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1. Introduction

The FETT method is based on introducing Lagrange multipliers along interfaces
between subdomain to enforce continuity of local solutions [4]. It has been
demonstrated to be numerically scalable in the case of second-order problems,
thanks to a built-in “coarse grid” projection [3].

For high-order problems, especially with plate or shell finite element models in
structural analysis, a two-level preconditioning technique for the FETI method has
been introduced [2]. Computing the preconditioned gradient requires the solution
of a coarse grid problem that is of the same kind as the original FETI problem,
but is associated with a small subset of Lagrange multipliers enforcing continuity
at cross-points. This preconditioner gives optimal convergence property for plate
or shell finite element models [5].

This approach has been recently generalized to various local or partial
continuity requirements in order to derive a general methodology for building
second-level preconditioners [1].

For a sake of simplicity, the first method advocated for solving the coarse grid
problems in distributed memory environment has been the same projected gradient
as for the first-level FETI method [6] [7]. But with the increased complexity of
the generalized 2-level FETI method, this approach leads to poor performance on
machines with high performance compute nodes.

In the present paper this new preconditioning technique is reinterpreted in
a simple algebraic form, in order to derive algorithms based on direct solution
techniques to solve efficiently the coarse grid problems in distributed memory
environment. Performance results for real-lif¢ applications are given.

2. Notations

In each subdomain, €;, the local displacement field is solution of the linear
elasticity equations with imposed forces on the interfaces with other subdomains:

1991 Mathematics Subject Classification. Primary 65N55; Secondary 65Y05.
Key words and phrases. Parallel Algorithms, Multi-Level Preconditioners.

©1998 American Mathematical Society

158
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



PARALLEL COARSE SOLVERS FOR 2-LEVEL FETI METHOD 159

where K; is the stiffness matrix, u; the displacement field, B; a signed boolean
matrix associated with the discrete trace operator, and A the Lagrange multiplier,
equal to the interaction forces between subdomains.

The continuity requirement along the interfaces is written as follows:

(2) Z Biui =0

where the signed discrete trace matrices B; are such that if subdomains §2; and
1, are connected by the interface I';;, then restriction of equation (2) on I';; is:
Ui —Uj; = 0.

If the boundary of subdomain €2; does not contain a part of the external
boundary with prescribed displacements, the local problem has only Neumann
boundary conditions and then the matrix K; is positive semi-definite.

If K]L is a pseudo-inverse of matrix K;, and if columns of matrix R; form a
basis of the kernel of K; (rigid body motions), equation (1) is equivalent to:

Rf(bi + Bf)\) =0

Introducing u; given by equation (3) in the continuity condition (2) gives:

(4) Y BiK}B{IA+) BiRia; =-Y BiKb,

With the constraint on A set by the second equation of (3), the global interface
problem can be written:

F G A d
0 ERlINEN
With:
F =Y B;K; B!, dual Schur complement matrix,
Ga =Y B;R;a;, jump of rigid body motions defined by «; in Q;,
(G')\); = R!B!),
d=-Y.B:K}b,,
C; = —R:bz
In the following sections, we shall use the term “rigid body modes” for Lagrange
multipliers in the image space of G.

3. Parallelization of the rigid body projection

3.1. Rigid body projection. Thanks to the fact that the number of
admissibility constraints related to the second set of equations:

(6) (G')i = RiB{A

the hybrid condensed system (5) can be solved in practice by a projected gradient
algorithm. The projection associated with the rigid body modes can be explicitly
computed:

(7) P=1-GG'G)'G!

The computation of the product by projection P requires products by G and G
and the solution of systems with form:

(8) (G'Gla=G'yg
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160 FRANCOIS-XAVIER ROUX AND CHARBEL FARHAT

The product by G! can be performed independently in each subdomain, the product
by G requires exchanging data through interfaces between neighboring subdomains.
The product by (G'G)~! requires the solution of a coarse grid problem associated
with rigid body motions coefficients in each subdomain. This problem has the
same kind of algebraic structure as a finite element problem whose elements are
the subdomains and whose degrees of freedom in each element are the subdomain
rigid body motions coefficients.

3.2. Forming and factorization of (G'G). The (G'G) matrix has a sparse
block structure. If subscripts 7 and j are associated with subdomains €2; and €;,
the block (G'G);; representing entries in (G'G) associated with influence between
rigid body modes in €; and §2; is equal to:

(9) (G'G);; = R'B'B,R, = (B;R,)"(B;R))
J 250 J0)

The columns of B; R; and B; R; are respectively the traces on interfaces of rigid body
motions of subdomains €2; and §2;. The entries of these columns are simultaneously
non zero only on interface I';;. So, the computation of block (G'G);; just requires
the values of the traces on I';; of rigid body motions of subdomains €; and ;.

In order to minimize computation costs and memory requirements, the
following algorithm can be implemented to compute and factorize the (G'G) matrix.

1. Store in each subdomain Q;, the traces of rigid body motions on each
interface I';; with neighboring subdomain §2;. This requires the storage
for each interface I';; of a matrix (B;R;); with number of rows equal to the
number of degrees of freedom on interface I';; and number of columns equal
to the number of rigid body motions in €2;.

2. Exchange (B;R;); matrices with neighboring subdomains. This means that
subdomain ; sends matrix (B;R;); to subdomain ; and receives from it
matrix (B;R;); whose number of rows is equal to the number of degrees
of freedom on interface I';; and number of columns equal to the number of
rigid body motions in €2;.

3. In subdomain ;, compute the following matrix-matrix products for each
interfacel’;;:

(G'G)ij = (BiR){(BjR;)i
(G'G)is = (G'G)ii+ (BiR:)5(BiR;),

Now, subdomain §2; has a part of the sparse block structure of matrix (G'G).

4. Assemble the complete (G'G) matrix via global data transfer operations
(“GATHER”).

5. Factorize the complete (G'G) matrix via Choleski factorization using
optimal renumbering strategy. Note that numerical pivoting strategy may
also be implemented to detect global rigid body motions in the case of a not
clamped global problem. In this case, the global rigid boy motions form the
kernel of the (G'G) matrix.

6. Compute the rows of the (G'G)~! matrix associated to the rigid body modes
in the neighborhood of subdomain, including the subdomain itself and its
neighbors (see next section).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



PARALLEL COARSE SOLVERS FOR 2-LEVEL FETI METHOD 161

3.3. Computation of rigid body modes projection. The projected
gradient is given by:

(11) Pg=g-G(G'G)"'G'g

The computation of G'g is purely local. In subdomain ;, (G'g); = R!Blg.

The main step of the projection is the product by (G!G)~!. As the global (G'G)
matrix has been factorized, the product by (G'G)~! requires a forward-backward
substitution. To perform it, the global G!g vector must be assembled.

Once a = (G'G)™'G'g has been computed a product by G must be performed
to compute the projected gradient. As Ga is defined as:

(12> Ga = ZBiRiai
its restriction on interface I';; is given by:
(13) (Ga)i; = (BiRi)joi + (B R; )iy

This means that subdomain (2; can compute the projected gradient on its interfaces
without any data transfer, provided that it has the values of « in all its neighboring
subdomains. Furthermore, it does not need at all the values of « in the other
subdomains.

Hence, the computation of the projection can be parallelized with minimal
data transfer, provided that each subdomain computes the solution of the coarse
problem:

(14) (G'G)a = G'yg

for its neighborhood including the subdomain itself and its neighbors. Only the
rows of the (G'G)~! matrix associated to the neighborhood are required in the
subdomain to do so. These rows form a matrix with number of rows equal to
the number of rigid body motions in the neighborhood and number of columns
equal to the total number of rigid body modes. Thanks to the symmetry of (G'G),
the rows of this matrix are equal to the columns of (G!G)~! associated to the
neighborhood. So, computing this matrix noted (G'G).} ., requires a forward-
backward substitution with complete matrix (G'G) for each row. The computation
of this matrix represents the last step of the forming and factorization of (G'G), as
indicated in the previous section.

So, computing the projected gradient in parallel requires the following steps:

1. Compute (G'g); = R.Blg in each subdomain ;.

2. Gather complete 3 = G'g in each subdomain via a global data transfer
operation.

3. Compute components of & = (G'G)~! 3 in neighborhood of each subdomain
;. This means compute the matrix-vector product:

(15) (GtG)z_olne_i ﬂ
4. Compute Ga in each subdomain Q; as:
(16) (Ga)i; = (BiRi);ai + (BjR))icy

for each interface I';;.
5. Compute Pg = g — Ga in each subdomain.

The only transfer this algorithm requires is the gathering of 3 = G!g in step 2.
g
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162 FRANCOIS-XAVIER ROUX AND CHARBEL FARHAT

FIGURE 1. A “corner motion” for a scalar problem

4. The second level FETI preconditioner

4.1. Definition of corner modes. In this section, the second level FETI
preconditioner is presented in the case of a coarse grid defined as the so-called
“corner modes”. The objective consists in constraining the Lagrange multiplier to
generate local displacement fields that are continuous at interface cross-points. To
get a practical formulation of this constraint, it can be observed that requiring the
continuity of displacement fields at interface cross-points is equivalent to imposing
their jump to be orthogonal to the jump of “corner motions” defined as displacement
fields with unit value in one space direction at a node connected to a crosspoint as
in Figure (1).

Note C; the set of corner motions in subdomain €;, then the Lagrange multiplier
A satisfies the continuity requirement of associated displacement fields at interface
cross-points if the projected gradient satisfies:

(17) (B.Ci)'Pg=0VYi & (> BiCiy)'Pg=0VYy

4.2. Coarse grid space. Let us define “corner modes” from corner motions
and the associated global operator C in the same way as rigid body modes and
operator GG are defined from rigid body motions:

(18) Cy= ZBz‘Ci%'

The second-level FETI preconditioner consists in building the search direction
vector w from the projection of the gradient Pg in order to satisfy the constraint
of generating local displacement fields that are continuous at interface cross-points.
As the jump of displacement fields created by w is equal to PFw, this constraint
can be written in the following way:

(19) C'PFw=C'P'Fw =0

In order to satisfy this constraint, the search direction vector w must be constructed
from Pg corrected by a vector in the image space of C:

(20) w= Pg+Cy
The search direction vector w must also satisfy the constraint of orthogonality to

the traces of rigid body modes. This constraint can be written Pw = w. So w must
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have the following form:
(21) w = Pg+ Cvy+ GB with Pw =w

So, the coarse grid space associated with the second-level FETI preconditioner must
contain both image spaces of C' and G. This means that it is the image space of
the matrix noted [CG] whose first columns are the columns of C and last columns
the columns of G.

4.3. Second-level FETI problem . By definition of the rigid body modes
projection P, PFw satisfies:
(22) G'PFw=G'P'Fw=0
From the definition of the coarse grid space (21), the search direction vector must
have the following form:

(23) w = Pw=Pg+ P(Cy+GpB)

The formulation of constraints in equations (19) and (22), entails that v and 3
satisfy the following problem:

(24) C'P'FP(Cy+GB) = -C'P'FPg
G'P'FP(Cy+GB) = -G'P'FPg

These equations can be rewritten as:

(25) [CG)' P'FP [CG) [ g ] = —[CG]' P'FPg

This system is precisely a coarse FETI problem, posed in the subspace of Lagrange
multipliers defined as the image space of [CG]. With this coarse grid preconditioner,
the solution algorithm appears clearly as a two-level FETI method: at each iteration
of projected conjugate gradient at the fine level, an additional preconditioning
problem of the same type has to be solved at the coarse grid level.

4.4. Rigid body projection for coarse grid vectors. The rigid body
projection takes a simple form for vectors belonging to the coarse grid space. In
general, for any Lagrange multiplier u, the rigid body projection is defined by:

(26) Pu = p+ Gé with G*(u+ G6) =0

In the same way, for a vector in the coarse grid space, the projection can be written:
(27) P(Cy+GB)=Cy+GB+Gs=Cy+G(B+96)

correction é being defined by the constraint:

(28) G'(Cy+G(B+6)=0

So, (B + 6) satisfies:

(29) (G'G)(B+06)) = ~G'Cy

Hence, the projection of a vector in the coarse grid space is given by the following
equation:

(30) P(Cy+ GP) = Cy - G(G'G)'G'Cy

This equation illustrates the fact that the effective degrees of freedom of the second-
level FETI preconditioner are the corner modes coefficients. The rigid body modes
have been added to the coarse grid space just for allowing coarse grid vectors to
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161 FRANCOIS-NAVIER ROUX AND CHARBEL FARHAT

satisfy the rigid body constraint. For any set of corner modes coefficients «, the only
coarse grid vector satisfying the rigid body constraint is given by equation (30).
Let us note Rq the matrix defined by:

(31) Ree = —(G'G)"'G'C

Ry represents the coefficients of the rigid body modes correction to apply on the
corner mode generated by coefficients v for satisfying the rigid body constraint.
Note P.oqrse the following matrix:

. 1
(32) Prourae = [ - ] (10]
Equation (30) can be rewritten:

Y _ Y
(33 Pica | ]| = 1061 P | |

So, actually P.,qrse is the rigid body projection for coarse grid vectors in the natural
coarse grid basis defined by columns of [CG].

4.5. Projected coarse grid problem. The second-level FETI problem (25)
can be rewritten as:

(34) (P[CG)) F(P[CG]) [ 5 } =—(F P[CG])'Pg

Thanks to the definition of the rigid body projection for coarse grid vectors given by
equation (33), a new formulation of the second-level FETI problem can be derived
from equation (34):

(F[CG))" Pg

coarse

(35) Plvie (ICG) F[CG)) Proarse [ g ] =-F

Note F.,qrse the projection of the FETI operator in the coarse grid space:
(36) Fm)a,r'.s‘(' - [CG]t F [CG}

From the definition of P.,urse in equation (32), the second-level FETI problem can
be rewritten:

(37)
HHRI] o [Ric]“(”[g]z“[ﬂ[Ric]t (F[CG])" Pg

Thanks to the definition of the rigid body projection for coarse grid vectors,the only
degrees of freedom of equation (37) are coefficients of . Eliminating null blocks in
this equation finally leads to the projected coarse grid problem that defines ~:

(38) [ R‘[ ]t Feoarse [ Rﬁ(j]v: - [ Ric]t ( F[CG]) Pg

GC

From equation (23) and (30), the search direction vector satisfying both corner
modes constraint and rigid body modes constraint is given by:

(39) w= Pw= Pg+ P(Cy+GpB) = Pg+ [CG] [Rf‘(*]7
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5. Parallel computation of the projected coarse grid FETI matrix

5.1. Forming of Fi.,,s.. The projection of FETI operator on the coarse grid
space is defined in equation (36). The coarse grid matrix [CG] and the first-level
FETI matrix F' can be written:

[CG] = 32, Bj[C;R)]

) F = SLBK/B

where [C;R;] is the matrix whose columns are the corner and rigid body motions
of subdomain €2;.

From this equation, it can be derived that F,.,.,se has a sparse block structure,
such that the block of interaction between coarse grid degrees of freedom in
subdomains §1; and €2; is defined as:

(41) (Fcoaw‘se)ij = ( Bl[ClRl] )t ( ZBI\K]TB;L ) ( ZBJ[CJR]] )
k J

As a consequence of the fact that the trace operator B, is non zero only on interfaces
of subdomain 2,,, a block of form:

(42) (Bi[CiRi])' ( BrK} Bj,) Bj[C;R)]

is non zero only if subdomain € is neighbor of both subdomains §2; and ;.
Such a block is the contribution of subdomain 2 to the block matrix (Froarse)ij-
This means that the contribution of subdomain € to the coarse-grid FETI matrix
Fioarse 18 a dense square matrix with dimension equal to the sum of numbers of
corner and rigid body motions in its neighborhood, including the subdomain itself
and all its neighbors. Figure (2) show the dependency between subdomains for the
computation of (Feoarse)ij-
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5.2. Local contribution to Fi.,. s.. From equation (42), it appears that
subdomain €2 can compute its contribution to the Fi,q,se matrix, if it has all
the traces of corner and rigid body motions in its neighborhood. So, forming the
contribution of a subdomain to the F,,..s. matrix can be organized according to
the algorithm described below.

1. Store in each subdomain ), the traces of corner motions on each interface
I'y; with neighboring subdomain €2;. This requires the storage for each
interface I'y; of a matrix (B C}); with number of rows equal to the number
of degrees of freedom on interface I'y; and number of columns equal to the
number of corner motions in .

2. Exchange (B;C}); matrices with neighboring subdomains. This means that
subdomain €2 sends matrix (ByCy); to subdomain §2; and receives from
it matrix (B;C; ), whose number of rows is equal to the number of degrees
of freedom on interface I'y; and number of columns equal to the number of
corner motions in ;.

3. In subdomain 2, perform a forward-backward substitution for each local
corner and rigid body motion, and for each corner and rigid body motion of
neighboring subdomains, in order to compute the following matrices:

(43) K BLB,C; and K;" B.B;R;

for j = k or j such that €); is a neighbor of .

4. Store the traces of resulting vectors interface by interface. On each
interface I'y;, these traces form two sets of matrices (BkK,jB,tCBjC’j)i and
(BxK," B! B;R;); whose number of rows is equal to the number of degrees
of freedom on interface I'y; and number of columns respectively equal to the
number of corner or rigid body motions in (2,

5. In subdomain €, for each interfacel'y;, compute the following matrix-matrix
products:

( BiCi )i, ( BkK, By B;C; )i ( BiCi)j ( BuK| B BjR; );

U8 (BR ) (B.K/B. B,C,), (B.R ). ( BuK,B. B,R, ),
In the same way, the following blocks must be computed and added to the
contribution of other interfaces:

(45) ( BkCr )i ( BxK) B}, BiC; )i ( BiCi)j ( BxK, B} B;jR; )

( BeRy )t ( BuK;BL B;C; )i ( BiR; ). ( BuK; BL B;R; ),

Now, subdomain €2 has its contribution to the (Feoarse)i; block, for any
pair of its neighboring subdomains 2; and ;.

5.3. Contribution of subdomain to the projected coarse grid FETI
problem. If the restriction of coarse grid on neighborhood of subdomain €,
including Qj itself, is written I*), then the projected coarse grid problem of
equation (38) is constructed from the local contributions to the coarse grid FETI
matrix as follows:

17 I 1] I
— E (k)yt (k) (k)
(46) [ RGC } FCOGTSE [ RGC ] k [ RGC ] (I ) FCO(ITSe (I ) [ RGC ]
where Fp%rsp is the contribution of 2, to the coarse grid FETI matrix constructed

in the way presented in section 5.2.
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So, once Fﬁfgrse has been formed, the computation of the contribution of
subdomain € to the projected coarse grid FETI matrix only requires the rows
of R associated with rigid body modes in the neighborhood of 2.

In the same way, once the projected coarse grid problem of equation (38)
is solved, the computation of the vector w as described in equation (39) can
be performed without any data transfer in each subdomain, provided that the
complete solution v and the rows of Rgc associated with rigid body modes in the
neighborhood are known.

5.4. Forming of the rigid body projection for coarse grid vectors.
From the previous section, it appears that each subdomain must construct the
rows of the rigid body projection associated with the rigid body modes of its
neighborhood. In subdomain 2, these rows form the following matrix:

w | T ] w I
(47) 1 [RGC] =1 [_(GtG)—thc]

The G'C matrix has exactly the same kind of sparse block structure as G'G and can
be formed in parallel using the same methodology. The (G'G) matrix has already
been formed and factorized in each subdomain. The only problem to compute
the rows of Rgc associated with the rigid body modes in the neighborhood of
subdomain . lies in the fact that all the entries corresponding to corner motions
in ALL subdomains must be computed.

The following algorithm can be implemented.

1. In subdomain €, compute the following matrix-matrix products for each
interfacel'y;:

(G*'C)jx = (BjR;)i(BkCi);
(G'C)k (G'*C)rk — (BjR;);,(BkCy);

The result is scattered in a matrix whose number of columns is equal to the
number of corner motions in subdomain ;. and number of rows equal to the
total number of rigid body modes. This matrix forms the subset of columns
of GtC associated with corner modes of subdomain .

2. Compute —(G'G)"'G!C for all columns of G!'C associated with corner
modes of subdomain €. This requires a number of forward-backward
substitutions, using the COMPLETE factorization of (G'G), equal to the
number of corner motions in subdomain ;. Now, subdomain € has all
the columns of

(49) RGC = —(GtG)~]GtC

associated with its own corner modes.

3. Exchange the columns of Rgc associated with corner modes of subdomain
Q. with neighboring subdomains. Now, subdomain €} has all the columns
of Rgc associated with all corner modes in its neighborhood, itself included.

4. Subdomain € has all the COLUMNS of R associated with its own corner
modes. To get the ROWS of R associated with its rigid body modes, a
global matrix transposition through data exchange between all processors
must be performed.

5. A last data transfer operation with neighboring subdomains must be
performed in order to get rows of Rgc associated with rigid body modes
in the whole neighborhood of each subdomain.

(48)

I
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6. Build the matrix:

() S

The rows of Rgc associated with rigid body modes in the whole
neighborhood of each subdomain form the lower part of this matrix, the
upper part is just the boolean restriction to the subset of corner modes in
the whole neighborhood of each subdomain.

5.5. Forming and factorization of the projected coarse grid FETI
matrix . The forming and factorization of the complete projected coarse grid
FETT matrix can be performed in 4 steps.

1. In each subdomain €2, compute the matrix-matrix product:

1 I
51 ek o™ { ]
( ) { RGC ] ( ) coarse ( ) RGC

The result is a square matrix of dimension equal to the total number of corner
modes. It is the contribution of subdomain §2; to the projected coarse grid
FETI matrix.

2. Assemble the projected coarse grid FETI matrix through a global data
transfer. This is a reduction with add operation.

3. Build the pseudo-inverse of the projected coarse grid FETI matrix via
Choleski factorization with numerical pivoting. This matrix is not full rank
when there is some redundancy of the corner modes.

4. Compute the rows of the pseudo-inverse of the projected coarse grid FETI
associated with the corner modes in the neighborhood of subdomain,
including the subdomain itself and its neighbors.

6. Parallel solution of the second-level FETI problem

6.1. Right-hand side of the projected coarse grid problem. From
equation (38) it can be derived that the first step of the computation of the right-
hand side of the projected coarse grid problem requires the computation of:

(52) (F[CG))' Pg = ((Y_BiK{B}) (Y BjIC;R;))) Pg
k j

All the data to compute the contribution of subdomain €2, to this product are
already present, thanks to the computation of the local contribution to F.oqrse, as
explained in section 5.2. Also, the columns of the rigid body projection for the
coarse grid problem have been computed locally.

Hence, the parallelization of the computation of the right-hand side of the
projected coarse grid problem can be performed as follows:

1. In subdomain ., for each interfacel'y;, compute the following matrix-vector
products:
( BkK, By, B;C; )i (Pg)ki
( BuK) Bi, BjR; )i (Pg)ki
for all subdomains €; in the neighborhood of €y, itself included.
Scatter the resulting vectors in a vector of dimension equal to the sum of

corner and rigid body motions in all subdomains in the locations associated
with the corner and rigid body modes of the neighborhood of Q. If j = k,

(53)
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the contributions of all interfaces must be added. This vector represents the
contribution of subdomain Q to ( F [CG] )" Py.

2. Assemble ( F [CG] )" Pg via global data exchange. This is a reduction with
add operation.

3. Compute in each subdomain €2 the part of the product:

t
654) || (FiGy P
RGC
associated with corner modes of ;. Only the columns of the matrix Rgc
associated with corner modes of €, and that have been computed during
the forming of the rigid body projection for the coarse grid, are needed.
This procedure gives the restriction to each subdomain of the right-hand
side of the projected coarse grid problem.
4. Gather complete right-hand side of the projected coarse grid problem in each
subdomain via a global data transfer operation.

6.2. Solution of the projected coarse grid FETI problem. Once the
complete right-hand side has been gathered in each subdomain, the computation
of the solution v of the projected coarse grid problem (38) in subdomain ; just
requires a product by the matrix:

-1
1] I
55 FCOaT‘SC
( ) <|:RGC] [RGC}>zonei

using the rows of the pseudo-inverse of the projected coarse grid FETI associated
with the corner modes in the neighborhood of subdomain computed as explained
in section 5.5.

6.3. Computation of the search direction vector. From equation (39) it
can be observed that the search direction vector w can be computed locally in each
subdomain, provided that entries of the solution of the projected coarse grid FETI
problem v and of vector 8 = Rgc7y associated to the subdomain and its neighbors
are known.

The procedure described in the previous section has given the entries of the
solution of the projected coarse grid FETI problem v associated to the subdomain
and its neighbors. The computation of the search direction vector w can be
completed as follows.

1. In each subdomain, compute the contribution to 8 by computing the matrix-
vector product:

(56) B = Racy

for columns of Rqc associated with corner modes of subdomain.

2. Assemble (3 through a global data transfer. This is a reduction with add
operation. Extract the entries of 3 associated to the subdomain and its
neighbors.

3. In subdomain §2;, for each interface I';;, compute the following matrix-vector
products:

(57) wij = Pgij + (BiCy)vi + (B;C))iv; + (BiR:); 8 + (B R;): 35
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This step computes without any data transfer the restriction to subdomain
of:

(58) w:Pg-I—Cv+Gﬂ:Pg+[CG][Rf ]’y
SC

6.4. Computation of the starting ). For a given \ satisfying the rigid
body constraint:

(59) (G'\%); = —R!b;

in each subdomain €;, note ¢° the gradient FA’ — d. The corner mode correction
of X\°, w, must be of form:

(60) w= P(Cvy+ Gp)

The corrected initial A, is A\’ +w, and the associated corrected gradient is ¢° + Fw.
The correction w must be such that the projected corrected gradient satisfy:
C'P(g" + Fw) = 0

G'P(g" + Fw) = 0

From these equations, the same development as in section 4.3 leads to the second
level FETT problem:

(61)

(62) [CG)' P'FP[CG] [ g ] = -[CG])'Pg"

This problem is similar to the one of equation (25), except for the right-hand-side.
As, by definition of the rigid body projection P, G*Pg" is equal to 0, the right-hand
side can be even simplified:

(63) [CG])' P'FP[CG) [ g, ] - _C'Pg°

This problem can be solved in the same way as for the search direction vector,
except for the right-hand side that is simpler and can be computed exactly in the
same way as the right-hand side of a rigid body projection, using corner motions
C; instead of rigid body motions Gj;.

7. Application

7.1. “Interface averaging” modes. The second-level preconditioner has
been presented in the previous sections for the case of a coarse grid associated with
“corner modes”. This preconditioner has been demonstrated to be very efficient for
dealing with the singularity at cross-points for high order problems like plate and
shell finite element problems. In this case, the coarse grid is built for imposing a
local continuity requirement. But the same approach can be used to enforce more
global continuity requirements, like for instance continuity of mean value of each
component of the displacement field on each interface between two subdomains.

The corresponding modes, called interface averaging modes are simply the
jumps of local constant motion on a single interface as in Figure 3. Once again,
building the coarse grid space as the set of jumps of local special motions makes
it simpler to define and gives automatically admissible Lagrange multipliers. This
approach also allows to define efficient coarse grid preconditioner in the case where
local Neumann problems are well posed, especially for time-dependent problems.
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FIGURE 3. Generation of a single interface averaging mode for a
scalar problem

TABLE 1. Solution time on IBM-SP2 with corner and interface
averaging modes

Numb. of Llevel FETI 2-level FETI 2-level FETI'
corner modes corner + averaging
Domains || Iterations | Time(s) || Iterations | Time(s) || Iterations | Time(s)
16 52 21 26 11 19 8.4
32 91 14 28 ) 20 3.5

In such a case, there is no rigid body projection to play the role of a first-level coarse
grid preconditioner, and the standard FETI method is not numerically scalable.

7.2. Parallel performance. To illustrate the efficiency of the second-level
FETI preconditioner parallelized by the solution technique presented in this paper,
a small shell problem, with 25600 nodes and 6 degrees of freedom per node, has
been solved on an IBM-SP2 system with either 16 or 32 processors and one domain
per processor.

The reason why a small problem has been chosen is the following: the objective
is to demonstrate that with the parallelization technique developed in this paper,
the 2-level FETI method is not only numerically scalable, but its implementation
on distributed memory systems actually gives scalable performances. The main
drawback with the coarse grid preconditioners is the fact that their implementation
on distributed memory machines can be very inefficient because the number of data
transfers they require is high and their granularity is very low. Of course, for a given
target architecture, if the local size of the problem is large enough, the cost for the
forward-backward substitution may remain dominant. But to be really scalable, a
method must be efficient even in the case where the size of the local problems is
not very large.

The stopping criterion is the same in all cases presented in this paper and is
related to the global residual:

(64) || Kw = bl|/[[bl] < 107°

Also, in all cases presented in this paper, the local optimal Dirichlet preconditioner
is used. Table 1 gives a comparison of the elapsed parallel times for the iterations
of 1-level and 2-level FETT methods with various coarse grid preconditioners. It

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



172 FRANGOIS-XAVIER ROUX AND CHARBEL FARHAT

TABLE 2. Solution time on IBM-SP2 with corner and interface
averaging modes

2-level FETI 2-level FETI
corner modes corner + averaging
Iterations | Time(s) || Iterations | Time(s) || Iterations | Time(s)
Iterations | Time(s) || Iterations | Time(s) || Iterations | Time(s)
163 106 25 11 16 7.8

1-level FETI

TABLE 3. Number of modes and times for building the second-level preconditioner

Llevel FETI 2-level FETI 2-level FETI.
corner modes corner + averaging
Numb. of Rigid | Dirichlet + || Numb. of | Set-up || Numb. of | Set-up
Body Modes | Neumann(s) || Modes | Time(s) || Modes | Time(s)
304 17 588 20 924 40

demonstrates clearly that the cost for the parallel solution of the coarse grid
problems is small enough to ensure that the solution time decreases in the same
proportion as the number of iterations. Enforcing the corner continuity is enough
to make the method scalable for this kind of shell problem. Nevertheless, the
averaging modes give a significant decrease of the number of iterations. Speed-ups
with the 2-level FETI method are even super-linear, thanks to the decrease of the
bandwidth of local matrices with larger number of subdomains.

7.3. Constructing cost for the coarse grid preconditioner. In the
previous section, only the timings for the iterations were given. But the cost for
assembling, factorizing and inverting the second-level FETI operator can be far
from negligible in comparison with the time for the initial factorization of the local
Dirichlet and Neumann problems matrices.

In order to illustrate this point, a larger shell model problem with 100000 nodes
and 600000 degrees of freedom has been decompose in 64 subdomains. With such
a large number of subdomains, the global number of coarse grid modes with both
corner and averaging modes can be nearly one thousand. It would clearly not make
sense to use such a large number of coarse grid modes for solving a small problem
with only a few thousands degrees of freedom. Nevertheless, with 64 subdomains,
the number of nodes per subdomain is less than 2000, hence the time for factorizing
the local Dirichlet and Neumann matrices is rather small.

Table 2 features the number of iterations and the parallel times for the iterations
of 1-level and 2-level FETI methods with various coarse grid preconditioners. Table
3 shows the total number of rigid body modes and of corner and corner + averaging
modes, and it gives a comparison of times spent on each processor for factorizing
the local Dirichlet and Neumann matrices and for assembling and factorizing the
second-level FETI preconditioner.

In the case of the largest coarse grid space, this table shows that the time for
forming the second-level preconditioner can be more than two times larger than the
factorization time of local Dirichlet and Neumann matrices. Hence, this time may
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be considered too high, especially in comparison with the time for the iterations
shown in Table 2.

Nevertheless these results are quite good. First, as discussed above, the global
size of this problem is not that large for such a number of subdomains. The time
for local factorizations and forward-backward substitutions increases faster with the
number of nodes per subdomain than the time for building the second-level FETI
preconditioner. So, for larger problems, the comparison will be more in favor of the
2-level method.

Secondly, this time to build the second-level FETI preconditioner is payed only
once in the case of multiple right-hand-side, and the overall efficiency will be even
better in such a case.

Thirdly, for the timings presented here, the factorization of the second-level
FETI matrix has been computed in sequential. It would be possible to use a
parallel skyline method to perform this factorization that represents nearly half the
time spent in the construction of the second-level FETI preconditioner. Even a
very low efficiency would be enough to make the factorization time itself negligible.

8. Conclusion

Thanks to the algebraic interpretation of the 2-level FETI method presented
here a parallel implementation methodology has been designed. It allows using
global direct solvers for the second-level FETI preconditioner but keeps working
with a simple description of the interfaces at subdomain level.

The actual efficiency obtained with this approach makes feasible the enrichment
of the coarse grid spaces used in the preconditioner, making the overall method
faster and more robust.
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