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Dual Schur Complement Method for Semi-Definite Problems

Daniel J. Rixen

1. Introduction

Semi-definite problems are encountered in a wide variety of engineering prob-
lems. Most domain decomposition methods efficient for parallel computing are
based on iterative schemes and rarely address the problem of checking the prob-
lem’s singularity and computing the null space. In this paper we present a simple
and efficient method for checking the singularity of an operator and for computing a
null space when solving an elliptic structural problem with a dual Schur complement
approach.

The engineering community has long been reluctant to use iterative solvers
mainly because of their lack of robustness. With the advent of parallel computers,
domain decomposition methods received a lot of attention which resulted in some
efficient, scalable and robust solvers [3, 6]. The Finite Element Tearing and Inter-
connecting method (FETI) has emerged as one of the most useful techniques and
is making its way in structural and thermal commercial softwares [1, 4].

So far, the issue of semi-definite problems in FETT has not been fully addressed
although a broad range of engineering problems are singular. For instance, the static
and vibration analysis of satellites, aircrafts or multi-body structures is governed
by [5]

(1) Az =b
where A is a symmetric semi-definite positive stiffness matrix, x are the structural

displacements and b is the vector of external forces. The zero energy modes u;,
i =1,...m, define a null space such that

(2) Au; =0 i=1,...m
and a solution exists for problem (1) only if
(3) ulb=0 i=1,...m

When using direct solvers to solve a singular problem such as (1), the null
space is obtained as a by-product of the factorization when detecting zero pivots [5].
Unfortunately, when iterative solvers are applied, the algorithms do not provide any
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information on the singularity of the problem and the null space is never computed
in the iteration process.

In this paper, a general Conjugate Gradient procedure for testing the singularity
of an operator and for extracting the null space is presented. Iterative methods for
computing a null space exist (e.g. singular value decomposition or inverse iteration
with spectral shifting [5]), but they entail a tremendous computational cost when
applied to large systems. Here we show how algorithms like Conjugate Gradient
for solving linear systems can be adapted to check for singularity and to compute a
null space, thereby adding only a small computational overhead and involving only
minor alteration to the solution procedure. We will discuss its application to the
FETI solver.

2. Finite element tearing and inter-connecting

2.1. The dual Schur complement formulation. The solution of a prob-
lem of the form (1) where A is a symmetric positive matrix arising from the dis-
cretization of some second- or fourth-order elliptic structural mechanics problem
on a domain 2, can be obtained by partitioning § into N, substructures Q(*), and
gluing these with discrete Lagrange multipliers A [3]:

(4) A L BTy = gl s =1, .. N,

(5) > BWz = 0

s=

—

where the superscript (s) denotes a quantity pertaining to Q) BG) is a signed
Boolean matrix such that B(*)2(*) is the restriction of z(*) to the subdomain inter-
face boundary and X are Lagrange multipliers associated to the interface compati-
bility constraints (5). From Egs. (4), 2(*) can be computed as

(6) 2 = A" <b<s> _ B(s)"',\) + R®)q®

where A" denotes the inverse of A if Q) is not singular, or a generalized
inverse of A®®) otherwise. In the latter case, R(®) = Ker(A(®)) stores a basis of the
null space of A®®) and is obtained during the factorization of A®), and a(*) stores
the amplitudes of R(®). If A®) is singular, (4) requires that

(7) R <b<s> _ B(sﬂ'A) -0

From Egs. (6) and (5), and recalling condition (7), the interface problem can be
written as [3]

Fr =G ][A] [ d
® er o ]la]-[
where
s=Ng i s=Ng
F o= B A6 g7, d= 3" BOIAW p
s=1 s=1
. Y
G, = [B(I)R(l) B(NS>R(NS>};Q — [amf a(m)l]
. 8 T
9@ e = {buﬂRm b(N»’R(NS)}
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Splitting the Lagrange multipliers as

(10) A= XN+PX

(11) where X =Gr(GFa) e

(12) P=1-G(G]G)7'G]

the interface problem (8) is transformed into the semi-definite system
(13) (PTFiP) X = PT(d- Fi)\)

(14) a = (GFG)'GY (d~Fi)

Hence, a solution of the original indefinite system of interface equations (8) can
be obtained by applying a Preconditioned Conjugate Gradient (PCG) algorithm to
the symmetric semi-definite interface problem (13). Such a procedure can also be
viewed as a Preconditioned Conjugate Projected Gradient (PCPG) algorithm [3].

At every PCPG iteration, the projection steps require the solution of a coarse
grid problem associated with the subdomain floating modes of the form

(15) (GTGa =Giw

These coarse grid problems are solved by second level Conjugate Gradient iterations
with a projection and re-orthogonalization technique [2, 3] in order to re-use the
Krylov spaces computed at previous iterations.

2.2. FETI applied to semi-definite problems. When problem (1) is pos-
itive semi-definite, the null space directions u; verifying (2) also satisfies the sub-
domain-wise null space condition

(16) A =

(17) S BT = 0

stating that the null space of the global problem is also a null space for the subdo-
mains and satisfies the interface compatibility. Hence, at the subdomain level, the
global null space vectors are linear combinations of the local floating modes, i.e

(18) ul*) = R()g)

and computing the null space for the global problem is equivalent to finding the
amplitudes of the local null space directions such that

N
(19) Y BYRSY =616, =0
s=1
g0t (N1 o
where §; = [0, ... 6,7°" |'. Therefore, when m null space vectors u; exist,

G is no longer full rank and the coarse grid operator (G¥ G) has a null space of
dimension m such that

(20) (GTG)8; =0 i=1,...m

In this case, a solution exists for the dual interface problem (8) only if e is in
the range of Gy, i.e.

(21) 6le=0 i=1,...m

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



344 DANIEL J. RIXEN

Expanding this condition further by using definition (9) yields
ie‘S’TRﬂ b %: ) = ufb =0
; VO =Y V=u b= i=1,...m
s=1 s=1

Thus, a solution exists for the dual interface problem if b is in the range of A in
the initial problem (1) and in that case a starting value Ay can be computed by
(11). A solution to the coarse problem (15) can be found by building a generalized
inverse (GTG)" if a direct solver is used. For distributed memory machines, an
iterative algorithm is usually preferred: a non preconditioned Conjugate Gradient
scheme can still be applied since the successive directions of descent remain in the
range of (GTG/).

However, it is important that the singularity of the coarse grid be detected
in the FETT method and that the null space be computed in order to check for
condition (21), otherwise the FETI iterations could proceed without converging.

3. Conjugate Gradient iterations for semi-definite problems

The method for checking the singularity of a symmetric semi-definite positive
operator and for computing the associated null space consists in applying a Conju-
gate Gradient iteration scheme to

(22) Az = Ay

where Ay # 0.

If the initial guess for x is set to zero, the computed x will be in the range of A
since the directions of descent of the Conjugate Gradient iteration are combinations
of the residual of (22). Therefore, if the solution x at convergence is equal to y
independently on the choice of y, we can state that A is non-singular. Otherwise,
u = x — y yields a null space vector. In the latter case, the iteration is restarted
with a new y direction orthogonal to the null space already extracted: x — y is now
searched for in a deflated space.

Using a projection and re-orthogonalization technique for solving problems with
multiple right-hand sides [2], the algorithm can be summarized as in Table 1. In this
algorithm, the directions of descent stored in X are normalized such that X7W = I,
W storing the results of AX. Note that the null space of A is usually computed
with a very high accuracy. Hence the stopping criterion for the Conjugate Gradient
should be ||7*|| < €||b]| with € very small.

Clearly, two major issues remain to be cleared in algorithm 1, namely how to
set the vectors y and what criterion to apply for the condition £ —y # 0. Choosing
y correctly is of crucial importance for the success of the algorithm: on one hand
it should not be in the null space so that Ay # 0, and on the other hand, it should
contain enough null space components so that z —y = 0 occurs only if all the null
space vectors have been extracted. It is clear that the choice of y as well as the
criterion for x — y # 0 should be based on an estimate of the condition number of
A which can be gathered from the Conjugate Gradient coeflicients. Nevertheless,
in the next section we propose a simple and efficient technique for choosing y and
checking for x — y # 0 when algorithm 1 is applied to the coarse grid problem 15
in FETI for structural problems.
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TABLE 1. Iterations for extracting the null space of A

Setup y
Set b = Ay
20=0rM"=b
Projection if X exists
2 = X (X7Tb)
0 =b-W(XTb)
Iterate for £ =0, ...
pk — 7"k _ X(WTT‘k)
nk = kaApk7 vk — kaTk/nk
gFHl = gk 4 pkphk
rhtl = pk —yk Aph
X = [X’ pk/\/;l?]’ W= [I/V, Apk/\/;;’g]
End
If z—y#0,
Uy =T —Y
choose a new y
orthogonalize y with respect to u;, Vi
restart at b = Ay

4. Preliminary coarse grid iterations in FETI

The computational cost of the procedure described in 1 can be significant since
the number of descent directions for computing the entire null space with a good
accuracy can be large. For instance, if applied to the iterative solution of the non
decomposed problem (1), the singularity check would cost more than the actual
computation of the solution.

As explained in section 2.2, the singularity issue for FETI appears in the coarse
grid problem which dimension is very small compared to the dimension of u. More-
over, for the coarse grid problem, the complete Krylov space is needed anyway
during the FETI iterations. Hence, solving a set of preliminary coarse grid prob-
lems of the form (GG )z = (GTG/)y for finding the null space of (GTG) entails
only a small overhead cost.

Note that for the primal Schur complement approach [6], algorithm 1 can be
applied to the assembled Schur complement. This would however induce an unac-
ceptable computational cost since it would amount to solving the entire interface
problem several times. If however the balancing method version of the primal Schur
method is used [7, 6], the singularity check can be performed at a low cost on the
coarse grid operator associated to the Neumann preconditioner in a way similar to
what is presented here for FETL

Null vector criterion. To define a criterion for x — y # 0 in algorithm 1, we
decompose y into

m
(23) y=y+ Z 0:5;

=1
where 7 is the component of y in the range of (GT G}). Since by construction the
solution z is in the range of (GTG), r —y ~ 3 60,3;. We then assume that the
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successive starting vectors y are chosen to ensure a good representation of the null
space, i.e. so that

(24) 1680 > liyll/N if m #0
i=1
when the dimension N of the coarse grid is not trivially small. Hence we state that
x—y#0if
(25) Il =yl > llyll/N

Choosing the starting vectors. Let us remind that G; is the restriction
of the local null spaces to the interface boundary and the columns of R®) are
usually orthonormalized so that they represent the rigid translational modes and
the rotation modes around the nodal geometric centers (or around the center of
gravity if the orthogonality is enforced with respect to the mass matrix). Since
Gy represents the interface displacement jumps for local rigid body displacements
of amplitude y, choosing

(26) yi = [diag(GTG)I ' [1 1 1 1

all local translational and rotational modes around the local centers are included,
and therefore the resulting displacement field is not compatible on the interface:
Gry1 # 0. The initial vector y; in (26) is scaled by the diagonal of (G G;) in order
to account for the fact that subdomains may have very different sizes thus different
boundary displacements for the rotational modes.

Since y; is non-zero for all local rigid body modes, condition (24) is satisfied in
practice. Based on similar mechanical considerations, the next initial vectors y are
then chosen as follows

(27) v = [diagGTGI'[1 010 ...]
ys = [diagG7GI~'[1 00 1 ... ]

The technique proposed in this paper for the FETI method has been imple-
mented in the finite element analysis code SAMCEF and several free-free structures
have been analyzed using this technique. In the next section we describe some of
the test results.

.

5. Application examples

Free-free plane stress example. To illustrate the robustness of the proposed
technique, let us first consider a square plane stress structural model decomposed
into 8 x 8 square subdomains, each subdomain containing 10 x 10 finite elements
(Fig. 1). No Dirichlet boundary conditions are applied to this two-dimensional
problem so that every subdomain has 3 rigid body modes, the coarse grid problem
is of dimension 192 and there are 3 global rigid body modes (m = 3).

Applying the iteration scheme 1 to the coarse grid operator (G¥G;) with a
tolerance for the Conjugate Gradient iterations of ¢ = 10714 yields the correct
three global rigid body modes. The convergence of the scheme for extracting the
successive 6; is described in Fig. 1. The convergence curves show that the number
of iterations decrease every time a new null space component is searched for due to
the projection and re-orthogonalization steps. Let us remind the reader that the di-
rections computed and stored in this pre-processing step are used later on when the
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FIGURE 1. A free-free plane stress example

fixed
boundary

FIGURE 2. Decomposition of a blade model with 3 rigid body modes

linear system is actually solved by applying a projection and re-orthogonalization
technique.

Analysis of a blade. We now present an example representing a realistic tur-
bine blade modeled by brick elements. The model is decomposed into 6 subdomains
and the displacements are fixed in the vertical direction on a curved edge at the base
of the blade (Fig. 2). Note that because the fixed boundary is curved and belongs
to the (z,y) plane, the vertical constraints not only restrain the vertical translation
and the rotation about the x axis, but they also restrain the rigid rotation about
the y axis. Hence only 3 global rigid body modes exist.

Since the fixed boundary is only slightly curved, the problem of detecting the
local floating modes for the constrained substructure is badly conditioned. However
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this does not affect the conditioning of the coarse grid problem. Applying algorithm
1, we found the exact 3 rigid body modes. Note that if the operator A of the entire
structure would have been factorized, detecting the global rigid body modes would
have been much more difficult.

6. Conclusion

In this paper we have addressed the problem of checking the singularity of a
problem and computing the associated null space within the iterative solution pro-
cedure of a linear system. The method has been adapted to the FETI method in
structural mechanics. A simple, low cost and robust technique has been proposed.
It requires only preliminary iterations on the coarse grid problem associated to
the subdomain null spaces and uses existing FETI technology. Hence our method
entails only small modifications to the FETI algorithm and minor computational
costs. The effectiveness of the procedure was demonstrated on some relevant ex-
amples. Equipped with this important singularity check, the FETT method can be
used as an efficient solver in general static and free vibration analysis.
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