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1. Introduction

We review the basic algorithms of spectral/hp element methods on tetrahedral
grids and present newer developments on hybrid grids consisting of tetrahedra,
hexahedra, prisms, and pyramids. A unified tensor-product trial basis is developed
for all elements in terms of non-symmetric Jacobi polynomials. We present in some
detail the patching procedure to ensure C° continuity and appropriate solution
techniques including a multi-level Schur complement algorithm.

In standard low-order methods the quality of the numerical solution of an
elliptic problem depends critically on the grid used, especially in three-dimensions.
Moreover, the efficiency to obtain this solution depends also on the grid, not only
because grid generation may be the most computationally intensive stage of the
solution process but also because it may dictate the efficiency of the parallel solver to
invert the corresponding algebraic system. It is desirable to employ grids which can
handle arbitrary geometric complexity and exploit existing symmetry and structure
of the solution and the overall domain.

Tetrahedral grids provide great flexibility in complex geometries but because
of their unstructured nature they require more memory compared with structured
grids consisting of hexahedra. This extra memory is used to store connectivity
information as well as the larger number of tetraheda required to fill a specific
domain, i.e. five to six times more tetrahedra than hexahedra. From the parallel
solver point of view, large aspect ratio tetrahedra can lead to substantial degra-
dation of convergence rate in iterative solvers, and certain topological constraints
need to be imposed to maintain a balanced parallel computation.

The methods we discuss in this paper address both of the aforementioned is-
sues. First, we develop high-order hierarchical expansions with exponential conver-
gence for smooth solutions, which are substantially less sensitive to grid distortions.
Second, we employ hybrid grids consisting of tetrahedra, hexahedra, prisms, and
pyramids that facilitate great discretisation flexibility and lead to substantial mem-
ory savings. An example of the advantage of hybrid grids was reported in [5] where
only 170K tetrahedra in combination with prisms were employed to construct a
hybrid grid around the high-speed-civil-transport aircraft instead of an estimated
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two million if tetrahedra were used everywhere instead of triangular prisms. In
general, for elliptic problems with steep boundary layers hybrid discretisation is the
best approach in accurately resolving the boundary layers while efficiently handling
any geometric complexities.

In previous work [13, 14] we developed a spectral/hp element method for
the numerical solution of the two- and three-dimensional unsteady Navier-Stokes
equations. This formulation was implemented in the parallel code NekT ar [11].
The discretisation was based on arbitrary triangulisations/ tetrahedrisations of
(complex-geometry) domains. On each triangle or tetrahedron a spectral expansion
basis is employed consisting of Jacobi polynomials of mixed weight that accommo-
date exact numerical quadrature. The expansion basis is hierarchical of variable
order per element and retains the tensor product property (similar to standard
spectral expansions), which is key in obtaining computational efficiency via the
sum factorisation technique. In addition to employing standard tetrahedral grids
for discretisation, the formulation employed is also based on standard finite element
concepts. For example, the expansion basis is decomposed into vertex modes, edge
modes, face modes and interior modes as in other hexahedral h-p bases [16, 8].
With this decomposition, the C° continuity requirement for second-order elliptic
problems is easily implemented following a direct stiffness assembly procedure.

In this paper, we extend the preliminary work of [10] in formulating a unified
hierarchical hybrid basis for multiple domains. Specifically, we describe the basis
in tensor-product form using a new coordinate system and provide details on how
these heterogeneous subdomains can be patched together. We then concentrate
on investigating the scaling of the condition number of the Laplacian system and
discuss solution techniques, including a multi-level Schur complement algorithm
[15].

2. Unified Hybrid Expansion Bases

In this section we shall develop a unified hybrid expansion basis suitable for
constructing a C© global expansion using triangular and quadrilateral regions in
two-dimensions and tetrahedral, pyramidic, prismatic and hexahedral domains in
three-dimensions. This unified approach lends itself naturally to an object ori-
entated implementation as originally developed in [17] using C++ in the code
NexTar . To construct these expansion we must first introduce an appropriate
coordinate system as discussed in section 2.1. Having developed the coordinate sys-
tem the definition of the basis in terms of Jacobi polynomials is outlined in section
2.2.

2.1. Coordinate Systems. We define the standard quadrilateral region as

Q2 = {(6%52)‘ -1 S 51562 S 1}7

within which we note that the Cartesian coordinates (£1,£2) are bounded by con-
stant limits. This is not, however, the case in the standard triangular region defined
as

T2 = {(£1,6)] - 1< €1,&; & +& <0}

where the bounds of the Cartesian coordinates (&), &) are clearly dependent upon
each other. To develop a suitable tensorial type basis within unstructured regions,
such as the triangle, we need to develop a new coordinate system where the local
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FIGURE 1. Triangle to rectangle transformation.

coordinates have independent bounds. The advantage of such a system is that we
can then define one-dimensional functions upon which we can construct our multi-
domain tensorial basis. It also defines an appropriate system upon which we can
perform important numerical operations such as integration and differentiation [6].

2.1.1. Collapsed Two-Dimensional Coordinate System. A suitable coordinate
system, which describes the triangular region between constant independent limits,
is defined by the transformation

(1+&)
1 = 2 -1
@ o= g
n = &,
and has the inverse transformation

& = m.

These new local coordinates (n;,72) define the standard triangular region by

T ={(m,m)| -1 <nm,m < 1}

The definition of the triangular region in terms of the coordinate system (7, 7)
is identical to the definition of the standard quadrilateral region in terms of the
Cartesian coordinates (£1,&:). This suggests that we can interpret the transforma-
tion (1) as a mapping from the triangular region to a rectangular one as illustrated
in figure 1. For this reason, we shall refer to the coordinate system (n;,72) as
the collapsed coordinate system. Although this transformation introduces a multi-
values coordinate (1) at (§; = —1,€2 = 1), we note that singular point of this
nature commonly occur in cylindrical and spherical coordinate systems.

2.1.2. Collapsed Three-Dimensional Coordinate Systems. The interpretation of
a triangle to rectangle mapping of the two-dimensional local coordinate system, as
illustrated in figure 1, is helpful in the construction of a new coordinate system for
three-dimensional regions. If we consider the local coordinates (n;,72) as indepen-
dent axes (although they are not orthogonal), then the coordinate system spans a
rectangular region. Therefore, if we start with a rectangular region, or hexahedral
region in three-dimensions, and apply the inverse transformation (2) we can derive
a new local coordinate system in the triangular region 72, or tetrahedron region
T3 in three-dimensions, where 72 is defined as:

TP ={-1<6,6,8; & +&+&< -1}

To reduce the hexahedron to a tetrahedron requires repeated application of the
transformation in (2) as illustrated in figure 2. Initially, we consider a hexahedral

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



194 SPENCER J. SHERWIN ET AL.

g, = M) AM3) - g
2

M =M, 3=n3

A
A0

%
\fyé(\\\ 3
o > 2 g s
]
A%

w

g = M) ANy 1
2

§=8.8=8

FIGURE 2. Hexahedron to tetrahedron transformation by repeat-
edly applying the rectangle to triangle mapping (2).

domain defined in terms of the local coordinate system (n;,7n2,m3) where all three
coordinates are bounded by constant limits, i.e. (—1 < ny,m2,m3 < 1). Applying
the rectangle to triangle transformation (2) in the (2, 73) we obtain a new ordinate
(&2) such that

(1+n2)(1 —n3)
2

Treating the coordinates (n1,£2,m3) as independent, the region which originally
spanned a hexahedral domain is mapped to a rectangular prism. If we now apply
transformation (2) in the (n;,7n3) plane, introducing the ordinates 77, £3 defined as

(41 —n3)

7]1:‘_——2‘——_1 §3 =13,

we see that the coordinates (7, &2, £3) span a region of a square based pyramid.
The third and final transformation to reach the tetrahedral domain is a little more
complicated as to reduce the pyramidic region to a tetrahedron we need to apply
the mapping in every square cross section parallel to the (77, £) plane. This means
using the transformation (2) in the (71, &2) plane to define the final ordinate (£;)
as

& = -1 N3 = N3.

(1 +m)1 - &)
2

If we choose to define the coordinate of the tetrahedron region (&1,&2,&3) as the
orthogonal Cartesian system then, by determining the hexahedral coordinates
(n1,m2,m3) in terms of the orthogonal Cartesian system, we obtain

(A48 _,(1+&) s
e e R

&= -1 &2 = &o.

(3) m=2
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TABLE 1. The local Collapsed Cartesian coordinates which have
constant bounds within the standard region may be expressed in
terms of the Cartesian coordinates £1,&2,&3. Each region may be
defined in terms of the local coordinates since having a lower bound
of —1 < £;,£9,&3 and upper bound as indicated in the table. Each
region and the planes of constanlocal coordinate are shown in figure

3.
Region Upper bound Local Coordinate
Hexahedron £,6,6 <1 & &2 &3
Prism §,6+86 <1 | & 7)2:%_1 &

Pyramid | & +&,&+& <1 M= -1 |m="8 -1 n=4

Tetrahedron | & +&6&+& <1 |m= (2_(2;551;) 1| n= %:%)l -l|im=&

which is a new local coordinate system for the tetrahedral domain which is bounded
by constant limits. When & = —1 this system reduces to the two-dimensional
system defined in (1).

In a similar manner, if we had chosen to define the coordinates in either the
pyramidic or prismatic region as the orthogonal Cartesian system then evaluating
the hexahedral coordinates in terms of these coordinates would generate a new local
collapsed system for these domains. Table 1 shows the local collapsed coordinate
systems in all the three-dimensional regions. A diagrammatic representation of the
local collapsed coordinate system is shown in figure 3.

2.2. C° Continuous Unstructured Expansions. Ideally we would like to
use an elemental expansion which can be assembled into an globally orthogonal
expansion. Although it is possible to derive an orthogonal expansion within an
elemental region [12, 10], the requirement to easily impose boundary conditions
and tessellate the local expansions into multiple domains necessitates some modifi-
cations which destroy the orthogonality. To construct a C° continuous bases we de-
compose orthogonal expansion developed in [12, 10] into an interior and boundary
contribution as is typical of all hp finite element methods [16]. The interior modes
(or bubble functions) are defined as zero on the boundary of the local domain. The
completeness of the expansion is then ensured by adding boundary modes which
consist of vertex, edge and face contributions. The vertex modes have unit value at
one vertex and decay to zero at all other vertices; edge modes have local support
along one edge and are zero on all other edges and vertices; face modes have local
support on one face and are zero on all other faces, edges and vertices. Using this
decomposition CY continuity between elements can be enforced by matching simi-
lar shaped boundary modes providing some orientation constraints are satisfied as
discussed in section 3. To construct the unified hybrid expansions we shall initially
define a set of principal functions in section 2.2.1. Using these functions we then
define the construction of the expansions in sections 2.2.2 and 2.2.3.
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FIGURE 3. Planes of constant value of the local collapsed Carte-
sian coordinate systems in the hexahedral, prismatic, pyramidic
and tetrahedral domains. In all but the hexahedral domain,
the standard Cartesian coordinates &1,&2,&; describing the re-
gion have an upper bound which couples the coordinate system
as shown in table 1. The local collapsed Cartesian coordinate sys-
tem ny, M7, 72, N3 represents a system of non-orthogonal coordinates
which are bounded by a constant value within the region.
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FIGURE 4. Illustration of the structure of the arrays of principal
functions ¥ (z), fj(z) and ¢, (z). These arrays are not globally
closed packed although any edge, face or interior region of the
array may be treated as such. The interior of the arrays d)f’j(z)
and 17, () have been shaded to indicate the minimum functions
required for a complete triangular and tetrahedral expansion.

2.2.1. Principal Functions. Denoting Pf"ﬁ (2) as the i*" order Jacobi polyno-
mial which satisfied the orthogonality condition

1
/ (1-2)*(1+ z)ﬁPia’ﬁ(z)Pf’ﬁ(z)dz =Cb;; where o3> -1,
-1

we define three principal functions denoted by ¥{(z), ¥!;(z) and 9 (z) (0 <7 <
[,0<j<J 0<k<K):

(39 i=
wﬂzf={ (*3%) (%) Ph() 1<i<i-1

2
1;2) i=1
ve (2) i=0, 0<j<J
b =4 (7, . LisI-l, j=0
1] (lgz)1+l(1-5z)Pj21t11( ) 1<i<I~1, 1§j§<]—1 )
¥2(2) i=1 0<j<J
w2, (2) i=0, 0<j<J, 0<k<K
Wb (2) 0<i<I, j=0, 0<k<K
¢ (2) = (152) " 1<i<I-1,1<j<J-1, k=0
wk (152) ™ (2 PR ) 1<i<I-1,1<j<J-1 1<k<K-1
Yo (2) 0<i<I, j=J, 0<k<K
W (2) i=1, 0<j<J, 0<k<K

Figure 4 diagrammatically indicates the structure of the principle functions
Pi(2), f]-(z) and 17, (2) as well as how the function %{(2) is incorporated into
fj(z), and similarly how d)fj(z) is incorporated into 9{;; (2). The function ¥{(2)
has been decomposed into two linearly varying components and a function which is
zero at the end points. The linearly varying components generate the vertex modes
which are identical to the standard linear finite element expansion. The interior
contributions of all the base functions (i.e. 1 <i<I-1,1<j < J-1,1<k < K-1)
are similar in form to the orthogonal basis functions defined in [10]. However, they

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



198 SPENCER J. SHERWIN ET AL.

; )
1
' :
; ‘ 0,618 = V() W (n)
L]

¢ ( . \
e | .
\lll';q(‘b)

lp \l’},(m)

FIGURE 5. Construction of a fourth-order (P = 4) triangular ex-
pansion using the product of two principal functions 7 (n:) and

gq(nQ)'

are now pre-multiplied by a factor of the form (152) (%) which ensures that
these modes are zero on the boundaries of the domain. The value of a, 3 in the
Jacobi polynomial PI?’B (z) has also been slightly modified to maintain as much
orthogonality as possible in the mass and Laplacian systems.

2.2.2. Hybrid Ezxpansions. The two-dimensional expansions are defined in terms

of the principal functions as:
Quadrilateral expansion: — ¢p,(£1,82) = ¥y (§1)¥5 (§2)

Triangular expansion:  ¢pq(£1,&2) = 93 (m)¥h, (m2)
where

21+ &) _
ﬂl—m—l, N2 = &2,

are the two-dimensional collapsed coordinates. In figure 5 we see all of the modified
expansion modes for a fourth-order (P = 4) modified triangular expansion. From
this figure it is immediately evident that the interior modes have zero support on
the boundary of the element. This figure also illustrates that the shape of every
boundary mode along a single edge is identical to one of the modes along the
other two edges and which allows the modal shapes in two regions to be globally
assembled into a C° continuous expansion. In the three-dimensional expansion an
equivalent condition is ensured by the introduction of ¢$j(z) into ¥f;4(2).

The three-dimensional expansions are defined in terms of the principal functions
as:

Hexahedral expansion:  ¢per(§1, €2, €3) = 95 (€1)95 (€2)97 (€a)
Prismatic expansion:  ¢pqr (€1, €2,€3) = 9 (€1)9§ (12)¥5, (&)
Pyramidic expansion:  ¢per(€1,82,83) = ¥ (M)Yg (12) Vg (13)

Tetrahedral expansion: (z)pqr (51 €2, 53) = U’Z (771 )¢gq (772 )wgc)qr (773)
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FIGURE 6. The construction of the collapsed Cartesian coordi-
nates system maps vertex D onto vertex C in plot (a). If we
consider the quadrilateral region in plot (a) as describing a two-
dimensional array in p and g then we can imagine an equivalent
array within the triangular region as shown in plot (b).

where

o 2He) o _He) o 204&)
(€2 — &) (1-¢&) (1-¢&)
are the three-dimensional collapsed coordinates.

2.2.3. Construction of Basis From Principal Functions. As can be appreciated
from figure 4 the principal functions for the unstructured regions are not in a closed
packed form and so we cannot consecutively loop over the indices p,q and r to ar-
rive at a complete polynomial expansion. Even though these arrays are not closed
packed their definition permits an intuitive construction of the expansion basis as
discussed below.

Two-Dimenstons

The quadrilateral expansion may be constructed by considering the definition
of the basis ¢,q(£1,&2) as a two-dimensional array within the standard quadrilateral
region with the indices p = 0,9 = 0 corresponding to the lower left hand corner
as indicated in figure 6(a). Using this diagrammatic form of the array it was easy
to construct the vertex and edge modes by determining the indices corresponding
to the vertex or edge of interest. A similar approach is possible with the modified
triangular expansion.

We recall that to construct the local coordinate system we used a collapsed
Cartesian system where vertex D in figure 6(a) was collapsed onto vertex C as
shown in figure 6(b). Therefore, if we use the equivalent array system in the trian-
gular region we can construct our triangular expansions. For example, the vertices
marked A and B in figure 6(b) are defined as

Vertex A = doo(m,m2) = ¥§(m)¥3o(n2)
Vertex B = ¢épo(m,m) = w“pl(m)w’}:lo(m)‘

The vertex at the position marked C'D in figure 6(b) was formed by collapsing the
vertex D onto vertex C in figure 6(a). Therefore this mode is generated by adding
the contribution from the indices corresponding to the vertices C and D, i.e.

Vertex CD = @op, (11,72) + ép, p,(n1,n2) = ¥§ (M)W p, (n2) + ¥, (M) ¥, p, (12)-
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FIGURE 7. The structure of the mass matrix for a triangular ex-
pansion ¢P? = ¢§1/qu of order P, = P, = 14 within the standard
region 72. The boundary modes have been ordered first followed
by the interior modes. If the ¢ index is allowed to run faster, the
interior matrix has a bandwidth of (P — 2) + (P —3) + 1.

For the triangular expansion the edge modes are similarly defined as:

Edge AB:  ¢po(ni,m2) = ¥s(m)o(m) (0<p<P)
Edge AC:  ¢oq(m,me) = ¥§(m)wg,(ne) (0<qg< )
Edge BD :  ¢p,q(n1,m2) = ¥ ()0 ,(n2) (0<qg<Py).

In constructing the triangular region from the quadrilateral region as shown in
figure 6 edge C'D was eliminated and, as one might expect, it does not contribute
to the triangular expansion.

Finally the interior modes of the modified triangular expansion (which become
the triangular face modes in the three-dimensional expansions) are defined as

Interior : ¢4 (ny,m2) = 1y (m) gq(ng) (0<p,q; p< P; p+qg< Py; P < Py).

There is a dependence of the interior modes in the p-direction on the modes in
the g-direction which ensures that each mode is a polynomial in terms of the Carte-
sian coordinates (£;,&2). This dependence requires that there should be as many
modes in the ¢ direction as there are in the p direction and hence the restriction
that P, < P,. A complete polynomial expansion typically involves all the modes
defined above and this expansion is optimal in the sense that it spans the widest
possible polynomial space in (£1,&2) with the minimum number of modes. More
interior or edge modes could be used but if they are not increased in a consistent
manner the polynomial space will not be increased. In figure 7 we see the structure
of the mass matrix for a P, = P, = 14 polynomial order triangular expansion within
the standard triangular region. The matrix is ordered so the boundary modes are
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FIGURE 8. Generation of the standard tetrahedral domains from
repeated collapsing of a hexahedral region.

first followed by the interior system. It can be shown (see [13]) that if we order
the interior system so the ¢ index runs fastest then the bandwidth of the interior
system is (P —2) 4+ (P - 3) + 1.

Three-Dimensions

As illustrated in figure 8, for the hexahedral domain the indices p, ¢, correspond
directly to a three-dimensional array where all indices start from zero at the bottom
left-hand corner. Therefore, the vertex mode labelled A is described by @(o0) =
Y§ (€)Y (§2)16 (€3), similarly the vertex mode labelled H is described by ¢(p, p, p,)
and the edge modes between C' and G correspond to ¢o p, » (1 <7 < P3).

When considering the prismatic domain we use the equivalent hexahedral in-
dices. Accordingly, vertex A is now described by ¢ ooy = V& (£1)8 (n2) Y80 (£3).
In generating the new coordinate system, vertex G was mapped to vertex E and
therefore the vertex mode, labelled EG in the prismatic domain, is described by
?(0,0,Ps) +9(0,P,,pPy) (i€, adding the two vertices from the hexahedral domain which
form the new vertex in the prismatic domain). A similar addition process is nec-
essary for the prismatic edge FG — F'H which is constructed by adding the edge
modes EF (i.e. ¢, 0 p,)) to the edge modes GH (i.e., ¢, p, p,))- In degenerating
from the hexahedral domain to the prismatic region the edges EG and FH are
removed and therefore do not contribute to the prismatic expansion.

This process can also be extended to construct the expansion for the pyramidic
and tetrahedral domains. For both these cases the top vertex is constructed by
summing the contribution of FE, F,G and H. In the tetrahedral domain edges CG
and DH are also added. Although the modified functions wfj and 9f;; are not
closed packed, every individual edge, face and the interior modes may be summed
consecutively.

As as final point we note that the use of the collapsed Cartesian coordinate
system means that the triangular faces, unlike the quadrilateral faces, are not ro-
tationally symmetric. This means that there is a restriction on how two triangular
faces, in a multi-domain expansion, must be aligned. In section 3 we show that
this condition can easily be satisfied for all tetrahedral meshes although some care
must be taken when using a mixture of different elemental domains.

3. Global Assembly

The elements we have described will be tessellated together to construct a
continuous solution domain. We shall only permit elements to connect by sharing
common vertices, complete edges and/or complete faces. such a connectivity is
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commonly referred to as conforming elements. In this section we shall discuss
issues related to the process of globally assembling the elemental bases described
in section 2.2.

When two elements share an edge it is important for them to be able to deter-
mine if their local coordinate system at that edge are aligned in the same direction.
This information is important since it is necessary to ensure that the shape of all
edges modes is similar along an edge. If the local coordinate systems are not aligned
in the same direction then edges modes of odd polynomial order will have different
signs and so one edge mode will need to be multiplied by —1.

This condition becomes more complicated in three dimensions when two ele-
ments share a face. In this case it is not automatic that their coordinate systems
on the common face will line up. Considering the tetrahedra we see that there is
a vertex on each face that the coordinate system for that face radiates from. Simi-
larly for the triangular faces of the prism and pyramid. We will call this vertex the
face origin as it is similar to a polar coordinate origin. The alignhment constraint
necessitates that when two triangular faces meet their origin vertices must coincide.
Initally it is not obvious how to satisfy this constraint for a mesh consisting of just
tetrahedral elements. We outline two algorithms that will satisfy this constraint.
The first is based on the topology of the mesh. We will only use the connections
between elements to determine how we should orientate elements. In the second
method we will assume that each unique vertex in the mesh will have been given a
number. This second method works under some loose conditions but is extremely
easy to implement and is very local in its nature.

It is useful to observe that one of the vertices of a tetrahedron is the face origin
vertex for the three faces sharing that vertex. We will call this the local top vertexz.
Then there is one more face origin vertex on the remaining face which we call the
local base verter.

3.1. Algorithm 1. Given a conforming discretisation we can generate the
local orientation of the tetrahedra using the following algorithm. We assume that
we have a list of vertices and we know a list of elements which touch each vertex.
This list of elements will be called a vertex group and all elements are assumed to
have a tag of zero.

For every vertex in the list:

e Orientate all elements with a tag of one in this vertex group so that their
local base vertex points at this vertex. Then set their tags to two.

e Orientate all elements with a tag of zero in this vertex group so that their
local top vertex points at this vertex. Then set their tags to one.

This algorithm visits all vertices in the mesh and if this is the first time the
elements in the vertex group have been visited the local top vertex is orientated at
this vertex. If this is the second time the elements in the vertex group have been
visited then set the local base vertez to this vertex. To see how this works we can
consider the example shown in figure 9.

Here we assume that we are given a discretisation of a box using six tetrahedra
as shown in figure 9a. Starting our algorithm we begin with vertex A. Since all
elements have a tag of zero at this point we go straight to the second part of the
algorithm and orientate all elements that touch this vertex so that their local top
vertices point to A. Therefore tetrahedra HBDA and BHEA are orientated as shown
in figure 9b and now have a tag set to one. Continuing to the next vertex B we
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FIGURE 9. Setting up the required connectivity for the discretisa-
tion of a box as shown in a). Vertex A is given as the first local
top verter as shown in b). In c¢) vertex B is then given as the local
base vertex and the local base vertices from group one are aligned
to satisfy connectivity. The final element orientation is shown in
figure d).

see that all elements belong to this vertex group. The first part of the algorithm is
to orientate the elements with a tag of one to have their local base vertex pointing
at B. So the tetrahedra HBDA and BHEA are rotated as shown in figure 9¢ and
their tags are set to two. The second part of the algorithm then orientates all the
other tetrahedra to have their local top verter pointing at B. The connectivity is
actually satisfied at this point since the orientation the faces have on the boundaries
is irrelevant. However, if we continue the algorithm looping through the vertices
consecutively we end up with the tetrahedra orientated as shown in figure 9d.
Clearly, the connectivity is not unique since any elements that have their lo-
cal top verter pointing at E can be rotated about E. However, we have demon-
strated that it is possible to satisfy the connectivity requirements imposed by the
co-ordinate system and thereby imply that the requirement is non-restrictive.

3.2. Algorithm 2. Assuming that every global vertex has a unique number,
then for every element we have four vertices with unique global numbers:

o Place the local top vertex at the global vertex with the lowest global number.

o Place the local base verter at the global vertex with the second lowest global
number

e Orientate the last two vertices to be consistent with the local rotation of the
element (typically anti-clockwise).
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It has been stated before that since the coordinate systems on the faces of
the tetrahedra are not symmetric that it is too difficult to use these coordinate
systems. We have shown that it is possible in linear or even constant time to
satisfy this constraint for any given tetrahedral mesh. This algorithm is local to
each element and should be implemented at a pre-processing stage.

We now extend this approach to include meshes consisting of tetrahedra, prisms,
and hexahedra. Unfortunately, in this case we find counter-examples where it is not
possible to satisfy the origin alignment constraint. We have isolated the problematic
cases and they are unlikely to come up when using a mesh generator.

First we deal with the case when a quadrilateral face is shared by two elements.
In this instance it is sufficient to simply make the coordinate directions agree by
simply reversing either face coordinate if necessary.

We now investigate over-constrained meshes. These cases can occur when
prisms and tetrahedra are used together in a mesh. We will use these examples to
motivate the actual algorithm we propose. The cost of this algorithm also depends
linearly on the number of elements in the mesh.

It is instructive to construct a chain of prisms. This is simply a long prism,
with equilateral triangular faces, divided at intervals along its length into a set
of prisms connected at their triangle faces. The connectivity constraint requires
that the coordinate origins of the triangular faces must meet at every prism-prism
interface. This condition enforces that the collapsed edge must run in a continuous
line through the edges of the prism. Now we twist the chain around in a loop
and connect its triangle ends. The chain now forms a closed loop of prisms. The
orientation of the end faces of the original chain must also satisfy the connectivity
constraint when they meet. But we are free to choose the orientation of the faces
relative to each other. However, we can make the chain into a Mobius band by
twisting it around the axis along its length. In this case the connectivity cannot be
satisfied without changing the mesh.

We can construct a second counter-example, this time involving one tetrahedron
and two chains of prisms. We construct two chains of prisms as outlined above and
we join the tetrahedra into the prism chain by connecting two of its faces to the
prism chain triangular end faces. We repeat this operation again connecting the
remaining two faces of the tetrahedron to the end faces of the second chain of
prisms. We can now repeat the twisting of the prism loops. This over constrain
the tetrahedron so that it cannot be oriented to satisfy the connectivity condition.

These two cases indicate that we cannot allow prism chains to reconnect into
closed loops and still satisfy our constraints. Also we should not allow a prism chain
to connect to a tetrahedron with more than one of its triangular faces. If we only
consider meshes that satisfy these two constraints, then the following algorithm will
satisfy the connectivity constraints:

3.3. Algorithm For Connecting Prisms And Tetrahedra.

e Find all prism chains in the mesh.

e Create a virtual connection between the faces of the tetrahedra that meet
the triangular faces at each end of the chain.

e Proceed with Algorithm 2 to connect the tetrahedral mesh treating the
virtual links as real connections.
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FIGURE 10. Connectivity summary. Solid arrows imply we can
connect elements together with no problems, dashed arrows mean
that there are some constraints on allowable configurations.

e Orient the prisms in the chains with the same orientation as the triangular
faces of the tetrahedra at the ends of the virtual link. This orientation
propagate through the chain.

In figure 10 we summarise which elements can be connected using the above
algorithms. A solid line between elements means we can connect a given mesh with
of the two element types with no problems. If the line is dashed then the mesh has
to be changed to meet the connectivity constraints.

4. Global Matrix Properties

As discussed in section 2 and 3 we can construct a global expansions using a
tessellated of hybrid domains which are C” continuous. These expansions are there-
fore suitable to solve second order partial differential equations using a Galerkin
formulation. Consider the Helmholtz problem

Viu—du=f

supplemented with appropriate boundary conditions. The Galerkin problem may
be stated as find u® € X% such that

(4) a(v®,u®) = f(v°) Vol € V?,
where

a(v,u) = / Vv - Vu + dvu dQ,
)
flv) = /Qv f dsu.
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and u® is the finite dimensional representation of the solution (i.e. u® = " Upgr Gpqr)
and X° V® are the finite dimensional space of trial and test functions. In the
Galerkin approximations we assume that X® and V? span the same space.

As is typically of most numerical approaches, equation (4) may be represented
as an algebraic system. Although these algebraic systems are typically sparse the
number of degrees of freedom of a practical three-dimensional problem requires that
we use an iterative solver. We are therefore interested in the conditioning of these
algebraic systems. However, before considering the conditioning of this system we
shall first review the restructuring of the global matrix using the static condensa-
tion technique to take advantage of the matrix structure when using spectral/hp
expansions.

4.1. Matrix Solution via Schur Complement. Let us denote the global
matrix problem due to the Galerkin problem (4) as

(5) Mz = f.

where x is a vector of global unknowns. The matrix M is typically very sparse
although it may have a full bandwidth. We shall assume that the global system M
is ordered so that the global boundary degrees of freedom are listed first, followed by
the global interior degrees of freedom. In addition, we also assume that the global
interior degrees of freedom were numbered consecutively. Adopting this ordering,
the global matrix problem (5) can be written as

) o) o]0

where we have distinguished between the boundary and interior components of x
and f using xp, x; and f,, f;, respectively.

The matrix M, corresponds to the global assembly of the elemental boundary-
boundary mode contributions and similarly M., M; correspond to the global as-
sembly of the elemental boundary-interior coupling and interior-interior systems.
A notable feature of the global system is that the global boundary-boundary, My,
matrix is sparse and may be re-ordered to reduce the bandwidth or re-factored in
a multi-level Schur Complement solver as discussed below. The global boundary-
interior coupling matrix, M, is very sparse and as we shall see may be stored in
terms of its local elemental contributions. Finally, the natural form of M, is a
block diagonal matrix which is very inexpensive to evaluate since each block may
be inverted individually.

To solve the system (6) we can statically condense out the interior degrees
of freedom by performing a block elimination. Pre-multiplying system (6) by the
matrix

I -M.M;!
0 I ’

we arrive at:
(7) M,- MM 'M!" 0o | [ f,-M.Mf,
M} M, ||z |~ £ '

The equation for the boundary unknowns is therefore:

(8) (M, - M.M;' Mz, = f, - M.M;'f,.
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as

FIGURE 11. The boundary degrees of freedom, on the mesh shown
in plot (a), are ordered so that the boundary modes indicated by
the square symbols are first, followed by the boundary modes indi-
cated by circular symbols within each quadrant. Using this order-
ing the resulting Schur complement matrix has a block diagonal
sub-matrix as shown in figure (b).

Once x, is known, we can determine @; from the second row of equation (7) since
9) zi=M;'f, - M; Mz

4.1.1. Multi-Level Schur Complement. The motivation behind using Schur com-
plement was the natural decoupling of the interior degrees of freedom within each
element leading to a global system which contained a block diagonal sub-matrix.
This decoupling can be mathematically attributed to the fact that the interior de-
grees of freedom in one element are orthogonal to the interior degrees of freedom
of another simply because these modes are non-overlapping. To take advantage of
this block diagonal sub-matrix we have to construct the Schur complement system

Mgs=M, - M. M) (M)

The effect of constructing each of this system is to orthogonalise the boundary
modes from the interior modes. However, the inverse matrix [M;]"! is typically
full, which means that the boundary modes, within an element, become tightly
coupled. It is this coupling which dictates the bandwidth of the globally assembled
Schur complement system. Nevertheless, an appropriate numbering of the boundary
system will lead to a Schur complement matrix which also contains a sub-matrix
that is block diagonal and so the static condensation technique can be re-applied.
This technique has been more commonly used in the structural mechanics field and
is also known as sub-structuring [15].

To illustrate this ordering we consider the triangular mesh shown in figure 11(a)
using N; = 32 elements. The construction of the global Schur complement M g
requires us to globally number all of the boundary degrees of freedom as indicated by
the open circles and squares. If we order the numbering of the elemental boundary
degrees of freedom so that the vertex and edge modes indicated by the open circles
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FiGureE 12. Triangulisations used in determining the eigen-
spectrum of the Laplacian operator.

are first followed by the vertex and edge modes within each quadrant, indicated by
the open squares, then the resulting Schur complement system of the mass matrix
for a polynomial expansion of p = 6 is shown in figure 11(b). The block diagonal
structure of the matrix is due to the fact that even after constructing the elemental
Schur complement systems the boundary degrees of freedom in each quadrant do
not overlap and so are orthogonal.

We can now construct another Schur complement system to solve for the circle
degrees of freedom and decoupling each quadrant of square degrees of freedom.
This technique can be repeated providing that there is more than one region of
non-overlapping data. The approach is clearly independent of the elemental shape
and may equally well be applied to quadrilateral regions or any hybrid shape in
three-dimensions.

4.1.2. Preconditioners. As mentioned previously, the resolution requirements
for problems of practical interest typically require the use of iterative algorithms.
The convergence of such algorithms depends on the eigen-spectrum of these matrices
as well as the preconditioners used for convergence acceleration.

In the conjugate gradient method we estimate that the number of iterations,
Niter, to invert a matrix M scales with the square root of the condition number,
ie.

Niter X [HQ(M)]1/2.

The L? condition number of a matrix M is defined as ko(M) = |[M|[2||M 1|2,
which for a symmetric matrix is equivalent to the ratio of the largest to the smallest
eigenvalue.
In two-dimensions, for the full discrete Laplacian L the condition number scales
as
K/Q(M) X NelP3,

The required number of iterations can therefore be very high for large problems,
and especially high-order P. However, using static condensation we can consider
the reduced problem consisting of the element boundary contributions by forming
only the Schur complement Mg. For a symmetric positive definite system the
condition number of the Schur complement matrix Mg can be no larger than the
condition number of the complete system M [15].

Experimental results indicating the scaling of k2(Mg) have been obtained in
the domains shown in figure 12. The relationship of the condition number with
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FIGURE 13. Condition number variation of the Schur complement
of the discrete Laplacian operator with respect to the order (left)
and the number of elements (right).
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FIGURE 14. Maximum (left) and minimum (right) eigenvalue of
the Schur complement of the discrete Laplacian operator with re-
spect to the expansion order.

polynomial order P is demonstrated in figure 13(a), and with the number of el-
ements in figure 13(b). The variation of the maximum and minimum eigenvalue
with respect to the expansion order is shown in figure 14. The maximum eigenvalue
is independent of the order P in accordance with the estimates in [3]. Also, the
minimum eigenvalue varies as ~ 1/P which is consistent with the theoretical upper
bound estimate in [3] of log(P)/P. For the range considered, these results also
seem to indicate that the condition number grows at most linearly with the order
P and slower than logarithmically with the number of elements N,,.

To get a better indication of the asymptotic behaviour with the polynomial
order, P, we can consider the case of two elemental regions for the polynomial
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FiGURE 15. Condition number of the Schur complement of the
discrete Laplacian operator for the N.; = 2 element domain plotted
as a function of (a) Plog(P), (b) P and (c) P/log(P).

range 8 < P < 48 as shown in figure 15. In this test case we have imposed Dirichlet
boundary conditions on all boundaries and so when we statically condense the
system we are only left with the interior edge system. In figure 15 we see the
condition number for this problem plotted against the functions (a) P log(P), (b)
P and (c) P/log(P). As can be seen the condition number clearly grows at a slower
rate than Plog(P) but faster than P/log(P) which is consistent with the results of
[4]. Although, not formally proven the asymptotic rate is most likely to scale with
P. To extend this result to many subdomains the upper and lower bounds on the
condition number Plog(P) and P/log(P) should be scaled by a factor of log(P)?
(3]. Therefore, the asymptotic bound on &y for a large P and N, is

Plog(P) < kg < Plog(P)".

However, when the number of elements, V., is not large a more conservative bound
is

P/log(P) < ky < Plog(P).

Since the upper bound is only realized for a large N.; the upper bound in these
estimates is often observed to be very conservative. Furthermore, one would expect
to observe a sharp upper bound of Plog(P)? based on the numerical behaviour
shown in figure 15 for large P. These results may equally well be applied to the
quadrilateral region which have similar edge support.

If the diagonal of the Schur complement is used as preconditioner, then the
same scaling applies but the absolute magnitude of the condition number is ap-
proximately one order of magnitude less compared with the unpreconditioned case.
This is not, however, true for the modal basis constructed in [16] based on the
integrated Legendre polynomials rather than the Ppl*l(x) Jacobi polynomials. The
difference between these two formulations in the quadrilateral case is the presence
of a factor of P that provides the proper scaling and thus the similar growth in the
unpreconditioned and diagonal-preconditioned case. On the other hand, if a block-
diagonal preconditioner is used which is constructed based on blocks of edge-edge
interactions, then the scaling changes substantially. Numerical experiments suggest
a scaling of (log(P))?, in agreement with the estimates reported in [1] for a similar
construction. The condition number also seems to be independent of the number
of elements for N,; > 100, again in agreement with the estimates in [1].
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FIGURE 16. Using the N, = 32 element mesh shown on the left
the condition number of the standard Schur complement and the
Schur complement after one level of decomposition were calculated
and are shown on the right. The color in the left plot indicates the
non-overlapping regions used for the extra level of decomposition.

As mentioned previously it can be shown [15] that for a symmetric positive
definite matrix the maximum and minimum eigenvalue of the Schur complement
are bounded by the maximum and minimum eigenvalue of the original matrix.
Therefore, when using the multi-level Schur complement solver we know that the
condition number of the inner-most Schur complement must be bounded by the
standard Schur complement. This point is illustrated in figure 16 where we con-
sider the condition number of the diagonally preconditioned standard Schur com-
plement as well as the diagonally preconditioned Schur complement after one level
of decomposition of a N.; = 32 elemental domain. The standard Schur complement
contains information from all edges interior to the domain whereas in decomposing
the system by one level all the edges within a shaded region are blocked together
and statically condensed out of the system leaving only the edges along the in-
terfaces between the shaded regions, see section 4.1.1. From the right hand plot
in figure 16 we see that the condition number of the Schur complement after one
level of decomposition is bounded by the condition number of the standard Schur
complement. The effect of the extra level of decomposition is to reduce the slope of
the curve although the condition number would appear still to be asymptotically
growing with P.

The efficiency by which we can invert the Helmholtz matrix depends on the com-
bined spectrum of the Laplacian matrix and the mass matrix. The eigen-spectrum
of the Schur complement of the mass matrix has not been studied theoretically but
numerical experiments with triangular elements suggest a similar dependence as
the Laplacian matrix with respect to the number of elements N,;. However, with
respect to order P its condition number grows much faster. In particular, for no-
preconditioning we observed a growth ko (M) o P°/2; for diagonal-preconditioning
ko(M) o< P'95; and for block-diagonal preconditioning as before we obtained
ka(M) o P!®. These are probably poly-logarithmic terms but we best-fitted
experimental results to obtain these exponents.
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FIGURE 17. Convergence rate of a preconditioned conjugate gra-
dient solver for a Schur complement of the Helmholtz matrix us-
ing the following preconditioners: (nn) vertex-non, edge-non; (dd)
vertex-diagonal, edge-diagonal; (bd) vertex-diagonal, edge-block;
(db) vertex-block, edge-diagonal; (bb) vertex-block, edge-block.
Also shown for comparison is the solution for the full Helmholtz
matrix (full).

In summary, it is possible to apply preconditioning techniques for inverting the
Helmholtz matrix similar to preconditioners for the Laplacian and the mass matrix.
The effect on the convergence rate of a preconditioned conjugate gradient solver for
the Helmholtz equation with constant A = 1 is shown in figure 17, which verifies
the fast convergence for the Schur complement in contrast with the full discrete
Laplacian.

In three dimensions, it is more difficult to establish estimates of the condition
number. Some numerical experiments show that ko(Ms) o (log(P))® without any
preconditioning, but they are inconclusive with respect to the dependence in terms
of the number of elements. In [9] a polylogarithmic bound was found of the form

ko < C(14 log(P))2

which is independent on the number of elements. This estimate is valid for hexa-
hedral elements but a similar bound was obtained in [2] for tetrahedral elements.
The main idea is to use a wire basket preconditioner that is based on a new set of
vertex and edge basis functions of “low energy”. These low energy functions with
highly oscillatory traces on the wire basket decay much faster than the standard
basis functions constructed using barycentric coordinates. An alternative approach
that employs orthogonalisation of each vertex function with respect to functions of
its three faces, and each edge function with respect to functions of its two faces,
has been proposed in [7].
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FIGURE 18. Convergence test for the Helmholtz problem, (VZu —
Au = f; A = 1), using quadrilaterals and triangles, with Dirichlet
boundary conditions. The exact solution is u = sin(mwz)cos(my)

and forcing function f = —(\ + 27%)sin(nz)cos(my).
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FIGURE 19. Convergence test for the Helmholtz problem, (V?u —
Au = f; A = 1), using a triangle and a quadrilateral, with Dirichlet
boundary conditions. The exact solution is u = sin(mwcos(mr?))
and forcing function f = —(A+4ntr2sin(nr?)?)sin(n(cos(rr?))) —
4r?(rricos(rr?) + sin(mr?))cos(mcos(nr?)), where r? = x? + 92

5. Results

We now demonstrate that the method is stable up to high polynomial orders
and works for complicated combinations of all the element types.

In figure 18 we demonstrate convergence to the exact solution with p-refinement
(exponential rate) and h-refinement (algebraic rate) for the Helmholtz equation
with A = 1 for Dirichlet boundary conditions.
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FIGURE 20. Convergence for the Helmholtz problem, (V2u—\u =
f; A = 1), with Dirichlet boundary conditions on a mesh of twenty
six hybrid elements. The exact solution is sin(x)sin(y)sin(z).

In figure 19 we show p—type convergence for a more complicated exact solution.
This example demonstrates that the method is stable to at least P = 64. This is
much higher order than the one used in hp finite element method [16].

In figure 20 we solve the Helmholtz problem on a complicated 3D domain
discretized using all types of elements, i.e. tetrahedra, hexahedra, prisms and
pyramids. Exponential convergence is also verified for a smooth solution.
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FIGURE 21. NexT ar simulations of incompressible flow on the
above domain discretized with N.; = 966 elements (192 quadrilat-
erals and 774 triangles) and 6th order polynomial expansions on
each element. The instantaneous vorticity field is shown on the
right plot. The Reynolds number is approximately 1200.

Finally, in figure 21 we show a solution of the incompressible Navier-Stokes
equations. The algorithm for triangular elements is described in detail in [13] but
here we use a mix of triangles and quadrilateral elements, the former to handle the
complex geometry and the latter to more efficiently fill the computational domain.
The flow computed is start-up from zero initial conditions with uniform inflow at
Reynolds number (based on the vertical projected length) approximately 1200.
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