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1. Introduction

In this paper, we present uniform convergence results for the mortar finite
element method (which is an example of a non-conforming method), for h, p and hp
discretizations over general meshes. Our numerical and theoretical results show that
the mortar finite element method is a good candidate for hp implementation and
also that the optimal rates afforded by the conforming h, p and hp discretizations
are preserved when this non-conforming method is used, even over highly non-
quasiuniform meshes.

Design over complex domains often requires the concatenation of separately
constructed meshes over subdomains. In such cases it is difficult to coordinate
the submeshes so that they conform over interfaces. Therefore, non-conforming
elements such as the mortar finite element method [2, 3, 4] are used to “glue”
these submeshes together. Such techniques are also useful in applications where the
discretization needs to be selectively increased in localized regions (such as those
around corners or other features) which contribute most to the pollution error in
any problem. Moreover, different variational problems in different subdomains can
also be combined using non-conforming methods.

When p and hp methods are being used, the interface incompatibility may
be present not only in the meshes but also in the degrees chosen on the elements
from the two sides. Hence the concatenating method used must be formulated to
accomodate various degrees, and also be stable and optimal both in terms of mesh
refinement (h version) and degree enhancement (p version). Moreover, this stability
and optimality should be preserved when highly non-quasiuniform meshes are used
around corners (such as the geometrical ones in the hp version).

We present theoretical convergence results for the mortar finite element method
from [7],[8] and extend these in two ways in this paper. First, we show that the
stability estimates established for the mortar projection operator (Theorem 2 in
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(8]) are optimal. Second, we present h, p and hp computations for a Neumann
problem, which fills a gap in numerical validation as explained in Section 4.

2. The Mortar Finite Element Method
We begin by defining the mortar finite element method for the following model

problem.

(1) —-Au=f, u=0 on 9Np, a—Zzg on 00y .

0
where @ C IR? is a bounded polygonal domain with boundary 89 = 8Qp U
00y (8Qp NNy = 0), and for simplicity it is assumed 0Qp # @. Defining
HL() ={ue H (Q)u=0 on dNp} (we use Standard Sobolev space notation),
we get the variational form of (1) : Find u € H} () satisfying, for all v € H}(Q),

(2) a(u,v) o / VuVvdr = [ fodr+ / gvds o F(v).
Q Q 00N

This problem has a unique solution.

We now assume {2 is partitioned into non-overlapping polygonal subdomains
{Q;}K | assumed to be geometrically conforming for simplicity (though our results
also hold for the geometrically non-conforming (see [2]) case). The interface set
I' is defined to be the union of the interfaces I';; = I';;, i.e. I' = U;;I';; where
I;; = 0Q; U0Q;. T can then be decomposed into a set of disjoint straight line
pieces 7v;,1 =1,2,...,L. We denote Z = {v,... ,y.}.

Each Q; is assumed to be further subdivided into triangles and parallelograms
by geometrically conforming, shape regular [5] families of meshes {7;'}. The trian-
gulations over different §); are assumed independent of each other, with no compat-
ibility enforced across interfaces. The meshes do not have to be quasiuniform and
can be quite general, with only a mild restriction, Condition(M), imposed below.

For K ¢ R", let Pr(K) (Qk(K)) denote the set of polynomials of total degree
(degree in each variable) < k on K. We assume we are given families of piecewise
polynomial spaces {V}; , } on the €;,

Vie={ue H ()| ulx € Sk(K) for KeT!, u=0 on 9;,N0p}.

Here S(K) is Px(K) for K a triangle, and Qk(K) for K a parallelogram. Note
that V,f’k are conforming on €);, i.e. they contain continuous functions that vanish
on aQD _

We define the space V4 by,

(3) Vh,k = {u S LQ(Q) | 'U.[Qi € V}f,k V'i}

and a discrete norm over Vhyk U HY(Q) by,

K
2
(4) “U“%d = Z ”U”Hl(my
=1
The condition on the mesh, which will be satisfied by almost any kind of mesh
used in the h, p or hp version, is given below. Essentially, it says the refinement

cannot be stronger than geometric.

Condition(M) There exist constants «,Cy, p, independent of the mesh param-
eter h and degree k, such that for any trace mesh on v € Z, given by zop <
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, hi P .
Ty < ... < TN41, with hy = 2541 — x5, we have # < Cyal*™ where a satis-

J
fies 1 < a < min{(k + 1)?, p}.

To define the “mortaring”, let v € Z be such that v C T';;. Since the meshes
T are not assumed to conform across interfaces, two separate trace meshes can
be defined on 7, one from 2; and the other from ;. We assume that one of the
indices i, j, say ¢, has been designated to be the mortar index associated with 7,
i = M(v). The other is then the non-mortar index, j = NM(vy). We then denote
the trace meshes on v by TA’}[( ") and 7, 1(} M(y)? with the corresponding trace spaces

being VM (v) and VVNM(y), where e.g.

VM(y) = Vik(n) = {uly | we Vi)

Given u € Vh,k, we denote the mortar and non-mortar traces of u on v by ufy\” and
uf;’ M respectively. We now restrict the space Vh,k by introducing constraints on the
differences u}’ — ul/™. This “mortaring” is accomplished via Lagrange Multiplier
spaces S(7) defined on the non-mortar trace meshes 7, M(y) Let the subintervals

of this mesh on + be given by I;, 0 <i < N. Then we set S(y) = S () defined
as,

S(fY) = {X € C(ﬁY) l XII@ € Pk(Ii)’i = 13" . 7N -1 ’Xllo € Pk—l(I0)7

Xlty € Pe-1(In)}

i.e. S(7) consists of piecewise continuous polynomials of degree < k on the mesh
T 1(} M) which are one degree less on the first and last subinterval.

We now define Vh,k - Vh,k by,
(5) Vi = {u € Vigl /(uy —u)M)xds=0 Vx e SNM(y),Vye Z}.
Y

Then our discretization to (2) is defined by: Find up € Vi i satisfying, for all
NS Vh,k,

K
(6) ank(unk,v) L Z/ Vup k. Vodr = F(v).
i=1 Yk
THEOREM 1. [3] Problem (6) has a unique solution.

3. Stability and Convergence Estimates

Let V™ (+) denote functions in V™ () vanishing at the end points of 7. The
stability and convergence of the approximate problem depends on the properties
of the projection operator IL, : La(y) — V"™ (y) defined as follows: For u €
Ly(), v € Z, yu = I"*u is a function in Vi (y) that satisfies,

(7 /(Hs’ku) de:/uxds VXeS,IX,y('y).
v

Y

Condition(M) imposed in the previous section is sufficient, as shown in [7, 8], to
ensure the following stability result for the projections II,.
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FIGURE 1. (a) Maximum eigenvalue for Ly (b) Maximum eigen-
value for H'!

THEOREM 2. Let {Vj i} be such that Condition(M) holds. Let {II* .~y € Z} be
defined by (7). Then there exists a constant C, independent of h,k (but depending
on a,Cy, p) such that,

(8) T2 *ullo, < Ck?[Jullo, V'€ La(y)

9) A5 ) Moy < Ckllw/lloy  Vu € Hy(v)

A question unanswered in [8] was whether (8)—(9) are optimal. Figure 1 shows
that the powers of k in (8)—(9) cannot be improved. This is done by approximating
the norms of the operator |[TI**||z(1,(y),L0(v)) and [[I2F|| 21y, m1(y)) (with R
fixed), using an eigenvalue analysis. (For details we refer to the thesis [7].) It is
observed that these norms grow as O(k2) and O(k) respectively, as predicted by
Theorem 2.

Using Theorem 2 and an extension result for hp meshes [8], we can prove our
main theorem, by the argument used in [3], Theorem 2 (see (7, 8] for details). In
the theorem below, {/N;} denotes the set of all end points of the segments v € Z.

THEOREM 3. Let {Vj, .} be such that Condition(M) holds. Then for any e > 0,
there exists a constant C = C(e), independent of u, h and k such that,

— <
(10) Jlu=unplha < CZM f o5 = Wiy
C inf ZHU—U”LQF"'
vEVh,k i

v(Nj)=u(N;)

3
ST (lhe = 02l e + e = 02l )

YEZ

Moreover, for h or k fized, or for quasiuniform meshes, we may take € = 0 if we
replace |||y 4 by 1M 2 (7).
0

0

The following estimate for quasiuniform meshes follows readily from Theorem 3:
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FIGURE 2. (a) L-shaped domain (b) Tensor product mesh for m =
n=2

THEOREM 4. Let the solution u of (2) satisfy u € H'(Q),1 > 2(1 > 1 ifk
varies). For the hp version with quasiuniform meshes {7;'} on each €,

(11) llu = wnkllra < CR# D4 )] g
where p = min{l,k + 1} and C is a constant independent of h,k and u.

Theorem 3 also tells us that, using highly non-quasiuniform radical meshes
in the neighbourhood of singularities (see Section 4 of [1]), we can now recover
full O(h*) convergence even when the mortar element method is used. Moreover,
exponential convergence that is realized when the (conforming) hp version is used
over geometrical meshes will be preserved when the non-conforming mortar finite
element is used. We illustrate these results computationally in the next section.

4. Numerical Results

We consider problem (1) on the L-shaped domain shown in Figure 2, which
is partitioned into two rectangular subdomains, £2; and €5, by the interface AO.
In [8], we only considered the case where 9Qp = 9. This, however, results in
the more restrictive mortar method originally proposed in [3], where continuity is
enforced at vertices of ;. To implement the method proposed in [2] and analyzed
here, where the vertex continuity enforcement is removed, we must take Neumann
conditions at the ends of AO. We therefore consider here the Neumann case where
00y = 09, with uniqueness maintained by imposing the condition u = 0 at the
single point C. Our exact solution is given by,

u(r,0) = r3 cos <23—9> -1

where (r,0) are polar coordinates with origin at O. We use the mixed method to
implement the mortar condition. For our computations, we consider tensor product
meshes where ) is divided into n? rectangles and §; is divided into 2m? rectangles
(see Figure 2).

It is well-known that this domain will result in a strong r3 singularity which
occurs at the corner O in Figure 2, which limits the convergence to O(N *%) when
the quasiuniform h version is used. Figure 3 shows that this rate is preserved when
the mortar finite element is used (graph (1)) with degree k = 2 elements. When
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FIGURE 3. The relative error in the energy norm in dependence
on h for radical meshes (k = 2)
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FIGURE 4. The relative error in the energy norm in dependence
on N for geometric meshes (03 = 0.17, 03 =0.13)

suitably refined radical meshes are used, then O(N~!) convergence is recovered
both for the conforming (graph(2)) and mortar (graph(3)) methods.

For the p and hp mortar FEM on geometric meshes, we take m = n and
consider the geometric ratio o (i.e. the ratio of the sides of successive elements, see
[6]) to vary in each domain §;. The optimal value is 0.15 (see [6]), but we take
o1 = 0.17 and 09 = 0.13 to make the method non-conforming. We observe in Figure
4, the typical p convergence for increasing degree k for various n. Note that for our
problem, at least, we do not see the loss of O(k4) in the asymptotic rate due to the
projection II, not being completely stable (as predicted by Theorem 4 and Figure
1). See Figure 5(a) where we have plotted the case o = 0.17,09 = 0.13 for n = 4
together with the conforming cases 0, = 02 = 0.13 and 0.17. The results indicate
that the p version mortar FEM behaves almost identically to the conforming FEM.

Finally, in Figure 5(b), we plot log(relative error) vs N i, which gives a straight
line, showing the exponential rate of convergence. We also plot log(relative error)
vs N3, which is the theoretical convergence rate for the optimal geometric mesh
(see [1],[6]). Since we consider a tensor product mesh here, which contains extra
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FIGURE 5. (a) Performance of the mortar FEM for n=4 (b) Ex-
ponential Convergence for the hp mortar FEM

1
degrees of freedom, we can only obtain an exponential convergence rate of Ce™ "V *

theoretically.
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