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On the Reuse of Ritz Vectors for the Solution to Nonlinear
Elasticity Problems by Domain Decomposition Methods

Franck Risler and Christian Rey

1. Introduction

This paper deals with a Rayleigh-Ritz Preconditioner (RRP) that accelerates
convergence for the iterative solution to a series of symmetric positive definite
linear systems associated with nonlinear substructured elasticity problems. RRP
depends upon CG’s superconvergent properties and consists of a suitable reuse of
Ritz vectors. Moreover, the Rayleigh-Ritz paradigm can be wisely associated with
another acceleration technique, the Generalized Krylov Correction, so as to form
the SPARKS (Spectral Approach for the Reuse of Krylov Subspaces) algorithm.
Numerical assessment of both RRP and SPARKS is provided on a large-scale
poorly-conditioned engineering practice.

2. Solution to Nonlinear Elasticity Problems

We consider computation of the equilibrium of bodies made up of compressible
hyperelastic material and that undergo large deformation. A Lagrangian
formulation is chosen and all variables are defined in the reference configuration.
Moreover, 2 in R* and I exhibit the domain occupied by the body and its boundary
respectively. The equilibrium equations may then be written in a weak form as

follows
Find v € {H + uo} such that
0P
1 —(u) : VodQ = /f.vdﬂ + / g.vdl Yve H
) o OF 0 ‘

g9

H={veH'(Q)  v=00nT, =T — Iy}
where H denotes the space of kinematically-admissible displacement fields, (:)
stands for the double contractor operator between two tensors A and B (A: B =
Tr(A” B)), z are the coordinates of any particle of the domain measured in the
reference configuration () in a fixed orthonormal basis of R?, ug is the imposed
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displacement field on part T', of the domain boundary, v(z) is any admissible
displacement field in the reference configuration, u(z) is the unknown displacement
field, F(z) = Id + Vu(z) is the deformation gradient, g(x) is the surface tractions
on part I'; of the domain boundary, complementary to I', in I, f(z) is the density
of body forces (we assume that external loadings f and g do not depend on the
displacement field u - dead loading assumption), and @ is the specific internal elastic
energy.

The problem given by Eq.(1) is discretized through a finite element method
[13] and leads to the solution to a nonlinear problem of the form F(u) = 0. Such
a discrete problem is solved by means of Newton-type methods that amount to the
resolution to a succession of symmetric positive definite linear problems, the right
hand sides and the matrices of which are to be reactualized.

The reader may refer to [1] for a complete presentation of nonlinear elasticity
problems. Moreover, further explanations on Newton-type algorithms can be found
in [5] or in [6].

3. Iterative Solution to a Series of Linear Problems

3.1. The Substructuring Paradigm. By condensing each linear problem on
the subdomains interface, non overlapping Domain Decomposition (DD) methods
(primal [7] or dual [4] approach) enable to solve iteratively with a Conjugate
Gradient (CG) algorithm the following succession of linear problems,

(2) (PF): AFzb =b* | k=1,....m

where AF denotes the matrix of Schur complement either in primal or dual form
depending on the approach chosen, and b* is the associated condensated right hand
sides. Note that the A* matrix herein considered is symmetric, positive, definite
[9]. From now on, we will be focusing on the dual domain-decomposition paradigm.
The proposed Ritz preconditioner may nevertheless suit to the primal approach,
though some characteristic properties of the dual interface operator magnify the
positive effects upon the convergence of this preconditioner.

3.2. Definition and Fundamental properties.

3.2.1. CG characterizing Properties. The Conjugate Gradient algorithm
applied to the solution to the linear problem (P*) arising from Eq.(2), depends
on the construction of a set of w¥ descent directions that are orthogonal for the dot
product associated with the A* matrix. The Krylov subspace thus generated may
be written as

(3) K (A% = {wf,wf,...,wf )} 1 K, (4% CcR”

where the subscript r; denotes the dimension of this latter subspace and n exhibits
the number of unknows of the substructured problem to be solved.
A characteristic property of CG is given by

(4) &% =2 || o = om0 2 = 4|

where zf is a given initial field and with ||v|| 4x = (AFv,v).
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Consequently, by introducing the A*-orthogonal projector P{(‘fk onto the
K., (A¥) Krylov subspace, the ry-rank approximation of the solution can be written

7‘k—1
(5)  xF =af+ P}’?:k (bF — A*zf)  with P}?fk () = Z

Tk
=0

(x? wb) k
(AFwk, wh) ™
3.2.2. Ritz Vectors and Values. The Ritz vectors y;(™) € K,, (A*F) and 0§rk) €
R values are defined such that [8]
(6) Aky](fk) _ Q(rk)yj(rk) L Krk(Ak)

J

The convergence of the Ritz values towards a set of rj, eigenvalues of the A* matrix
exhibits the dominating phenomenon, on which the CG’s rate of convergence and
the so-called superlinear convergence behavior [8, 12] depends.

4. The Rayleigh-Ritz Preconditioner

4.1. A Krylov Based Spectral Approach. The purpose of this new
preconditioner is to utilize spectral information related to the dominating
eigenvalues arising from Krylov subspaces so as to accelerate the resolution of a
succession of linear systems of the form given by Eq.(2). The relevance of this
approach has been analysed in ([11], criterion 2.3) and its validity domain has been
defined.

More precisely, we intend herein to very significantly accelerate the convergence
of a set of p dominating Ritz values to trigger a superconvergent behavior of
CG. The key to the Ritz approach lies in the so-called effective condition number
that quantitatively weights the rate of the CG’s convergence in the course of the
resolution process. The effective condition number is defined at the j iteration of
the CG as the ratio of the largest uncaptured eigenvalue of the A* matrix to its
smallest eigenvalue. Note that a given A eigenvalue of the A* matrix is considered
captured whenever a Ritz value provides a sufficiently accurate approximation of A
so that the corresponding eigenvector no longer participates in the solution process
[12].

Therefore, with the Ritz approach, we seek to drastically reduce the effective
condition number within the first CG’s iterations. Besides, the spectrum of the
dual interface operator is distinguished by few dominating eigenvalues which are
not clustered and are well separated from the smaller ones [4]. Consequently, the
new algorithm is expected to be even more efficient that some of the intrinsic
spectral properties of the linear problems we deal with, magnify its positive effects
upon convergence of the dominating Ritz values.

Let us define a Q € R™*P matrix, the columns of which store an approximation
of p eigenvectors of the current A* operator. Inasmuch as we are aiming to reduce
the effective condition number, we will prescribe at the ¢ iteration of the Conjugate
Gradient algorithm an optional orthogonality constraint that is presented as

(7) QYgi =0 Vi
In terms of Krylov subspaces, that yields
(8) K., (4%) € Ker@" = (ImQ)*

Note that this orthogonality constraint is similar to the one associated with a
new framework that has been recently introduced to speed up convergence of
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dual substructuring methods [3]. But, while in [3] considerations upon domain
decomposition method found the algorithm, the Ritz approach depends on a
spectral analysis of the condensed interface matrix. Consequently, apart from this
sole formulation similarity, these two methods are based on completely different
concepts.

Furthermore, we emphasize the fact that the constraint given by Eq.(7) is
optional and, for obvious reasons, does not modify the admissible space to which
the solution belongs. Besides, providing that the constraint is enforced at each CG’s
iteration, it must consequently be verified by the solution to the linear problem.
Since the residual vector associated with the final solution is theoretically equal to
zero, the orthogonality condition prescribed by Eq.(7) is thus satisfied.

Let’s now focus on the construction of the () matrix in the framework of the
resolving to a series of linear problems. We advocate that the approximation of
eigenvectors arises from the Ritz vectors associated with the p dominating Ritz
values originating from the first system (P!). Note that the efficiency of the
conditioning problem depicted in Eq.(7) is submitted to two main assumptions
([11], Hypothesis 3.1) in (a) the convergence of Ritz vectors, and (b) the
perturbation of eigendirections among the family {A*}¥=" of matrices.

Moreover, if the number of linear problems to be solved is high and the columns
of the @) matrix do not provide a sufficiently accurate approximation of eigenvectors
related to dominating eigenvalues of a given A? matrix (1 < ¢ < m), the Q
matrix has to be reactualized. Hence, it requires suspending the prescription of
the constraint given in Eq.(7) while solving (P?) and computing the Ritz vector
associated with the p dominating Ritz values in order to update the () matrix. The
Ritz conditioning problem is then restored until another reactualization procedure
is required.

4.2. Construction of the Rayleigh-Ritz Preconditioner. For the sake of
clarity, and since no confusion is possible, the k superscript is herein omitted and
the A* matrix is simply noted A.

In order to prescribe the optional constraint given by Eq.(7), we shall superpose, at
each iteration 7 of the Conjugate Gradient algorithm, the field z; and an additional
field of Lagrange multipliers &; such that

9) T, — T =z;+& =3+ Qu
QTZ' =0 with §,~ = Ail -b

Substituting the second equation of Eq.(9) into the first one yields

(10) QT A" Qo + QT AN - QT =0
Consequently, « is given by
(11) a; = —(QTA*Q)T'Q Az, + (QT AFQ) T QT

Then, substituting Eq. (11) into Eq.(9) yields

£ = (1-QQUA'Q) QT A, +Q(QTARQ) QT H
(12) T = -Q(Q"A*Q) QT A")x, + xo
with zp =Q(Q"A*Q)~'Q"v
Let the projector P be defined by
(13) P: z, — I; — 9 with P=(I-QQ"A*Q)~'QT 4"
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Spectrum of the dual interface operator Residual of conjugate gradient

cigenvalue/smallest eigenvalue
=
Residual (Log(2_norm))
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FIGURE 1. Spectral distribution and residual history with or
without the RRP (R100) preconditioner

Since the considered projector P is not symmetric, the prescription of the Rayleigh-
Ritz Preconditioner (RRP) at each CG iteration has then to be performed in two

projection steps, by ?7 and P respectively.

5. Application

Numerical efficiency is assessed on a large-scale poorly-conditioned non linear
problem: a three-dimensional steel-elastomer laminated structure that distinguishes
with great heterogeneousness and high nonlinearity. The considered structure
has a parallelepiped geometry and is discretized by hexaedral finite elements (Q1
elements). Besides, an axial compression loading with an imposed displacement is
applied. Material behavior is modelled by the Ciarlet-Geymonat specific internal
energy ® [2] and the associated equivalent Young modulus and Poisson coeflicient
are (E,v) = (1.3 MPa;0.49) and (E,v) = (2 x 10> MPa;0.3) for the elastomer and
the steel respectively.

On account of the quadratic convergence of the Newton methods, the stopping
criterion of Newton iterations (nonlinear iterations) is set to 10~% while the accuracy
requirement for solving each linear problem is 10~2. In all cases, the linear problems
are also preconditioned by the classical Lumped preconditioner [4] and the spectral
results have been estimated from the Ritz values for the Krylov space generated
by the Conjugate Gradient algorithm, when a number of iterations n, (close to the
dimension n of the problem) is performed. Finally, Ny and N denote from now
on the number of processors and the number of unknows of the nonlinear problem
considered respectively.

5.1. Numerical Performance. In Table 1, is reported the number of
iteration achieved by the Conjugate Gradient algorithm within the Newton
iterations and the Figure 1 exhibits the spectral distribution and the residual history
of the (P?) linear problem. In all cases, Classic CG means that RRP is not applied
and CG with RRP (R,) indicates that a RRP whose size is p is prescribed. On the
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TABLE 1. Numerical performances with various preconditioners

N, N solver Newton Iterations
N[N ] N
15 || 85680 Classic CG 294 | 307 | 367

15 || 85680 || CG with RRP (R50) || 294 | 254 | 312
15 || 85680 || CG with RRP (R100) || 294 | 212 | 272
15 || 85680 CG GKC 204 [120| 71
15 || 85680 || CG with SPARKS (R50) |[ 294 | 73 | 51

spectral distribution, we observe that, not only the condition number x of the RRP
preconditioned matrix is reduced, but also the dominating values are fewer and more
spread out. It thus paves the way for a fast-convergence of Ritz values towards the
dominating eigenvalues — and hence a drastic reduction of the effective condition
number — during the first CG iterations, what is supported by the chart of the
residual history. On the other hand, this latter curve shows that, in a second phase
of the resolution process, when Ritz values have converged towards the eigenvalues
associated with the eigenvectors, an approximation of which is provided by the
columns of the () matrix, the rate of convergence is decelerated and becomes close
to the one of the Classical CG.

Computational results in terms of CPU time are not addressed in this
paper since they highly depend on implementation issues and would require
further explanations. Nonetheless, numerical assessments show that the provided
acceleration of convergence is not offset against the computational overheads
involved by the RRP prescription.

5.2. The SPARKS algorithm. Whereas the Rayleigh-Ritz preconditioner
is based on a condensation of information related to the upper part of the spectrum,
the Generalized Krylov Correction[10] reuses in a broader and a non-selective way
information originating from previously generated Krylov subspaces. We associate
those two latter algorithm within an hybrid (RRP-GKC) preconditioner, which we
will be calling from now on SPARKS (Spectral Approach for the Reuse of Krylov
Subpaces).

Numerical experiments show that the RRP has a dominating contribution
during the first iterations, when the Conjugate Gradient (CG) explores spectral
subspaces related to the dominating eigenvalues.  Afterwards, the rate of
convergence is mainly ruled by the GKC preconditioner which enables to speed
up the capture of phenomena associated with lower frequencies. A numerical
assessment is provided in Table 1 and further validations have shown that the
very significant acceleration of convergence provided by RRP within the SPARKS
algorithm goes far beyond the computational overcost generated. Moreover,
SPARKS distinguishes with an increasing efficiency when the size n of the problem
grows.

6. Conclusion

We have presented in this paper a Raleigh-Ritz preconditioner, that is
characterized by the reuse of spectral information arising from previous resolution
processes. Principles and construction of this preconditioner have been addressed
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and numerical performance of the Ritz approach has been demonstrated on a large-

SC

ale poorly-conditioned engineering problem. Moreover, a new hybrid Krylov-type

preconditioner, known as SPARKS, and deriving from both the Rayleigh-Ritz and
the Generalized Krylov Correction has been introduced and has proved outstanding

numerical performances.
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