decomposition techniques on
particular subproblems, such as the inexact blocks in a block preconditioner. In this
paper, we propose some alternative approaches based on the application of domain
decomposition techniques to the whole saddle point problem, discretized with either
h-version finite elements or spectral elements. We will consider both a) overlapping
Schwarz methods and b) iterative substructuring methods. We refer to Smith,
Bjgrstad, and Gropp [52] or Chan and Mathew [18] for a general introduction to
domain decomposition methods.
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DOMAIN DECOMPOSITION FOR SADDLE POINT PROBLEMS 139

a) Early work by Lions [37] and Fortin and Aboulaich [29] extended the origi-
nal overlapping Schwarz method to Stokes problems, but these methods were based
on a positive definite problem obtained by working in the subspace of divergence-
free functions and they did not have a coarse solver, which is essential for obtaining
scalability. Later, the overlapping Schwarz method was also extended to the mixed
formulations of scalar-second order elliptic problems (see Mathew [40, 41], Ewing
and Wang [27], Rusten, Vassilevski, and Winther [49]) and to indefinite, nonsym-
metric, scalar-second order elliptic problems (see Cai and Widlund [13, 14]). In
Section 6, we present a different overlapping Schwarz method based on the solu-
tion of local saddle point problems on overlapping subdomains and the solution
of a coarse saddle point problem. The iteration is accelerated by a Krylov space
method, such as GMRES or QMR. The resulting method is the analog for sad-
dle point problems of the method proposed and analyzed by Dryja and Widlund
[20, 21] for symmetric positive definite elliptic problems. As in the positive defi-
nite case, our method is parallelizable, scalable, and has a simple coarse problem.
This work on overlapping methods is joint with Axel Klawonn of the Westfilische
Wilhelms-Universitat Miinster, Germany.

b) Nonoverlapping domain decomposition preconditioners for Stokes problems
have been considered by Bramble and Pasciak [9], Quarteroni [47] and for spec-
tral element discretizations by Fischer and Renquist [28], Renquist [48], Le Tallec
and Patra [36], and Casarin [17]. In Section 7, we present a class of iterative
substructuring methods in which the saddle point Schur complement, obtained af-
ter the elimination of the internal velocities and pressures in each subdomain, is
solved with a block preconditioner. The velocity block can be constructed using
wire basket or Neumann-Neumann techniques. In the Stokes case, this construc-
tion is directly based on the original scalar algorithms, while in the elasticity case
it requires an extension of the scalar techniques. The iteration is accelerated by a
Krylov space method, such as GMRES or PCR. The resulting algorithms are par-
allelizable and scalable, but the structure of the coarse problem is more complex
than in overlapping methods. This work on nonoverlapping methods is joint with
Olof B. Widlund of the Courant Institute, New York University, USA.

2. Model saddle point problems

The Stokes system. Let Q C R d = 2,3 be a polyhedral domain and L2(Q)
be the subset of L?(f2) consisting of functions with zero mean value. Given f €
(H71(9))? and, for simplicity, homogeneous Dirichlet boundary conditions, the
Stokes problem consists in finding the velocity u € V = (H{(22))? and the pressure
p € U = L3() of an incompressible fluid with viscosity u by solving:

¢ | Vu:Vvdr — / divvpdz f-vdr VvevV,

Q Q Q
- / divugdz
Q

Linear elasticity in mized form. The following mixed formulation of the system of
linear elasticity describes the displacement u and the variable p = —\divu of an
almost incompressible material with Lamé constants A and . The material is fixed
along I'y C 09, subject to a surface force of density g along I'y = 90\ T'y and

(1)

1]
o

Vq e U.
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140 LUCA F. PAVARINO

subject to an external force f:

2p/Qe(u) ce(v)dz - /Qdivv pdz

—/divuqd:c - %/pqdac
Q Q

Here V = {v € H' () : v|r, = 0}, €;(u) = %(g% + Z—Zf) are the compo-
nents of the linearized strain tensor e(u), and < F,v > = [, Z?:l fivi dz +

fFl Z?zl 9;v; ds. It is well known that this mixed formulation is a good remedy for
the locking and ill-conditioning problems that arise in the pure displacement for-
mulation when the material becomes almost incompressible; see Babuska and Suri
[2]. The incompressibility of the material can be characterized by A approaching
infinity or, equivalently, by the Poisson ratio v = 90 +u) approaching 1/2.

The Oseen system (linearized Navier-Stokes). An example of nonsymmetric
problem is given by the Oseen system. Linearizing the Navier-Stokes equations
by a fixed-point or Picard iteration, we have to solve in each step the following
Oseen problem: given a divergence-free vector field w, find the velocity u € V =
(H3())? and the pressure p € U = L3(Q) of an incompressible fluid with viscosity
u satisfying

3)
u/ Vu:Vvdz —I—/[(w -V)u]-vdz —/ divvpdz = f-vdr Yvev,
Q Q Q

Q

<F,v> VeV,

(2)

0 Vg € L*(9).

—/ divugdz = 0 Vg e U.
Q
Here the right-hand side f is as in the Stokes problem and the convection term is

given by the skew-symmetric bilinear form / w-V)u] -vdz = / Z wJ 9z, vzd:c
1,j=1

3. An abstract framework for saddle point problems and
generalizations

In general, given two Hilbert spaces V and U, the algorithms described in this
paper apply to the following generalization of abstract saddle point problems with
a penalty term. An analysis and a more complete treatment can be found in Brezzi
and Fortin [12].

Find (u,p) € V x U such that

a(u,v) + b(v,p)

I

<F,v> VveV,
(4)

b(u,q) - telpg) = <G,g> VgeU telo1],
where F € V' and G € U’. When a(-,-) and c(-,-) are symmetric, (4) is a saddle
point problem, but we keep the same terminology also in the more general nonsym-
metric case. In order to have a well-posed problem, we assume that the following
properties are satisfied. Let B : V — U’ and its transpose BT : U — V' be the
linear operators defined by

(Bv,Q)u'xu = (v,BTq)vaf =b(v,q) YWweV vgel.
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DOMAIN DECOMPOSITION FOR SADDLE POINT PROBLEMS 141

i)a(,+) : VxV — R is a continuous, positive semidefinite bilinear form, invertible
on the kernel KerB of B, i.e.
. a(u,v
infueKerB SUPyeferp W 2 Qp,
Jag > 0 such that

: a(u,v) )
infyeiers SWPueKers TulyvIvly 2 @0

ii) b(+,-) : VxU — R is a continuous bilinear form satisfying the inf-sup condition

b
368y > 0 such that sup (v.q)
veV ||V”V

> Bollallu/kernrs

iii) ¢(+,-) : U x U — R is a symmetric, continuous, U-elliptic bilinear form.
More general conditions could be assumed; see Brezzi and Fortin [12] and Braess
6].

For simplicity, we adopt in the following the Stokes terminology, i.e. we call
the variables in V velocities and the variables in U pressures.

4. Mixed finite element methods: P;(h) — P;(2h) and Q,(h) — Py(h)
stabilized

The continuous problem (4) is discretized by introducing finite element spaces
V" ¢ V and U" C U. For simplicity, we consider uniform meshes, but more general
nonuniform meshes may be used. We consider two choices of finite element spaces,
in order to illustrate our algorithms for both stable and stabilized discretizations,
with continuous and discontinuous pressures respectively.

a) Pi(h) — P(2h) (also known as P2 —iso — P1). Let 7o, be a triangular
finite element mesh of € of characteristic mesh size 2h and let 75, be a refinement
of 7o, We introduce finite element spaces consisting of continuous piecewise linear
velocities on 7, and continuous piecewise linear pressures on 7o, :

Vi = {ve(C®))NV:v|reP,Temn},
Uh = {qu(Q)ﬂUlq|T€Pl,TGTQh}.

This is a stable mixed finite element method, i.e. it satisfies a uniform inf-sup
condition (see Brezzi and Fortin [12]).

b) Q1(h) — Py(h) stabilized. Here the velocities are continuous piecewise trilin-
ear (bilinear in 2D) functions on a quadrilateral mesh of size h and the pressures
are piecewise constant (discontinuous) functions on the same mesh :

vVt = {ve(c@)InV v|reQ,TEm},

U' = {qeU:qr € P,Tem}.
This couple of finite element spaces does not satisfy the inf-sup condition, but
can be stabilized as shown in Kechkar and Silvester [30] by relaxing the discrete
incompressibility condition. In the Stokes case in two dimensions, this stabilization
is achieved by defining a nonoverlapping macroelement partitioning M}, such that
each macroelement M € My, is a connected set of adjoining elements from 7.

Denoting by I'ys the set of interelement edges in the interior of M and by e € T'y,
one of these interior edges, the original bilinear form ¢(p, ¢) = 0 is replaced by

() cn(p ) =8 Y. > he/l[P]]e[[QﬂedS-

MeMy eel m
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142 LUCA F. PAVARINO

Here [p]. is the jump operator across e € '/, h. is the length of e, and 3 is a
stabilization parameter; see [30] for more details and an analysis.

By discretizing the saddle point problem (4) with these mixed finite elements,
we obtain the following discrete saddle point problem:

4, BT
(6) Kpz = [ B; —tQhCh ]m =fn -

The matrix K} is symmetric and indefinite whenever Ay is symmetric, as in the
Stokes and elasticity cases. The penalty parameter t? is zero in the Stokes, Oseen
and incompressible elasticity cases when discretized with stable elements, such as
Pi(h) — P1(2h); it is nonzero in the case of almost incompressible elasticity or when
stabilized elements, such as Q;(h) — Py(h) stabilized, are used.

5. Mixed spectral element methods: @, — @, and Q, — P,,_;

The continuous problem (4) can also be discretized by conforming spectral ele-
ments. Let Q.. be the reference cube (—1,1)3, let @, (Qyer) be the set of polynomi-
als on . of degree n in each variable, and let P, (Qyc) be the set of polynomials
on Q¢ of total degree n. We assume that the domain 2 can be decomposed into N
nonoverlapping finite elements §2;, each of which is an affine image of the reference
cube. Thus, €; = ¢;(Qrer), Where ¢; is an affine mapping.

a) @n—Qn—2. This method was proposed by Maday, Patera, and Rgnquist [39]
for the Stokes system. V is discretized, component by component, by continuous,
piecewise polynomials of degree n:

V" = {V eV: Uk |Q; 0¢i € Qn(Qr(!f)v i = 1» ,N, k= 1,2»3}
The pressure space is discretized by piecewise polynomials of degree n — 2:

Ur = {q eU: q|Q, O¢i € Qn—Q(Qrcf)a 1= 11"‘ ,N}.

We note that the elements of U™ are discontinuous across the boundaries of the
elements €2;. These mixed spectral elements are implemented using Gauss-Lobatto-
Legendre (GLL) quadrature, which also allows the construction of a very convenient
tensor-product basis for V™. Denote by {§i,§j,§k}z jk=o the set of GLL points of
[-1,1]3, and by o; the quadrature weight associated with & . Let [;(z) be the
Lagrange interpolating polynomial of degree n which vanishes at all the GLL nodes
except &;, where it equals one. Each element of @, () is expanded in the GLL
basis

u(z,y,2) =3 > > u(€i & &)li(@)l ()l (2),

1=0 7=0 k=0

and each L?—inner product of two scalar components u and v is replaced by

N n
(1) (o= > (@od) (& & &)wo )& & &)l sloiojon,
s=11,j,k=0
where |J;| is the determinant of the Jacobian of ¢,. Similarly, a very convenient ba-
sis for U™ consists of the tensor-product Lagrangian nodal basis functions associated
with the internal GLL nodes. Another basis associated with the Gauss-Legendre
(GL) nodes has been studied in [28] and [38]. We refer to Bernardi and Maday
[3, 4] for more details and the analysis of the resulting discrete problem.
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DOMAIN DECOMPOSITION FOR SADDLE POINT PROBLEMS 143

The @Q,, — Q> method satisfies the nonuniform inf-sup condition

(divv,q)

d—1
(8) sup >C0n T )||q|l: VgeU™,

veve [Vl

where d = 2,3 and the constant C' is independent of n and ¢; see Maday, Patera,
and Rgnquist [39] and Stenberg and Suri [53]. However, numerical experiments,
reported in Maday, Meiron, Patera, and Rgnquist, see [38] and [39], have also
shown that for practical values of n, e.g., n < 16, the inf-sup constant (3, of the
Q. — Q,—2 method decays much slower than what would be expected from the
theoretical bound.

b) @, — P,—1. This method uses the same velocity space V™ described before,
together with an alternative pressure space given by piecewise polynomials of total
degree n — 1:

{qu:q|Qio¢i ePn~l(Qref), 7/:]., ,N}

This choice has been studied by Stenberg and Suri [53] and more recently by
Bernardi and Maday [5], who proved a uniform inf-sup condition for it. Its practical
application is limited by the lack of a standard tensorial basis for P,_1; however,
other bases, common in the p-version finite element literature, can be used.

Other interesting choices for U™ have been studied in Canuto [15] and Canuto
and Van Kemenade [16] in connection with stabilization techniques for spectral
elements using bubble functions.

Applying GLL quadrature to the abstract problem (4), we obtain again a dis-
crete saddle point problem of the form

A, BT
(9) K,z = |: B, —t2Cn :| T = fn .

As before, K, is a symmetric indefinite matrix in the Stokes and elasticity case,
while it is a nonsymmetric matrix in the Oseen case.

6. Overlapping Schwarz Methods

We present here the basic idea of the method for the additive variant of the
preconditioner and P; (h)— P (2h) finite elements on uniform meshes (see Section 4).
More general multiplicative or hybrid variants, unstructured meshes and spectral
element discretizations can be considered as well. See Klawonn and Pavarino [33]
for a more complete treatment.

Let 74 be a coarse finite element triangulation of the domain ) into N sub-
domains €; of characteristic diameter H. A fine triangulation 75, is obtained as a
refinement of 7 and H/h will denote the number of nodes on each subdomain side.
In order to have an overlapping partition of 2, each subdomain §2; is extended to
a larger subdomain Y}, consisting of all elements of 7;, within a distance § from ;.

Our overlapping additive Schwarz preconditioner K 51‘ g for K}, is based on the
solutions of local saddle point problems on the subdomains 2, and on the solution
of a coarse saddle point problem on the coarse mesh 7y. In matrix form:

N
(10) Kohs =R{Ky'Ro+ Y RI'K['R;,
=1

where R{ K ' Ry represents the coarse problem and R! K, ' R; represents the i—th
local problem. This preconditioner is associated with the following decomposition
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FIGURE 1. Local spaces associated with an interior subdomain 2.
Py (h) — Pi(2h) (left) and Q1 (h) — Po(h) stabilized (right): velocity
degrees of freedom are denoted by bullets (e), pressure degrees
of freedom are denoted by circles (o). Subdomain size H/h = 8,
overlap § = 2h .

of the discrete space V" x U" into a coarse space V2 x U and local spaces V! x U},
associated with the subdomains Q:

N
VEX UM = Vi x Uy +Y VEx U

=1
a) Coarse problem. For Py (h) — P;(2h) elements, the coarse space is defined as
V(}: — VH/‘Z‘ [J(i)l — UH/2.

The associated coarse stiffness matrix is Ko = Ky, obtained using P(H/2) —
Py (H) mixed elements and R{ represents the standard piecewise bilinear interpo-
lation matrix between coarse and fine degrees of freedom, for both velocities and
pressures. We use H/2 as the mesh size of the coarse velocities because we choose
H as the mesh size of the coarse pressures.

For Q,(h) — Py(h) stabilized elements, the coarse space is defined as

vi=vi, Uy =ut,

The associated coarse stiffness matrix is Ky = Ky and Rg is the standard piecewise
bilinear interpolation matrix between coarse and fine velocities and the standard
injection matrix between coarse and fine pressures.

b) Local problems. For Py(h) — P;(2h) finite elements (with continuous pres-
sures), the local spaces consist of velocities and zero mean value pressures satisfying
zero Dirichlet boundary conditions on the internal subdomain boundaries 92} \ 9Q2:

Vi = VI (H ()7,

Ur={qeU"NLi():q=0 on 99;\ 0N and outside }.

Here, the minimal overlap is one pressure element, i.e. 6 = 2h.
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DOMAIN DECOMPOSITION FOR SADDLE POINT PROBLEMS 145

For @, (h)— Py(h) stabilized elements, the pressures are discontinuous piecewise
constant functions and there are no degrees of freedom associated with 92, \ 0f2.
In this case, we set to zero the pressure degrees of freedom in the elements that
touch 09 \ 0. The associated local pressure spaces are:

Ul ={q € L§(X) : qlr =0 VT : T N (89 \ 09) # 0}.

Here, the minimal overlap is § = h. In matrix terms, the matrices R; in (10) are
restriction matrices returning the degrees of freedom associated with the interior of
. and K; = R, K, hRiT are the local stiffness matrices. Each discrete local problem
(and its matrix representation K;) is nonsingular because of the zero mean-value
constraint for the local pressure solution. See Figure 1 for a graphic representation
of these local spaces in two dimensions.

We remark that 1?5}4 ¢ is a nonsingular preconditioner, since Ko and K;,i =
1,---, N, are nonsingular matrices. In the symmetric cases (Stokes and elasticity),
K 5; s is a symmetric indefinite preconditioner. If we need to work with global zero
mean-value pressures, as in the Stokes and Oseen problems or in the incompressible
limit of the mixed linear elasticity problem, we enforce this constraint in each
application of the preconditioner.

7. Iterative substructuring methods for spectral element discretizations

The elimination of the interior unknowns in a saddle point problem is somewhat
different than the analogous process in a positive definite problem. In this section,
we illustrate this process for the spectral element discretization (see Section 5) of the
Stokes problem. We will see that the remaining interface unknowns and constant
pressures in each spectral element satisfy a reduced saddle point problem, analogous
to the Schur complement in the positive definite case. We refer to Pavarino and
Widlund [45] for a more complete treatment.

The interface I' of the decomposition {€2;} of §2 is defined by
I = (UN,00)\ 9.
The discrete space of restrictions to the interface is defined by
Vi ={v|lr, veV"}L

I" is composed of N faces F) (open sets) of the elements and the wire basket W,
defined as the union of the edges and vertices of the elements, i.e.

(11) I'=UNF FLUW.

We first define local subspaces consisting of velocities with support in the inte-
rior of individual elements,

(12) VI=V"NnH;(Q)* i=1,---,N,

and local subspaces consisting of pressures with support and zero mean value in
individual elements

(13) Ur=U"NL3(), i=1,---,N.
The velocity space V" is decomposed as
V'"=V7+Vy+...+Vy + Vg,
where the local spaces V' have been defined in (12) and
(14) Vs =8"(Vr)
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is the subspace of interface velocities. The discrete Stokes extension S™ is the
operator that maps any u € V} into the velocity component of the solution of the
following Stokes problem on each element:

Find S"u € V" and p € (Y. U") such that on each

$n(S"u,v) + by(v,p) = 0 VYveV]

(15) bn(S™u,q)

0 VgqeU

S'tu=u on 09,

Here the discrete bilinear forms are s,(u,v) = p(Vu : Vv), o and b,(u,p) =
—(divu, p),, ¢, where the discrete L?—inner product has been defined in (7). In the
elasticity case, an analogous interface space V7, can be defined using a discrete
mixed elasticity extension operator. The pressure space U™ is decomposed as

U'=U"4+Uy + -+ Ux + Uy,

where the local spaces U]* have been defined in (13) and

Uy={qeU":q

o, = constant, i =1,--- N}

consists of piecewise constant pressures in each element. The vector of unknowns
is now reordered placing first the interior unknowns, element by element, and then
the interface velocities and the piecewise constant pressures in each element:

(u,p)" = (u; p1,uz pa, -+, un pw, ur po)’.

After this reordering, our saddle point problem (9) has the following matrix struc-

ture:
[ A]] Blll 0 0 A]]" 0 17T u; T i b] 1
B” 0 0 0 B]]‘ 0 P1 0
(16) 0 0 ANN B}l\;N ANI‘ 0 uy = bN
0 0 BNN 0 BN|* 0 PN 0
Ar] Blll s AI“N Bll\“ Al‘[‘ B(I) ur br
0 0 0 0 B() 0 1L Po i L 0 i

The leading block of this matrix is the direct sum of NV local saddle point problems
for the interior velocities and pressures (u;,p;). In addition there is a reduced
saddle point problem for the interface velocities and piecewise constant pressures
(ur, po). These subsystems are given by

A, + Blp, = bi-Agu
(17) { B::Ui e = l—Birll;rr =L2- N
and
(18)
{ Arrur + Arjug + -+ Aryun + Bippir + -+ Birpy + Bipo = br
B()ll[‘ = 0.

The local saddle point problems (17) are uniquely solvable because the local pres-
sures are constrained to have zero mean value. The reduced saddle point problem
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DOMAIN DECOMPOSITION FOR SADDLE POINT PROBLEMS 147

(18) can be written more clearly by introducing the linear operators R?, R} and

P?, P! representing the solutions of the i—th local saddle point problem:
w, = R+ R'ur,  py=Pb;+Plur, i=1,2,---,N.

Then (18) can be rewritten as

I
=2
=~

Srur + Blpo
(19) {Bollr = 0,

where

N N N N
Sr=Arr+ Y AnR{ +Y BLP[,  br=br-Y ApnR'b,—Y BLP'b;.
i=1 1=1

i=1 i=1

As always, the matrices R?, Rl and P, P/’ need not be assembled explicitly; their
action on given vectors is computed by solving the corresponding local saddle point
problem. Analogously, Sr need not be assembled, since its action on a given vector
can be computed by solving the N local saddle point problems (17) with b; = 0.
The right-hand side f)p is formed from an additional set of solutions of the N local
saddle point problems (17) with ur = 0.

The saddle point Schur complement (19) satisfies a uniform inf-sup condition

(see [45] for a proof):
LEMMA 1.

(diVSnV7 q0)2
sup —————

> BEllgoll7: Va0 € U
Snvevn Sn(SnV,S”V) = ﬂr”qthQ Qo 0,

where Br is independent of qo,n, and N.

An analogous stability result holds for the incompressible elasticity case.

7.1. Block preconditioners for the saddle point Schur complement.
We solve the saddle point Schur complement system (19) by some preconditioned
Krylov space method such as PCR, if we use a symmetric positive definite pre-
conditioner and the problem is symmetric, or GMRES if we use a more general
preconditioner. Let S be the coeflicient matrix of the reduced saddle point problem
(19)

_[ S B§
0 s[5

We will consider the following block-diagonal and lower block-triangular precondi-
tioners (an upper block-triangular preconditioner could be considered as well):

§:§p0 s _|S o
b 0 Cy By, -Co |’

where §p and 50 are good preconditioners for Sr and the coarse pressure mass
matrix Cy, respectively. We refer to Klawonn [31, 32] for an analysis of block pre-
conditioners. We consider two choices for §r, based on wire basket and Neumann-
Neumann techniques, and we take 6‘0 = Cp.
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a) A wire basket preconditioner for Stokes problems. We first consider a simple
Laplacian-based wire basket preconditioner

~ Sw 0 0
0 0 Sw

where we use on each scalar component the scalar wire basket preconditioner in-
troduced in Pavarino and Widlund [44] and extended to GLL quadrature based
approximations in [46],

-~ ~ NF

Si' = RSy RS+ Re, Sl RE,

k=1

Here R is a matrix representing a change of basis in the wire basket space, RITpk
are restriction matrices Areturning the degrees of freedom associated with the face
Fi,k=1,---,Np, and Syw is an approximation of the original wire basket block.
This is an additive preconditioner with independent parts associated with each face
and the wire basket of the elements, defined in (11). It satisfies the following bound,
proven in [45].

THEOREM 2. Let the blocks of the block-diagonal preconditioner Sp be the wire
basket preconditioner Sp defined in (21) and the coarse mass matriz Cy. Then the

Stokes saddle point Schur complement S preconditioned by Sp satisfies
N 2
cond(§5'5) < C(I“L;#Og”),

where C' is independent of n and N.

The mixed elasticity case is more complicated, but an analogous wire basket
preconditioner can be constructed and analyzed; see [45].

b) A Neumann-Neumann preconditioner for Stokes problems. In the Stokes
case, we could also use a Laplacian-based Neumann-Neumann preconditioner on
each scalar component; see Dryja and Widlund [22], Le Tallec [35] for a detailed
analysis of this family of preconditioners for h—version finite elements and Pavarino
[42] for an extension to spectral elements. In this case,

~ Syny 0 0
(22) Sc=| 0 Syx 0 |,
0 0 Swyn

where

N
Sui = REKy' Ry + > Rbo D;'81D; ! Roq,

j=1
is an additive preconditioner with independent coarse solver K ;11 and local solvers
:S'\]T, respectively associated with the coarse triangulation determined by the ele-
ments and with the boundary 0€2; of each element. Here Ryq, are restriction
matrices returning the degrees of freedom associated with the boundary of ;, D;
are diagonal matrices and 1 denotes an appropriate pseudo-inverse for the singular
Schur complements associated with interior elements; see (22, 42] for more details.
Also for this preconditioner, a polylogarithmic bound is proven in [45].
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THEOREM 3. Let the blocks of the block-diagonal preconditioner §D be the
Neumann-Neumann preconditioner S defined in (22) and the coarse mass ma-
triz Cy. Then the Stokes saddle point Schur complement S preconditioned by Sp
satisfies

5 1+ logn)?
cond(Sp'S) < C_(_—I—_ﬂo_g@,

where C is independent of n and N.

Other scalar iterative substructuring preconditioners could also be applied in
this fashion to the Stokes system; see Dryja, Smith, and Widlund [19].

8. Numerical results

In this section, we report the results of numerical experiments with the overlap-
ping additive Schwarz method described in Section 6 and with some of the iterative
substructuring methods described in Section 7. The two sets of results cannot be di-
rectly compared because the overlapping method is applied to h-version discretiza-
tions in two dimensions, while the iterative substructuring methods are applied to
spectral element discretizations in three dimensions. All the computations were
performed in MATLAB.

8.1. Overlapping Schwarz methods for h-version discretizations in
two dimensions. In the following tables, we report the iteration counts for the
iterative solution of our three model saddle point problems (Stokes, mixed elasticity,
and Oseen) with the overlapping additive Schwarz method of Section 6, i.e. with the
preconditioner K ¢ defined in (10). In each application of our preconditioner, we
solve the local and coarse saddle point problems directly by gaussian elimination.
Inexact local and/or coarse solvers could also be considered, as in positive definite
problems. We accelerate the iteration with GMRES, with zero initial guess and
stopping criterion ||r;||2/||7oll2 < 107°, where 7; is the i—th residual. Other Krylov
space accelerators, such as BICGSTAB or QMR, could be used. The computational
domain € is the unit square, subdivided into vN x v/N square subdomains. More
complete results for Stokes problems, including multiplicative and other variants of
the preconditioner, can be found in Klawonn and Pavarino [33].

a) Pi(h) — Py1(2h) finite elements for the Stokes problem. Table 1 reports the
iteration counts (with and without coarse solver) and relative errors in comparison
with the direct solution (in the max norm) for the Stokes problem (1) discretized
with Py(h) — P;(2h) finite elements. Here v = 0 on 9Q and f is a uniformly
distributed random vector. The overlap ¢ is kept constant and minimal, i.e. the
size 6 = 2h of one pressure element. h is refined and N is increased so that the
subdomain size is kept constant at H/h = 8 (scaled speedup). The global problem
size varies from 531 to 14,163 unknowns. The empty entry in the table (-) could
not be run due to memory limitations. The results indicate that the number of
iterations required by the algorithm is bounded by a constant independent of h and
N. As in the positive definite case, the coarse problem is essential for scalability:
without the coarse problem, the number of iterations grows with N. These results
are also plotted in Figure 2 (left). The convergence history of GMRES (with and
without Rais as preconditioner) is shown in Figure 3 (left), for the case with 16
subdomains and h = 1/32.
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TABLE 1. Stokes problem with Py(h) — P;(2h) finite elements: it-
eration counts and relative errors for GMRES with the overlapping

additive Schwarz preconditioner 1?5 i‘ g5 constant subdomain size
H/h = 8, minimal overlap § = 2h.

with coarse no coarse
VN | BT Liter. @™ = z]loc/|lzlloo | iter. |[z™ = zflo /|2l
2 16 | 17 3.42e-7 21 9.05e-7
3 24 | 18 1.04e-6 33 1.82e-6
4 32 {19 5.72e-7 43 9.53e-6
5 40 | 19 1.84e-6 53 1.07e-5
6 48 19 1.75¢e-6 63 1.39e-5
7 56 | 20 1.10e-6 73 3.17e-5
8 64 | 20 1.42¢-6 86 4.60e-5
9 72 | 20 1.13e-6 - -
10 | 80 | 20 1.79¢-6 - -

TABLE 2. Lid-driven cavity Stokes flow with @Q,(h) — Py(h) stab.
finite elements: iteration counts and relative errors for GMRES
with the overlapping additive Schwarz preconditioner K 5}; g3 con-
stant subdomain size H/h = 8.

with coarse no coarse

overlap | VN | h=! [iter. |27 — 2|0 /2]l | iter. ||z — zlso /|25

2 16 18 5.58e-7 14 4.22e-1
6=nh 4 32 27 2.04e-6 27 4.88e-1

8 64 31 7.35e-7 44 5.14e-1

2 16 16 1.93e-6 16 1.20e-7
6 =2h 4 32 21 3.84e-7 37 8.06e-7

8 64 22 2.51e-7 81 1.96e-6

b) Qi(h) — Py(h) stabilized finite elements for the Stokes problem. Table 2
reports the iteration counts and relative errors in comparison with the direct so-
lution for the Stokes problem (1) discretized with @1(h) — Py(h) stabilized finite
elements, using the MATLAB software of Elman, Silvester, and Wathen [26], which
requires 1/h to be a power of two. Here the boundary conditions and right-hand
side are imposed to obtain a lid-driven cavity Stokes flow. The default value of the
stabilization parameter 3 in (5) is 1/4. The global problem size varies from 834
to 12,546 unknowns and, as before, we study the scaled speedup of the algorithm
with H/h = 8. We could run only three cases (N = 4,16,64), but the iteration
counts seem to behave as in the corresponding cases in Table 1 for P;(h) — P;(2h)
finite elements. Therefore the experiments seem to indicate a constant bound on
the number of iterations that is independent of h and N. Again, the coarse space
is essential for obtaining scalability. Here we can use a minimal overlap of 6 = h
since both velocities and pressures use the same mesh 7,. We also report the results
for &6 = 2h to allow a comparison with the results of Table 1 (where the minimal
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FIGURE 2. Iteration counts for GMRES with overlapping additive
Schwarz preconditioner K, ohs (with and without coarse problem):
subdomain size H/h = 8, overlap § = 2h, Stokes problem with
Py (h) — P;(2h) finite elements (left), lid-driven cavity Stokes flow
with @, (h) — Py(h) stab. elements (right).
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FIGURE 3. Convergence history for GMRES with and without
overlapping additive Schwarz preconditioner 1?51‘5 : N = 16,
subdomain size H/h = 8, overlap § = 2h, Stokes problem with
Py (h) — Pi(2h) finite elements (left), lid-driven cavity Stokes flow
with @1 (h) — Py(h) stab. elements (right).

overlap is § = 2h). These results are also plotted in Figure 2 (right). The conver-
gence history of GMRES (with and without K}, ¢ as preconditioner) for the case

N =16,h =1/32,6 = 2h, is plotted in Figure 3 (right).

¢) Pi(h) — Py(2h) finite elements for mized elasticity. Analogous results were
obtained for the mixed formulation of the elasticity system (2), discretized with
Py (h) — P1(2h) finite elements, with u = 0 on 9. The results of Table 3 indicate
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TABLE 3. Mixed linear elasticity with Pj(h) — P;(2h) finite ele-
ments: iteration counts for GMRES with the overlapping additive
Schwarz preconditioner K 5}4 s> subdomain size H/h = 8, minimal
overlap 6 = 2h.

Poisson ratio v
VN 1/h 103 04 049 0.499 0.4999 0.49999 0.5
2 16 | 15 15 17 17 17 17 17
3 24 |17 17 18 18 18 18 18
4 32 118 18 19 19 19 19 19
5 40 | 18 18 19 19 19 19 19
6 48 | 18 18 19 19 19 19 19
7 5 | 19 19 19 20 20 20 20
8 64 |19 19 20 20 20 20 20
9 72 119 19 20 20 20 20 20
10 { 80 |19 19 20 20 20 20 20

TABLE 4. Oseen problem with @Q1(h) — Py(h) stabilized finite el-
ements and circular vortex w = (2y(1 — 2?), —22(1 — y?)) : iter-
ation counts and relative errors for GMRES with the overlapping

additive Schwarz preconditioner IA(ail g, constant subdomain size
H/h =8, overlap 6 = h.

with coarse no coarse

VN | k7! | iter.  err. |iter. err.
2 16 19 1.12e-6| 14 7.08e-7
w=1 4 32 25 7.28e-7| 31 2.71e-6
8 64 30 7.86e-7| 79 1.15e-6
2 16 21 3.8le-7| 15 5.47e-7
uw=0.1 4 32 26 6.03e-7| 32 7.37e-7
8 64 27  9.8%-7 | 99 3.27e-6
2 16 29 943e-7| 22 9.16e-7
w=0.02 4 32 39 4.84e-7| 42 4.81e-7
8 64 42 1.15e-6 | 118 1.69e-6
2 16 35 9.34e-7| 29 9.53e-7
u=0.01 4 32 51 2.02¢-6 | 53  1.80e-6
8 64 58 1.62e-6 | 211 1.45e-5

that the convergence rate of our method is bounded independently of h, N, and the
Poisson ratio when approaching the incompressible limit v = 0.5.

d) Q1(h) — Py(h) stabilized finite elements for the Oseen problem. Table 4
reports the iteration counts for GMRES with K5} and § = h, and the relative
errors in comparison with the direct solution, for the Oseen problem (3), using
the MATLARB software of Elman, Silvester, and Wathen [26]. The divergence-free
field w is a circular vortex, w = (2y(1 — x?), —2x(1 — 3?)), and the stabilization
parameter is 1/4. We study the scaled speedup of the algorithm with H/h = 8,
running the three cases N = 4,16, 64 for each given value of the diffusion parameter
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TABLE 5.ALinear elasticity in mixed form: local condition num-
ber cond(Sp 'Sr) of the local saddle point Schur complement with
wire basket preconditioner (with original wire basket block) on one
interior element; @Q,, — Q,_» method.

n Poisson ratio v
0.3 0.4 0.49 0.499 0.4999 0.49999 0.5
9.06 9.06 9.06 9.06 9.06 9.06 9.06
17.54 20.19 4492 5826 60.12 60.31 60.33
24.45 29.69 6230 85.35 88.77 89.13  89.17
34.44 38.68 76.69 106.72 111.49 111.99 112.05
40.97 46.84 90.97 129.73 136.38 137.09 137.17
51.23  55.65 107.19 153.29 161.97 162.90 162.99
59.70 64.60 122.13 176.32 187.45 188.66 188.66

0O 3 O U W N

TABLE 6. Generalized Stokes problem: local condition number
cond(glflSr) of the local saddle point Schur complement with wire
basket preconditioner (with original wire basket block) on one in-
terior element; @), — Q,,—2 method.

n Poisson ratio v
0.3 0.4 0.49 0499 0.4999 0.49999 0.5
4.89 4.89 4.89 4.89 4.89 4.89 4.89
14.13 17.31 36.55 44.79 4588 4599  46.00
19.18 24.24 54.33 73.08 7576 76.04  76.07
24.18 30.56 66.25 86.85 89.92 90.24  90.28
2871  36.29 87.52 121.36 126.52 127.07 127.13
33.44 4215 95.50 130.82 136.25 136.82 136.89
38.36  48.71 114.89 163.55 171.49 172.34 17243

0~ O Uk W N

GENERALIZED STOKES LINEAR ELASTICITY
180 2001

5 5
SPECTRAL DEGREE n SPECTRAL DEGREE n

FIGURE 6. Local condition number cond(§1? 'Sr) from Tables 5
and 6; generalized Stokes problem (left), mixed elasticity (right)
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. The results indicate a bound on the number of iterations that is independent of
h and N, but that grows with the inverse of the diffusion parameter p.

8.2. Iterative substructuring for spectral element discretizations in
three dimensions. We first computed the discrete inf-sup constant Sr of the
saddle point Schur complement (20), for both the mixed elasticity and Stokes system
discretized with Q,, — Q,,_o spectral elements. Gr is computed as the square root of
the minimum nonzero eigenvalue of C; ' BY Sy ' By, where Sr and By are the blocks
in (20) and Cj is the coarse pressure mass matrix. The upper plot in Figure 4
shows (r as a function of the spectral degree n while keeping fixed a small number
of elements, N = 2 x 2 x 1. The lower plot in Figure 4 shows [r as a function
of the number of spectral elements N for a small fixed spectral degree n = 2.
Both figures indicate that Gr is bounded by a constant independent of N and n,
in agreement with Lemma 1. We also computed the discrete inf-sup constant 3,
of the whole Stokes problem on the reference cube by computing the square root
of the minimum nonzero eigenvalue of C;; !Bl A-1B,,, where A,, B,, and C,, are
the blocks in (9). The results are plotted in Figure 5. The inf-sup parameter of
the @, — P,—1 method is much better than that of the @, — @,—2 method, in
agreement with the theoretical results of [5] and the experiments in [43].

We next report on the local condition numbers of §r_ 'Sr for one interior el-
ement. Here Sr is the velocity block in the saddle point Schur complement (20)
and §E ! is the wire basket preconditioner described in Section 7 for the Stokes
case. We report only the results obtained with the original wire basket block of
the preconditioner, while we refer to Pavarino and Widlund [45] for more complete
results. Table 5 presents the results for the mixed elasticity problem, while Table
6 gives the results for the generalized Stokes problem (in which there is a penalty
term of the form —#%(p,q);2). These results are also plotted in Figure 6. In both
cases, the incompressible limit is clearly the hardest, yielding condition numbers
three or four times as large as those of the corresponding compressible case. For
a given value of v, the condition number seems to grow linearly with n, which is
consistent with our theoretical results in Theorem 2 and 3.
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