http://dx.doi.org/10.1090/conm/218/03009

Contemporary Mathematics
Volume 218, 1998
B 0-8218-0988-1-03009-0

Domain Decomposition and Multi-Level Type Techniques
for General Sparse Linear Systems

Yousef Saad, Maria Sosonkina, and Jun Zhang

1. Introduction

Domain-decomposition and multi-level techniques are often formulated for lin-
ear systems that arise from the solution of elliptic-type Partial Differential Equa-
tions. In this paper, generalizations of these techniques for irregularly structured
sparse linear systems are considered. An interesting common approach used to de-
rive successful preconditioners is to resort to Schur complements. In particular, we
discuss a multi-level domain decomposition-type algorithm for iterative solution of
large sparse linear systems based on independent subsets of nodes. We also discuss
a Schur complement technique that utilizes incomplete LU factorizations of local
matrices.

A recent trend in parallel preconditioning techniques for general sparse linear
systems is to exploit ideas from domain decomposition concepts and develop meth-
ods which combine the benefits of superior robustness of ILU-type preconditioning
techniques with those of scalability of multi-level preconditioners. Two techniques
in this class are the Schur complement technique (Schur-ILU) developed in [19]
and the point and block multi-elimination ILU preconditioners (ILUM, BILUM)
discussed in [16, 21].

The framework of the Schur-ILU preconditioner is that of a distributed sparse
linear system, in which equations are assigned to different processors according to a
mapping determined by a graph partitioner. The matrix of the related Schur com-
plement system is also regarded as a distributed object and never formed explicitly.
The main difference between our approach and the methods described in [2, 7], is
that we do not seek to compute an approximation to the Schur complement. Simply
put, our Schur-ILU preconditioner is an approximate solve for the global system
which is derived by solving iteratively the Schur complement equations correspond-
ing to the interface variables. For many problems, it has been observed that the
number of steps required for convergence remains about the same as the number
of processors and the problem size increase. The overall solution time increases
slightly, at a much lower rate than standard Schwarz methods.

1991 Mathematics Subject Classification. Primary 65F10; Secondary 65F50, 65N55, 65Y05.
This research was supported in part by NSF under grant CCR-9618827, and in part by the
Minnesota Supercomputer Institute..

©1998 American Mathematical Society

174

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

DOMAIN DECOMPOSITION FOR GENERAL SPARSE LINEAR SYSTEMS 175

ILUM and BILUM exploit successive independent set orderings. One way to
think of the idea underlying ILUM is that by a proper reordering of the original
variables, the matrix is put in the form

W) A:(gg)

where B is diagonal so that the Schur complement system associated with the C
block remains sparse. Then the idea is applied recursively, computing a sequence of
Schur complement (or reduced) systems. The last of these reduced systems is solved
by an iterative solver. This recursively constructed preconditioner has a multi-level
structure and a good degree of parallelism. Similar preconditioners have been de-
signed and tested in [4, 21] to show near grid-independent convergence for certain
type of problems. In a recent report, some of these multi-level preconditioners have
been tested and compared favorably with other preconditioned iterative methods
and direct methods at least for the Laplace equation [3]. Other multi-level precon-
ditioning and domain decomposition techniques have also been developed in finite
element analysis or for unstructured meshes [1, 5].

The ILUM preconditioner has been extended to a block version (BILUM) in
which the B block in (1) is block-diagonal. This method utilizes independent sets
of small clusters (or blocks), instead of single nodes [4, 21]. In some difficult cases,
the performance of this block version is substantially superior to that of the scalar
version. The major difference between our approach and the approaches of Botta
and Wubs [4] and Reusken [13] is in the choice of variables for the reduced system.
In [4] and [13], the nodes in the reduced system, i.e., the unknowns associated with
the submatrix C in (1), are those nodes of the independent set itself and this leads to
a technique which is akin to an (algebraic) multigrid approach [14]. An approximate
inverse technique is used to invert the top-left submatrix B in (1) which is no
longer diagonal or block-diagonal. In their implementations, these authors employ
a simple approximate inverse technique which usually requires diagonal dominance
in the B matrix. In contrast, our approach chooses the nodes of the reduced
system to be those unknowns associated with the complement to the independent
set. Therefore the difference is that B is associated with the independent set instead
of C. This approach is more akin to a domain decomposition technique and it is
more generally applicable since it does not require diagonal dominance in either the
B or C submatrix.

One aim of the current paper is to further extend BILUM techniques of [21]
to include blocks of large size and to treat related issues of keeping sparsity of
the BILUM factors. Measurable parameters are introduced to characterize the
efficiency of a preconditioner. Numerical results with some hard-to-solve problems
are presented to demonstrate the merits of the new implementations. For the Schur-
LU preconditioner, we compare the performance of various options for solving the
local problems and make some observations and recommendations.

2. Schur Complements and Recursive Schur Complements
Consider a linear system of the form
(2) Az = b,
where A is a large sparse nonsymmetric real matrix of size n. To solve such a system

on a distributed memory computer, a graph partitioner is usually first invoked to

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

176 YOUSEF SAAD ET AL.

External
/ interface points

FIGURE 1. A local view of a distributed sparse matrix.

partition the adjacency graph of A. The data is then distributed to processors such
that pairs of equations-unknowns are assigned to the same processor. When this
is done, three types of unknowns can be distinguished. (1) Interior unknowns that
are coupled only with local equations; (2) Local interface unknowns that are cou-
pled with both non-local (external) and local equations; and (3) External interface
unknowns that belong to other subdomains and are coupled with local equations.

This setting which is illustrated in Figure 1, is common to most packages for parallel
iterative solution methods [7, 9, 10, 11, 15, 18, 22, 23|.

2.1. Distributed sparse linear systems. The matrix assigned to a certain
processor is split into two parts: the local matrix A;, which acts on the local variables
and an interface matriz X;, which acts on the external variables. Accordingly, the
local equations can be written as follows:

(3) Aixi + XiYiext = by,

where x; represents the vector of local unknowns, y; .4+ are the external interface
variables, and b; is the local part of the right-hand side vector. It is common to re-
order the local equations in such a way that the interface points are listed last after
the interior points. This ordering leads to an improved interprocessor communica-
tion and to reduced local indirect addressing during matrix-vector multiplication.
Thus, the local variables form a local vector of unknowns x; which is split into two
parts: the subvector u; of internal vector components followed by the subvector y;
of local interface vector components. The right-hand side b; is conformally split into
the subvectors f; and g;. When the block is partitioned according to this splitting,
the local equations (3) can be written as follows:

o ()G (e)-(0)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

DOMAIN DECOMPOSITION FOR GENERAL SPARSE LINEAR SYSTEMS 177

Here, N; is the set of indices for subdomains that are neighbors to the subdomain
i. The term E;;y; is a part of the product X;y; e+ which reflects the contribution
to the local equation from the neighboring subdomain j. These contributions are
the result of multiplying X; by the external interface unknowns:

Z Eijy; = Xiyieat-
JEN;

The result of this multiplication affects only the local interface unknowns, which is
indicated by a zero in the top part of the second term of the left-hand side of (4).

2.2. Schur complement systems. This section gives a brief background on
Schur complement systems; see e.g., [17, 22], for additional details and references.
The Schur complement system is obtained by eliminating the variable u; from the
system (4). Extracting from the first equation u; = B, '(fi — Fyy:) yields, upon
substitution in the second equation,

(5) Swyi+ Y Eyyj = 9. - EB ' fi = 4,
JEN;

where S; is the “local” Schur complement

(6) S;=C; — E;B'F,.

The equations (5) for all subdomains i (i = 1,...,p) constitute a system of equa-
tions involving only the interface unknown vectors y;. This reduced system has a
natural block structure related to the interface points in each subdomain:

S1 En ... Ey (7 9
Egl Sz oo Egp yg g/2
(7) : - : : - :
Epl Ep_l‘g e Sp yp g;,

The diagonal blocks in this system, the matrices S;, are dense in general. The off-
diagonal blocks F;;, which are identical with those involved in the global system
(4), are sparse. The system (7), which we rewrite in the form

Sy=4g,
is the Schur complement system and S is the “global” Schur complement matrix.
2.3. Induced global preconditioners. It is possible to develop precondi-
tioners for the global system (2) by exploiting methods that approzimately solve the

reduced system (7). These techniques, termed “induced preconditioners” (see, e.g.,
[17]), are based on a reordered version of the global system (2) in which all the

internal vector components u = (ui,...,u,)’ are labeled first followed by all the
interface vector components y,
B F Uy fi
By Fy Uz f2
By | Fy Up fp
E, E, -~ E,|C y g

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

178 YOUSEF SAAD ET AL.

which also can be rewritten as

0 (2 c)(0)-(3)

Note that the B block acts on the interior unknowns. Consider the block LU
factorization

10 (zc)=(es 7)(05)

where S is the global Schur complement
S=C-EB'F.

This Schur complement matrix is identical to the coefficient matrix of system (7)
(see, e.g., [17]). The global system (9) can be preconditioned by an approximate
LU factorization constructed such that

I 0 B F
(11) L_<EBl I> and U—-(O Ms)

with Mg being some approximation to S.

Note that the effect of the forward solve is to compute the modified right-hand
side ¢’ for the Schur complement system (7). Once this is done, the backward solve
with the matrix U consists of two additional steps: solving with Mg to compute
approximations to y, and then back-substituting to compute the approximations to
the u variables.

Therefore, a global preconditioning operation induced by a Schur complement
solve would consist of the following three steps.

1. Compute the reduced right-hand side ¢’ = g — EB~'f ;

2. Approximately solve Msy = ¢;

3. Back-substitute for the u variables, i.e., solve Bu = f — Fy.
Each of the above three steps can be accomplished in different ways and this leads
to a rich variety of options. For example, in (1) and (2) the linear system with
B can be done either iteratively or directly, or approximately using just an ILU
factorization for B. The choices for (2) are also numerous. One option considered
in [19] starts by replacing (5) by an approximate system of the form,

(12) vi+ 57" Y Eyy; =57 [- E:B]'fi],
JEN,

in which S; is some (local) approximation to the local Schur complement matrix
S;. This can be viewed as a block-Jacobi preconditioned version of the Schur
complement system (7) in which the diagonal blocks S; are approximated by S;. The
above system is then solved by an iterative accelerator such as GMRES requiring
a solve with S, at each step. In one method considered in [19] the approximation
S‘i was extracted from an Incomplete LU factorization of A;. The idea is based on
the following observation (see [17]). Let A; be the matrix on the left-hand side of
(4) and assume it is factored as A; = L;U;, where

o Lp. 0 _(Us, Lp'F
(13) L’—<EiU§ll La) and Ul—< 0 Us. .

Then, Lg,Us, is equal to the Schur complement S; associated with the partitioning
(4), see [17, 19]. Thus, an approximate LU factorization of S; can be obtained

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

DOMAIN DECOMPOSITION FOR GENERAL SPARSE LINEAR SYSTEMS 179

canonically from an approximate factorization to A;, by extracting the related
parts from the L; and U; matrices.

2.4. Recursive Schur complements. The diagonal blocks S; in the Schur
complement system (7) are usually dense blocks. However, the off-diagonal terms
E;; are sparse. As a result, it is interesting to consider a particular situation when
the blocks B; are all of small size, e.g., of size one or two. In this situation the
coefficient matrix in (7) remains sparse and it is natural to think about a recursive
application of the induced preconditioning technique described above. The second
level of reduction can be applied to Schur complement system (7) resulting in
the second-level Schur complement system (“the Schur complement for the Schur
complement”). This process can be continued for a few more levels and the last level
system can be solved with a standard iterative method. This idea was exploited in
[16] for blocks B; of the smallest possible size, namely one. In [21], the idea was
generalized to blocks larger than one and a number of heuristics were suggested for
selecting these blocks.

We recall that an independent set is a set of unknowns which are not coupled
by an equation. A maximal independent set is an independent set that cannot
be augmented by other elements to form another independent set. These notions
can be generalized by considering subsets of unknowns as a group. Thus, a block
independent set is a set of such groups of unknowns such that there is no coupling
between unknowns of any two different groups. Unknowns within the same group
may be coupled.

ILUM and BILUM can be viewed as a recursive applications of domain decom-
position in which the subdomains are all of small size. In ILUM the subdomains are
all of size one and taken together they constitute an independent set. In BILUM
[21], this idea was slightly generalized by using block-independent sets, with groups
(blocks) of size two or more instead of just one. As the blocks (subdomains) become
larger, Schur complements become denser. However, the resulting Schur comple-
ment systems are also smaller and they tend to be better conditioned as well.

3. Block Independent Sets with Large Blocks

Heuristics based on local optimization arguments were introduced in [21] to
find Block Independent Sets (BIS) having various properties. It has been shown
numerically that selecting new subsets according to the lowest possible number of
outgoing edges in the subgraph, usually yields better performance and frequently
the smallest reduced system. These algorithms were devised for small independent
sets. Extending these heuristic algorithms for extracting Block Independent Sets
with large block sizes is straightforward. However, these extensions may have some
undesirable consequences. First, the cost is not linear with respect to the block size
and it can become prohibitive as the block size increases. The second undesirable
consequence is the rapid increase in the amount of fill-ins in the LU factors and
in the inverse of the block diagonal submatrix. As a result, the construction and
application of a BILUM preconditioner associated with a BIS having large subsets
tend to be expensive [21].

Suppose a block independent set (BIS) with a uniform block size k has been
found and the matrix A is permuted into a two-by-two block matrix of the form

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

180 YOUSEF SAAD ET AL.

(with the unknowns of the independent set listed first)

T B F

T _
(14) A PAP_(EC)’
where P is a permutation matrix associated with the BIS ordering and B =
diag[By, By, ..., Bs] is a block diagonal matrix of dimension m = ks, where s is

the number of uniform blocks of size k. The matrix C is square and of dimension
[=n—m. In [21], a block ILU factorization of the form (11) is performed, i.e.,

(15) <gg>%<Eé_l([)>x<§i>:LxU.

Here A = C — EB™'F is the Schur complement and I is the identity matrix.
In order to maintain sparsity a dropping strategy is adopted when computing the
submatrices FB~! and A;, based on a threshold tolerance. The BILUM precondi-
tioner is obtained by recursively applying the above procedures to these successive
Schur complements up to a certain number of levels, say nlev. The last reduced
system obtained is solved by a direct method or a preconditioned iterative method.

Once the BILUM preconditioner is constructed, the solution process (applica-
tion of BILUM) consists of the (block) forward and backward steps [16]. At each
step (level), we partition the vector z; as

& 5=,

corresponding to the two-by-two block matrix (14). The BILUM preconditioning
amounts to performing the following steps:

Copy the right-hand side vector b to x.

For j =0,1,...,nlev — 1, do forward sweep:
Apply permutation P; to x; to partition it in the form (16).
Tjyl = Tj41 — EJBJ—IyJ

End do.
Solve with a relative tolerance &:
A'rr,l«’umnlew = Tnlev-

For j =nlev —1,...,1,0, do backward sweep:

v =By ' (y; — Fyzjr1).]

Apply inverse permutation P]-7 to the solution y;.
End do.

BILUM is, in effect, a recursive application of a domain decomposition technique. In
the successive Schur complement matrices obtained, each block contains the internal
nodes of a subdomain. The inverse and application of all blocks on the same level
can be done in parallel. One distinction with traditional domain decomposition
methods [12, 22] is that all subdomains are constructed algebraically and exploit
no physical information. In addition, the reduced system (coarse grid acceleration)
is solved by a multi-level recursive process akin to a multigrid technique.

We define several measures to characterize the efficiency of BILUM (and other
preconditioning techniques). The first one is called the efficiency ratio (e-ratio)
which is defined as the ratio of the preprocessing time over iteration time, i.e., the
ratio of the CPU time spent computing the BILUM preconditioner to that required
by GMRES/BILUM to converge. The efficiency ratio determines how expensive it
is to compute a preconditioner, relative to the time spent in the iteration phase. It

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

DOMAIN DECOMPOSITION FOR GENERAL SPARSE LINEAR SYSTEMS 181

180 17
160 16
kel
5 ©
-1
§ 140 § 5
I g
] 2
= 120 i__g 14
i}
100 13
80 12
0 5 10 15 0 5 10 15
Block size Block size
18 0.16
0.14
16
o % 0.12
14 g
2 ‘5 01
[°
] 0.08
T 0.06
10
0.04
8 0.02
0 5 10 15 0 5 10 15
Block size Block size

FIGURE 2. Characteristic measures for solving the 5-POINT ma-
trix for different sizes of uniform blocks.

should be used with the second measure that is called the total CPU time which
is the CPU time in seconds that a computer spends to compute the preconditioner
and to solve the linear system. Given a total CPU time, a good preconditioner
should not be too expensive to compute.

The third measure is the sparsity ratio (s-ratio) which is the ratio of the number
of nonzeros of the BILUM factors to that of the matrix A. Note that the number
of nonzeros for BILUM includes all the nonzeros of the LU factors at all levels plus
those of the last reduced system and its preconditioner. If a direct method is used to
solve the last reduced system, this latter number is to be replaced by the number of
nonzero elements of the (exact) LU factorization of this system. The sparsity ratio
determines how much memory is needed to store the given preconditioner, compared
with that needed for the simplest preconditioner ILU(0). If the sparsity ratio is too
large, a preconditioned iterative solver may lose one of its major advantages over a
direct solver. The fourth measure is the reduction ratio (r-ratio) which is the ratio
of the dimension of the last reduced system to that of the original system A. The
reduction ratio determines how good an algorithm finds the independent set. The
total CPU time, efficiency ratio and sparsity ratio may be suitable to characterize
other preconditioning techniques, but the reduction ratio is mainly for the BILUM-
type preconditioners. These four characteristic measures are more informative than
the measure provided by the iteration count alone.

Our iterative algorithm consists of GMRES with a small restart value as an
accelerator and BILUM as a preconditioner. The last reduced system is solved
iteratively by another GMRES preconditioned by an ILUT preconditioner [17].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

182 YOUSEF SAAD ET AL.

TABLE 1. Description of test matrices.

matrix size | nonzeros description

5-POINT 40 000 199 200 | 5-point upwind scheme of convection-diffusion

RAEFSKY3 | 21 200 | 1 488 768 | Fluid structure interaction turbulence problem
VENKATS50 | 62 424 | 1 717 792 | Unstructured 2D Euler solver, time step = 50

WIGTO966 | 3 864 238 252 | Euler equation model

The dropping strategy that we used in [21] is the simplest one. Elements in EB~!
in the L factor and in the reduced system A; are dropped whenever their absolute
values are less than a threshold tolerance droptol times the average value of the
current row. For BILUM with large size BIS formed by the greedy algorithm, this
simple single dropping strategy is not sufficient to keep BILUM sparse enough.
Figure 2 shows the behavior of the four characteristic measures as the block size
changes when an algorithm using this single dropping strategy is used to solve
a system with the 5-POINT matrix described in [21] (some information about
this matrix is given in Table 1). Here, a 20-level BILUM with single dropping
strategy was used. The coarsest level solve was preconditioned by ILUT(104,10).
The iteration counts are 5 for block sizes < 4, and 4 otherwise. It can be seen
that although BILUM with large block sizes reduced all three other measures (not
monotonically), it increased the storage cost substantially. The sparsity ratio was
doubled when the block size increased from 1 to 15. Such an uncontrolled large
storage requirement may cause serious problems in large scale applications.

Inspired by the dual threshold dropping strategy of ILUT [17], we propose
a similar dual threshold dropping for BILUM. We first apply the single dropping
strategy as above to the EB~! and A; matrices and keep only the largest Ifil
elements (absolute value) in each row.

Another cause of loss of sparsity comes from the matrix B~!. In general, each
block of B is sparse, but the inverse of the block is dense. For BIS with large blocks
this results in a matrix B~! that is much denser than B. However, if a block is
diagonally dominant, the elements of the block inverse are expected to decay away
from the diagonal rapidly. Hence, small elements of B! can be dropped without
sacrificing the quality of the preconditioner too much. In practice, we may use a
double dropping strategy similar to the one just suggested, for the EB~! and A,
matrices, possibly with different parameters.

4. Numerical Experiments

The Schur-ILU factorization has been implemented in the framework of the
PSPARSLIB package [15, 18, 20] and was tested on a variety of machines. The
experiments reported here have been performed on a CRAY T3E-900. ILUM and
Block ILUM have been implemented and tested on sequential machines. Addi-
tional experiments with BILUM, specifically with small blocks, have been reported
elsewhere, see [21]. We begin with experiments illustrating the Schur-ILU precon-
ditioners.

Some information on the test matrices is given in Table 1. The Raefsky matrix
was supplied to us by H. Simon from Lawrence Berkeley National Laboratory. The
Venkat matrix was supplied by V. Venkatakrishnan from NASA and the Wigton
matrix by L. Wigton from Boeing Commercial Airplane Group. Despite being

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

DOMAIN DECOMPOSITION FOR GENERAL SPARSE LINEAR SYSTEMS 183

RAEFSKY3 - CPU Time

20

[
18 !
'
Q!
BF 1
“
\!
up
1
) “"
'212- "
8 "\
@10 o]
»n W
LUB \‘_\ PR
™ \ s “
= LI ISPt N Y
SOTTT SO
6 S“e---o" ST -
Ne LT Tmmm R
eI
at 3
2..
o ———— T I " I . -
0O 10 2 30 4 5 60 70 8 9 100
Processors

FIGURE 3. Time results on different processor numbers: total solu-
tion time (dash-dotted line), preconditioning operation time (dash-
circled line), and FGMRES time (solid line).

small, the Wigton matrix is fairly difficult to solve by iterative methods. In all the

tests, the right-hand sides were generated artificially by assuming that the solution
is a vector of all ones.

4.1. Tests with approximate Schur-ILU preconditioning. Two test
problems RAEFSKY3 and VENKATS50, described in Table 1, as well as a 5-point
PDE problem are considered for the numerical experiments in this subsection. In
these test problems, the matrix rows followed by the columns were scaled by 2-norm.
The initial guess was set to zero. A flexible variant of restarted GMRES (FGM-
RES) [17] with a subspace dimension of 20 has been used to solve these problems to
reduce the residual norm by 108. In the preconditioning phase of the solution, the
related Schur complement systems have been solved by ILUT-preconditioned GM-
RES, and thus preconditioning operations differed from one FGMRES iteration to
another. Furthermore, varying the preconditioning parameters, such as the number
of fill-in elements for ILUT, the maximum number of iterations, and tolerance for
GMRES, affects the overall cost of the solution.

In general, the more accurate solves with the Schur complement system, the
faster (in terms of iteration numbers) the convergence of the original system. How-
ever, even for rather large numbers of processors, preconditioning operations ac-
count for the largest amount of time spent in the iterative solution. Consider, for
example, the comparison of the total solution time for RAEFSKY3 versus the pre-
conditioning time (Figure 3). For the two test problems, Figure 4 displays the time
and iteration number results with various choices (see Table 2) for the precondition-
ing parameters. In Table 2, each set of choices is assigned a name stated in column
Label and the GMRES parameters tolerance and maximum number of iterations
are shown in columns tol and itmazx, respectively. For the Schur-ILU precondition-
ing, the parameter [fil specifies the amount of fill-ins in the whole local matrix
A; in the processor ¢ (see equation (3)). Thus, with an increase in [fil, as it can
be inferred from equation (13), the accuracy of the approximations to the parts of

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

184 YOUSEF SAAD ET AL.

TABLE 2. Schur-ILU preconditioning parameter choices for
RAEFSKY3 and VENKATS50.

Problem Label | 1fil | tol |itmax
RAEFSKY3 | Rprecl | 40 [1073 5
Rprec2 | 90 | 1074 | 30
VENKAT50 | Vprecl | 20 [1073 | 5
Vprec2 | 50 | 1074 | 30

RAEFSKY3 - CPU Time RAEFSKY3 - lterations
i
' 140
30| | l’
120!
2 I
123
° 100
c 20 12}
g s
% § 80
W s 2
2 e
10| \
b \
v
[2 ‘.‘ o o e L
owzoaowsoso;os;:oom 0 10 2 2 40 s 6 70 8 8 100
Processors Processors
VENKATS50 - CPU Time VENKATS0 - lterations
220
60/
-
% 160}
3
S @ 150T
3 £
a © 140
LU 30 2
@ = 120
e
20 100+
eor ———
10 —— R ST,
60+ R
o 10 20 % e 70 80 % 100 0 10 2 20 40 6 70 80 90 100
Processors Processors

FIGURE 4. Solution time and iterations when different accuracy is
used in Schur-ILU preconditioning: For RAEFSKY3, Rprecl (solid
line) and Rprec2 (dash-dotted line); for VENKATS50, Vprecl (solid
line) and Vprec2 (dash-dotted line).

L; and U; increases. However, an increase in the accuracy of the preconditioning
operation does not necessarily lead to a smaller CPU time cost (cf., for example,
the numerical results for VENKAT50 in Figure 4).

Notice the upward jump of the execution time which occurs for the RAEFSKY3
example for exactly 36 processors. This behavior is common for parallel iterative
solvers for irregularly structured problems. For a reason that would be difficult to
determine, the local linear systems suddenly become hard to solve for this particular
number of processors, causing these solves to take the maximum number of steps
(30) in each or most of the calls. The difficulty disappears as soon as we restrict the
maximum number of steps in each preconditioning operation to a smaller number

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

DOMAIN DECOMPOSITION FOR GENERAL SPARSE LINEAR SYSTEMS 185

(e.g., 5). Unfortunately, these difficulties are hard to predict in advance, at the
time when the partitioning is performed. The problem does not occur for 37 or 35
Processors.

Finally, we should point out that the previous two test matrices are relatively
small for a machine of the size of the T3E, and so the fact that the execution
times do not decrease substantially beyond 20 or 30 processors should not be too
surprising.

Next we consider a linear system which arises from a 2-dimensional regular
mesh problem. Specifically, consider the elliptic equation:

—Au + 100 exp(z * y)@ + 100 exp(—x * y)% —100u = f
Ox oy
on the square (0,1)? with Dirichlet boundary conditions. When discretized using
centered difference so that there are 720 interior mesh points in each direction, the
resulting linear system is of size n = 720 = 518,400. The shift term —100u makes
the problem indefinite.

It is interesting to observe various measures of parallel performance for this
problem. Strictly speaking, each run is different since the preconditioners are dif-
ferent, resulting from different partitionings. In particular, the number of iterations
required to converge increases substantially from 4 processors to 100 processors, as
shown in Figure 5 (top-left plot). This contrasts with the earlier example and other
tests seen in [19]. Recall that the problem is indefinite. The increase in the number
of iterations adds to the deterioration of the achievable speed-up for larger numbers
of processors. It is informative to have a sense of how much of the loss of efficiency
is due to convergence deterioration versus other factors, such as communication
time, load imbalance, etc. For example, if we were to factor out the loss due to
increased iteration numbers, then for 60 processors over 4 processors, the speed-up
would be about 13, compared with the perfect speed-up of 15. In this case, the
efficiency would be about 80%. However, the increase in the number of the itera-
tions required for convergence reduces the speed-up to about 9 and the efficiency
decreases to about 55%. The Speed-up and Efficiency plots in Figure 5 show the
‘adjusted’ measures which factor out iteration increases.

4.2. Experiments with BILUM. Standard implementations of ILUM and
BILUM have been described in detail in [16, 21]. We used GMRES(10) as an
accelerator for both the inner and outer iterations. The outer iteration process
was preconditioned by BILUM with the dual dropping strategy discussed earlier.
The inner iteration process to solve the last reduced system approximately was
preconditioned by ILUT [17]. Exceptions are stated explicitly. The construction
and application of the BILUM preconditioner was similar to those described in [21],
except that here the dual dropping strategy was applied from the first level. The
initial guess was a vector of random numbers.

The numerical experiments were conducted on a Power-Challenge XL Silicon
Graphics workstation equipped with 512 MB of main memory, two 190 MHZ R10000
processors, and 1 MB secondary cache. We used FORTRAN 77 in 64-bit precision.

The inner iteration was stopped when the (inner iteration) residual in the 2-
norm was reduced by a factor of 10? or the number of iterations exceeded 10,
whichever occurred first. The outer iteration was stopped when the residual in the
2-norm was reduced by a factor of 107. We also set an upper bound of 200 for the
outer GMRES(10) iteration. (A symbol “~” in a table indicates that convergence

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

186 YOUSEF SAAD ET AL.

720 x 720 Mesh - lterations 720 x 720 Mesh - CPU Time

H

Iterations
g
T3E Seconds
8

L T T T S e)
Processors Processors

720 x 720 Mesh - Speed-up 720 x 720 Mesh - Efficiency

— Actual speed-up -
o T Adjusted speed-up 09
o)
@ - - - - |deal speed-up w
w
o os
< e
o 15 ©
3 2 Sl
Sor S
s o .
10| >
3 2
o O 08
& g
= —actual efficiency
sb
osp ------ adjusted for iterations
[10 2:) 3‘0 4‘0 S‘O &‘) 7‘0 LY 0 100 "o 10 20 0 “ 50 © T 80 90 100
Processors Processors

FIGURE 5. Performance measures for solving a linear system aris-
ing from a 5-point matrix on a 720 x 720 mesh. The adjusted
speed-ups and efliciencies are defined as speed-ups and efficiencies
divided by the gain (loss) ratios in the iteration count.

TABLE 3. Characteristic parameters for solving the RAEFSKY3
matrix for different sizes of uniform blocks. BILUM with 20 levels
and double dropping strategy was used.

1fil = 40,droptol = 10~7 1fil = 50,droptol = 1077
k | iter. tot-cpu e-rato s-rato r-rato | iter. tot-cpu e-rato s-rato r-rato
5 - - - 1.15 0.247 | - - - 1.33 0.258
10 - - - 144 0.213 | 22 90.35 2.47 1.62 0.216

15| 84 140.73 045 1.55 0.179 | 17 72.71 2.70 1.72 0.178
20 | 150 222,60 0.28 1.83 0.156 | 19 81.89 2.75 2.02 0.158
25| 106 160.58 0.39 190 0.140 | 16 71.19 2.96 2.07 0.129
30| - - - 1.87 0122 | 51 103.71 0.85 207 0.114
35| 30 74.66 1.27 199 0127 | 14 68.48 3.31 224 0.120
40 | 27 64.85 1.25 192 0.100 | 13 60.50 3.17 219 0.106
45| - - - 1.99 0.100 | 160 222.78 0.25 224 0.106
50| - - - 2.07 0.106 | 18 66.39 2.27 233 0.094

did not reached in 200 outer iterations.) We used droptol = 10™% and tested two
values for [fil. The block size k varied from 5 to 50. The first test was with the
matrix RAEFSKY3. The test results are presented in Table 3.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

DOMAIN DECOMPOSITION FOR GENERAL SPARSE LINEAR SYSTEMS 187
TABLE 4. Characteristic parameters for solving the VENKAT50
matrix for different sizes of uniform blocks. BILUM with 10 levels
and double dropping strategy was used.

1fil = 30,droptol = 10~° 1fil = 40, droptol = 107°
k | iter. tot-cpu erato s-rato r-rato | iter. tot-cpu e-rato s-rato r-rato
5 - - - 2.53 0.218 - - — 2.30 0.260
10 | 180 458.11 0.27 3.10 0.146 | 136 426.62 0.40 3.55 0.170
15| 166 412.81 0.26 343 0.109 | 126 37743 041 3.94 0.130
20 | 157 373.77 0.26 3.42 0.087 | 124 368.74 0.39 4.27 0.110
25| 166 382.25 0.23 3.52 0.074 | 115 32493 041 4.40 0.095
30| 192 39733 0.19 291 0.060 { 121 334.93 0.37 4.10 0.079
35| 180 374.07 0.19 2.97 0.054 | 109 306.89 0.40 4.16 0.073
40 | 179 366.01 0.19 2.95 0.048 | 110 302.77 0.37 4.21 0.066
45| 161 333.82 0.20 2.99 0.042 | 115 308.04 0.35 4.23 0.056
50 | 174 353.54 0.18 3.00 0.040 | 105 287.42 0.37 4.31 0.052
o RAEFSKY3: n =21200, nz= 1488 768
10 T T T T T T T T
107"
107
%10" 1
2
§
% block size = 10
20 A A e, A
- 1
block size = 15
O % % w0 w1 o e 1 %o

FIGURE 6. Convergence history of BILUM with different block
sizes to solve the RAEFSKY3 matrix. BILUM with 20 levels and
double dropping strategy was used and the coarsest level solve was
preconditioned by ILUT(1073, 40).

Number of iterations

The results suggest that in order to increase the size of the independent set, it
is preferable to have large enough blocks. However, block sizes should not be too
large. In the present tests it seems that a good upper limit is the average number
of nonzero elements kept in each row (the [fil parameter) during the BILUM fac-
torization. Figure 6 shows the convergence history of BILUM with different block
sizes for solving the RAEFSKY3 matrix. With these block sizes, initial convergence
was fast in all cases. However, after a few iterations, only BILUM using large block
sizes was able to continue converging at a good rate.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

188 YOUSEF SAAD ET AL.

TABLE 5. Test results of WIGTO966 matrix solved with ILUT.

Lfil | droptol | iter. | tot-cpu | e-rato | s-ratio
340 [107> [110 | 81.54 | 2.48 | 9.14
350 | 107> | 41 | 86.16 | 6.78 | 9.33
400 | 10™> | 22 | 87.07 | 12.60 | 10.06

340 [1071 - - - -
330 | 10°° - — — —
330 10°° — - - -

TABLE 6. Test results of WIGTO966 matrix with 10 level BILUM.

k | Ifil | droptol | iter. | tot-cpu | e-rato | s-rato | r-rato
100 50 | 107 [100 | 1872 | 0.47 | 3.21 | 0.017
100] 60 | 107° - - - - ~
100|100 | 1077 [22 | 1590 | 3.11 | 5.34 | 0.042
80 | 80 | 1077 - - - - —~
62 | 50 | 1077 - - - - -
62 | 50 | 107° - -
62 | 62 | 100% | 40 | 1510 | 1.60 | 3.83 | 0.101
62 | 65 | 1007 | 42 | 1650 | 1.59 | 3.91 | 0.101
62 | 70 | 1077 - - - - -
5 [50 | 107% | 44 | 1264 | 1.30 | 3.12 [0.094
50 | 50 | 107 | 48 | 13.02 | 1.18 | 3.08 | 0.094
50 | 60 | 107° | 35 | 1348 | 1.85 | 3.50 | 0.081
50 | 60 | 107* | 32 | 13.10 | 2.02 | 3.52 | 0.081
40 | 50 | 107% | 52 | 14.80 | 1.21 | 3.10 | 0.120
40 | 60 | 107* | 28 | 14.07 | 2.58 | 3.57 | 0.099
30t | 40 | 1077 69 1471 | 091 | 2.65 [0.006
.20 levels of reduction were used.

The second test is with the matrix VENKAT50. Each row has 28 nonzeros on
average. We again used droptol = 1073 and tested two values for [fil. The test
results are shown in Table 4. The test results for both RAEFSKY3 and VENKAT50
indicate that [fil should be chosen large enough to allow a sufficient amount of fill-
ins and the block size k should also be large enough to insure a good reduction rate.
We point out that both tests yielded slow convergence for k = 5 which indicates
that the independent sets were not large enough to guarantee a fast convergence.

Each row of the matrix WIGTO966 has 62 nonzeros on average. This matrix
is very hard to solve by ILUT [6] which only worked with a large value of [fil, i.e.,
a large number of elements per row. Test results using ILUT with different [fil
and droptol are given in Table 5. We note the large values for the efficiency ratio
and the sparsity ratio. Table 6 shows the test results for the matrix WIGTO966
solved by BILUM with 10 levels of reduction (an exception was indicated explicitly).
Different block size k, [fil, and droptol were tested. We find that for this example,
BILUM was 6 times faster than ILUT and used only one-third of the storage space
required by ILUT. Once again, we see that the block size k£ should not be larger
than the number of nonzeros kept in each row.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

DOMAIN DECOMPOSITION FOR GENERAL SPARSE LINEAR SYSTEMS 189

The option of making the diagonal blocks sparse at each level is not tested in
this paper. Its potential success obviously depends on the diagonal dominance of
the submatrices. There are other techniques that may be used to enhance stability
of the inverse of the blocks so that preconditioning effects may be improved. A
typical example is the employment of approximate singular value decomposition.
Special blocks such as arrow-head matrices could also be constructed which would
entail no additional fill-in in the inverse [8]. Furthermore, it is not necessary that all
blocks should be of the same size. For unstructured matrices, blocks with variable
sizes may be able to capture more physical information than those with uniform
size. A major difficulty of applying these and other advanced techniques is the
complexity of programming. We will examine these and other ideas experimentally
and the results will be reported elsewhere.

5. Concluding Remarks

We discussed two techniques based on Schur complement ideas for deriving
preconditioners for general sparse linear systems. The Schur-ILU preconditioning
is an efficient yet simple to implement preconditioner aimed at distributed sparse
linear systems. The simplicity of this preconditioner comes from the fact that only
local data structures are used. The multi-level domain-type algorithm (BILUM) for
solving general sparse linear systems is based on a recursive application of Schur
complement techniques using small subdomains. We proposed a dual dropping
strategy to improve sparsity in the BILUM factors. Several parameters were intro-
duced to characterize the efficiency of a preconditioner. Numerical results showed
that the proposed strategy works well for reducing the storage cost of BILUM with
large block sizes. This class of methods offers a good alternative to the standard
ILU preconditioners with threshold, in view of their robustness and efficiency. How-
ever, their implementation on parallel platforms may prove to be more challenging
than the single-level Schur complement preconditioners such as the approximate
Schur-LU technique.

References

1. R. E. Bank and C. Wagner, Multilevel ILU decomposition, Tech. report, Department of Math-
ematics, University of California at San Diego, La Jolla, CA, 1997.

2. T. Barth, T. F. Chan, and W.-P. Tang, A parallel algebraic non-overlapping domain decom-
position method for flow problems, Tech. report, NASA Ames Research Center, Moffett Field,
CA, 1998, In preparation.

3. E. F. F. Botta, K. Dekker, Y. Notay, A. van der Ploeg, C. Vuik, F. W. Wubs, and P. M. de
Zeeuw, How fast the Laplace equation was solved in 1995, Appl. Numer. Math. 32 (1997),
439-455.

4. E. F. F. Botta and F. W. Wubs, MRILU: It’s the preconditioning that counts, Tech. Report
W-9703, Department of Mathematics, University of Groningen, The Netherlands, 1997.

5. T. F. Chan, S. Go, and J. Zou, Multilevel domain decomposition and multigrid methods for
unstructured meshes: algorithms and theory, Tech. Report 95-24, Department of Mathematics,
University of California at Los Angeles, Los Angeles, CA, 1995.

6. A. Chapman, Y. Saad, and L. Wigton, High-order ILU preconditioners for CFD problems,
Tech. Report UMSI 96/14, Minnesota Supercomputer Institute, University of Minnesota,
Minneapolis, MN, 1996.

7. V. Eijkhout and T. Chan, ParPre a parallel preconditioners package, reference manual for
version 2.0.17, Tech. Report CAM Report 97-24, Department of Mathematics, University of
California at Los Angeles, Los Angeles, CA, 1997.

8. G. H. Golub and J. M. Ortega, Scientific computing: An introduction with parallel computing,
Academic Press, Boston, 1993.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

190 YOUSEF SAAD ET AL.

9. W. D. Gropp and B. Smith, User’s manual for KSP: data-structure neutral codes implement-
ing Krylov space methods, Tech. Report ANL-93/23, Argonne National Laboratory, Argonne,
IL, 1993.

10. S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro, Aztec user’s guide. version 1.0, Tech.
Report SAND95-1559, Sandia National Laboratory, Albuquerque, NM, 1995.

11. M. T. Jones and P. E. Plassmann, BlockSolve95 users manual: Scalable library software for
the solution of sparse linear systems, Tech. Report ANL-95/48, Argonne National Laboratory,
Argonne, IL, 1995.

12. J. Mandel, Balancing domain decomposition, Comm. Appl. Numer. Methods 9 (1993), 233-
241.

13. A. A. Reusken, Approximate cyclic reduction preconditioning, Tech. Report RANA 97-02,
Department of Mathematics and Computing Science, Eindhoven University of Technology,
The Netherlands, 1997.

14. J. W. Ruge and K. Stiiben, Efficient solution of finite difference and finite element equa-
tions, Multigrid Methods for Integral and Differential Equations (Oxford) (D. J. Paddon and
H. Holstein, eds.), Clarendon Press, 1985, pp. 169-212.

15. Y. Saad, Parallel sparse matriz library (P.SPARSLIB): The iterative solvers module, Ad-
vances in Numerical Methods for Large Sparse Sets of Linear Equations (Yokohama, Japan),
vol. Number 10, Matrix Analysis and Parallel Computing, PCG 94, Keio University, 1994,
pp. 263-276.

16. , ILUM: a multi-elimination ILU preconditioner for general sparse matrices, SIAM J.
Sci. Comput. 17 (1996), no. 4, 830-847.
17. , Iterative methods for sparse linear systems, PWS Publishing, New York, 1996.

18. Y. Saad and A. Malevsky, PSPARSLIB: A portable library of distributed memory sparse iter-
ative solvers, Proceedings of Parallel Computing Technologies (PaCT-95), 3-rd international
conference (St. Petersburg, Russia) (V. E. Malyshkin et al., ed.), 1995.

19. Y. Saad and M. Sosonkina, Distributed Schur complement techniques for general sparse lin-
ear systems, Tech. Report UMSI 97/159, Minnesota Supercomputer Institute, University of
Minnesota, Minneapolis, MN, 1997.

20. Y. Saad and K. Wu, Design of an iterative solution module for a parallel sparse matriz
library (P_SPARSLIB), Proceedings of IMACS Conference, 1994 (Georgia) (W. Schonauer,
ed.), 1995.

21. Y. Saad and J. Zhang, BILUM: block versions of multi-elimination and multi-level ILU pre-
conditioner for general sparse linear systems, Tech. Report UMSI 97/126, Minnesota Super-
computer Institute, University of Minnesota, Minneapolis, MN, 1997.

22. B. Smith, P. Bjgrstad, and W. Gropp, Domain decomposition: Parallel multilevel methods
for elliptic partial differential equations, Cambridge University Press, New York, NY, 1996.

23. B. Smith, W. D. Gropp, and L. C. McInnes, PETSc 2.0 user’s manual, Tech. Report ANL-
95/11, Argonne National Laboratory, Argonne, IL, 1995.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF MINNESOTA, MIN-
NEAPOLIS, MN 55455
E-mail address: saad@cs.umn.edu

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF MINNESOTA — DULUTH, DuLUTH, MN
55812-2496
E-mail address: masha@d.umn.edu

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF MINNESOTA, MIN-
NEAPOLIS, MN 55455
E-mail address: jzhang@cs.umn.edu

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

