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1. Introduction

The aim of this paper is to construct a preconditioner for biharmonic problems
using nonconforming plate element on nonnested meshes by additive Schwarz
methods. The success of the methods depends heavily on the existence of
a uniformly,or nearly uniformly, bounded decomposition of a function space
in which the problem is defined, and intergrid transfer operators with certain
stable approximation properties play an important role in the decomposition
(1,2, 4,5, 7,8, 3]. For the case when coarse and fine spaces are all nonconforming,
a natural intergrid operator seems to be one defined by taking averages of the
nodal parameters. We define an intergrid transfer operator for nonconforming
plate elements in this natural way, discuss its stable approximation properties, and
obtain the stable factor (H/h)%/2. It is also shown that the stable factor cannot
be improved. However, to get an optimal preconditioner, we need in general the
stability with a factor C' independent of mesh parameters H and h. Therefore,
it cannot be used for that purpose. To obtain an optimal preconditioner for
biharmonic problems using nonconforming plate elements on nonnested meshes by
additive Schwarz methods, we define an intergrid transfer operator, prove certain
stable approximation properties, construct a uniformly bounded decomposition for
the finite element space, and then get optimal convergence properties with a not
necessarily shape regular subdomain partitioning. Here the fine mesh may not be
quasi-uniform.

2. A sharp estimate

Let © be a bounded polygonal domain in R? with boundary 02. We consider

the following biharmonic Dirichlet problem:
Ou

(1) A2u:finﬂ,u:5ﬁ—00n89.
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The variational form of the problem (1) is : to find u € H3(f2) such that
(2) a(u,v) = (f,v), Yo € HZ(Q),

where

a(u, ’U) = / {AuAv + (1 — 0’)(281211,812’() — 811’11,822’11 — agguﬁllv)}da:,
Q

(f,v) = [ fvdz,o € (0,0.5) is the Poisson ratio .
Q
The unique solvability of the problem (2) for f € L?() follows from the continuity
and coerciveness of the bilinear form in HZ(Q2) and Lax-Milgram theorem.
Let J, be a triangulation of €2, and V}, a nonconforming plate element space.
The corresponding finite element discrete equation for problem (2) is : to find
up, € V, such that

(3) ah(Uh,’Uh) = (f: Uh): Yo € Vha

where

ah(uh, 'Uh) = Z {AuhAvh + (1 —a)(2612uh812vh —811uh(9221)h —322uh811vh}dx.
T€Jn YT

To obtain an optimal preconditioner of problem(3) by additive Schwarz methods,
the intergrid transfer operator with certain stable approximation properties plays
an important role. For the case when coarse and fine spaces are all nonconforming,
a natural intergrid transfer operator seems to be one defined by taking the average
of the values of the nodal parameters. We define an intergrid transfer operator in
this natural way. However, it can be shown that the intergrid transfer operator is
not suitable for obtaining an optimal preconditioner.

We take Morley element as an example. In this section, let Jy and Jp be two
quasi-uniform triangulations of 2 and Vp the associated Morley element spaces.
We assume that Jj, is a refinement of Jy. Note that Vg ¢ V.

The intergrid transfer operator I ;} : Vg — V}, is defined as follows.

For v € Vy, Iﬁ,v € Vj, is defined so that

a) if p is a vertex of Jn, which is also a vertex of Jy or in the interior of T € Jy,
(I%v)(p) = v(p); for other vertices p of J, v may have a jump at p and I%v takes
the averages of v at p;

b) if m is a midpoint of an edge of J, which is in the interior of T € Jy,

h
%ﬁﬂ(m) = g—fl(m); for one of other edge midpoints m associated with Jy, % may

h
have several jumps and Q%ffli)(m) takes the arithmetic average value of g—fl at m.
About the operator I, we have the following sharp estimates.

THEOREM 1. For v € Vy, we have

(4) \Ijv = vlopa < CHR)Y 2ol 1.0,
. H3 1/2
(5) v —v|ipo <C (—h—> [vl2, 1.0,
and
32
(6) Ihvlapa < C (7;) V|2, 1,0

Furthermore, the estimates (5) and (6) are sharp.
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The proof of the theorem can be found in Shi and Xie [6]. For other
nonconforming plate elements, we can get similar results.

To get an optimal preconditioner, we need in general the stability with a factor
C independent of mesh parameters H and h. Therefore, it cannot be used for
obtaining an optimal preconditioner.

3. An intergrid transfer operator for nonconforming plate element on
nonnested meshes

We now define another intergrid transfer operator, discuss its stable
approximation properties, and construct an optimal precondotioner for problem(2)
using nonconforming plate elements on nonnested meshes.

3.1. Stable approximation properties. Let Jy, be a quasi-uniform
triangulation of Q. Jy, will be referred to as the coarse grid. Here H, is the
maximum diameter of this coarse triangulation. Let J, be a triangulation of
that satisfies the minimal angle condition in this section. In general,J} is not a
subdivision of Jy,. We assume that each fine triangle intersects with at most ng
coarse triangles,ng < C,

T h <CH,., and
|Tl < Clkl’ if ]—Cn% 75 ¢7T € Jhak € JHca
where | - | means the area in R?.

Let Vi, be Morley element spaces associated with meshes H., nodal parameters
of which vanish on 0Q2. Note that Vg, ¢ Vj. For the space Vi, ,we take
Wy, = ARH: (2) to be its conforming relative, where Wy, is the Ps Argyris element
space {w € C1(Q) : w|r € P5(T),VT € Ju,,w = 8w = 0 on 9N}. The conforming
interpolation operator Ey_ : Vg, — Wy, is defined as follows(cf. Brenner [1]):

(En.v)(p) = v(p);

(D Epv)(p) = average of (D°v;)(p), o] = 1
D*Ep.v(p) =0,]a| = 2;

OnEp v(m) = d,v(m);

where p is vertex,m is midpoint of sides,v; = v|r, and T; contains p as a vertex.
Ey, : Vi, = W), can be defined similarly. We have [1]

9) v —Euvlr2(ry + Helv = En,vl1.r + H2|En,vlar < CH:|la7, Vo € Vi,
where T' € Jy,, and
(10) ||w - Ehw||L2(.,-) + hT|w — Ehw|1,7 + h%lEhwlng < Chf]whm\?‘w € Wy,

(8)

where 7 € Jy, h, is the diameter of 7.
Define the nodal interpolation operator Iy, : C§(Q2) — V.. as follows:

g v(p) = v(p),
Ol v(m) = Opv(m).

I, : C3(2) — Vi can be defined similarly. Then, it is easy to prove that

(11)
v = Mg, vl p2(ry + Helv — M0l + H2 Mg vlor < CHZ|vlor, Vo € H¥(T),
where T' € Jy,.
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The intergrid transfer operator I }’, : Vi, — V, is defined by I 1’56 =1l - Ey,.
For nested meshes, certain stable approximation properties of the intergrid transfer
operator were discussed in Brenner [1]. However, for nonnested meshes, it can
not be proved in the same way. We have the following theorem, which plays an
important role in our analysis.

THEOREM 2. There exists a constant C > 0,independent of h, H. such that for

S VHC>
(12) I} ul2ng < Clul a0,
(13) lu— Ity ullo.o + Hel Enu — Ity ulino < CHZ |ulz 1, 0,

where [ulf o = ZTEJHc Jul? 7.

PRrOOF. We first prove (12). Let 2 = Ey u. The essential step is to establish
the estimate

(14) Ihoulfeg <C Y. |af3 -kl Vu € Vi, here k € J.
FNk#$,TEJH,

Let 7 = Apipops, and my, mo, mg be the midpoint of the edge p2ps, p3p1, and p1p2
of 7, respectively. If k belongs completely to a single coarse element 7,7 € Jy.,,
then (14) is obviously true. We now prove (14) in the case that k does not belong
completely to arbitrary coarse element 7,7 € Jy,. We know that

(19 Tyl < ©Y(Ona = ar)(mo)?

where %; means the linear interpolation of #. Let psm; be the line segment

connecting points p, and m;. We assume that pom; is cut into | pieces by the

coarse triangles 77*™*, ... 77*™ and u(-) is a polynomial on each piece. By the

assumption made at the beginning of this section, | < C. Therefore, by using the
triangle inequality, we have

(16) |0n (@ —ur)(m1))? < 2/0n(a ~ wr)(p2)|* + 2|0nu(p2) — Onu(m)* = I+ I1.

Let g = u—y, then g(p1) = g(p2) = g(p3) = 0, and there exists £ € P1p2, &2 € P2p3
such that

(17) Oz9(&1) = 0,055559(&2) = 0.

Hence using the triangle inequality and the mean value theorem, we obtain

(18)  (Oipag(p2)® = 18pipa9(p2) = Fprsg(E2)* < C Y |l oo K,
FNk#$,TEJH,

and

(19 1O = Opams9(P2) = Bmmeg(E)F < C D [ulf oo Ik
FNk#p,T€EJH,

From (16), (18)-(19) we have

(20) 1<C Y (il bl

TNk#p,7€JH,
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Similarly,
(21)
l
11 =2|8,u(ps) = Bpu(m1)| < C Y al} o ;o [R,<C > Jaf3 Ikl

m=1 Fk#e,T€JH,

For my, m3,we can get the estimates similar to (16), (20) and (21). Therefore, from
(16),(20) and (21) and their similar estimates for my and m3, we have

(22) w@—a)m)fP<C > |af .kl

FNk#P,TEJH,

HIMQ:

(14) follows from (15) and (22).

For 7 € Jy, ,we denote by 7;,5 = 1,---,[;,all the coarse triangles which share
at least one of the fine triangles that intersects with 7(i.e.,this fine triangle intersects
with both 7 and 7;). [; < C.

For all k; € J,i =1, -, m/,whose intersection with 7 is nonempty, we obtain
from (14) that

3

(23) [Tl e < C Y N0l oo, il Vi € Vi,
j=1
By summing (23) over all k;,i = 1,--- ,m’, and from an elementwise inverse

estimate we have

1

Z |I;l{cu|{i[2 <CZZ|UI2OOTJIk|<CZ'UIQOQT]ZIki'

kNT#¢ =1 j5=1 i=1
(24) L L
< CZ Iﬂlg,oo,rj lTl < CZ lalgnfj :
i=1 i=1

Here we used the fact that,for each 7,the sum of the areas of the fine triangle that
intersects with 7 is less than C|7| because of the assumption h < CH,.

By summing (24) over all 7 in Jy_ and noting that the number of repetitions,for
each 7,in the summation is finite,we have

(25)

k) < Claf3 o-
TEJH, kNF#¢
(12) follows from (25) and (9).
We now turn to the proof of (13). Let k € Jj, be a fine triangle and p one of its
nodes,which implies that w(p) = 0,9, w(m) = 0. Here w =u — I Zu We consider
the integral

w2 = / w?(z)dz < 2 / (w(p) - w(z) — Duw(p).(z - p))’dz

(26)
+ 2/ |Dw(p).(x — p)|*dz = I) + L.
k

Let Zp be the line segment connecting points x and p. We assume Zp is cut into lo
pieces by coarse triangles 7f, - - - ,7'1’; . Using the triangle inequality and the mean
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value theorem,we have

l2

@) h<2 [ () - ule) - Dulphlp—2)’ds <2 Y fold o g it

m=1

where hy, is the diameter of element k. For the three edge midpoints m;(: = 1,2,3)
of k, and by using d,w(m;) = 0 and the arguments similar to (17)-(19) we

l2
(28) I, <21y Z lwlg,oo,'ry’ﬁlﬂkhi'kl'

m=1
It follows from (26)-(28) and an elementwise inverse estimate that

”w“i?(k) <C Z [w|2 0, Tﬂkh |k
FNk#¢,TEVH,

TNk#¢,TEVH,

<C > af3 . htlkl + Cnohtlal3 .
FNk#¢,TEVH,

For 7 € Jy_,from (29) and by the same notation as (23) we have

U1
(30) leolany < €D 1l oo, r, B Il + Claff i, .

i=1
By summing (30) over all k;,¢ = 1,--- ,m,and using the argument similar to (24)
and the fact that 3, ., [k| < C|r| we have

(31)

Yo wliew = Iwll3a, <CZZ|u|2WJh4tk|+CZ!uigkh4

kNF#p,k€Jn i=1 i=1 j=1
ll m’ ll l]
- —12
SO Y Juldoor, Y kil + CR*Y ald,, < CRD Jali .
7=1 =1 j=1 j=1

By summing (31) over 7 in Jy, and noting that the number of repetitions,for each
7,in the summation is finite,we obtain

(32) [wllf2iq) < Ch*al%z ) < Chulhz(q),

and by the similar argument we can get

(33) lwliha < |Bru—Iful} o < CHZ|Enulf o, < CHZJul3 .
Combining (32) and (33) completes the proof of the lemma. d

We now partition ) into nonoverlapping subdomains {2;},such that no 0Q;
cuts through any elements 7,7 € Jy, and Q = U | Q,. Note that we do not assume
that {€;} forms a regular finite element subdivision of 0 ,nor that the diameters of
2; are of the same order. To obtain an overlapping decomposition of €2, we extend
each (2; to a larger subdomain € D §;,which is also assumed not to cut any fine
mesh triangles, such that dist(9, N Q,0Q; N Q) > C§,Vi,for a constant C > 0.
Here 6 > 0 will be referred to as the overlapping size. We assume that there exists
an integer N, independent of the mesh parameters h, H. and é such that any point
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in Q can belong to at most N, subdomains ;. For each 2/,i =1,--- | N,we define
a finite element space

V; = {v € V}; nodal parameters = 0 at 9Q; and outside 2} }.

On the basis of Theorem 2 and (9)-(11), we can prove the next theorem, which
shows that the decomposition V;, = Vo + Vi + --- + Vi exists and is uniformly
bounded when 6§ = O(H,).

THEOREM 3. For any v € Vj,,there exist vo € Vy_,v; € V;,i =1,--- | N, such
that

v=1I} vo+uv +-+on,

and in addition,there exists a constant Cy > 0,independent of the mesh parameters
h,H. and 6 such that

al H H
an, (vo,vo) + ;ah(%‘,vz‘) < CoN. (1 + 325 + —6—40—> ap(v,v),Yv € Vj,.

The proof can be found in Xie [7].
3.2. An Additive Schwarz Method. Define A, : V), — VA 1V, —
Vl(l S ) S N),and AHC : VHC i VHC by

(Apv, w) = ap(v,w),Yv,w € Vp,
(A, w) = ap(v,w),Yv,w € V;,
(Ag,v,w) = ay, (v,w),Yv,w € Vg,

respectively. The operator Q; : Vi, — V;,1 < i < N, is defined by
(Q:v,w) = (v,w),Yv € Vj,w € V;.
The operator P; : V, — V;,1 <i < N,is defined by
ap(Pv,w) = ap(v,w),Yv € Vi, w € V.
The operators I ,{{ °, P,f{ ¢ : Vp — Vy,_ are defined by
(I} v,w) = (v,I,{{“w),VU € Vu,,w € Vp,

and
a(I,'}Cv,w) = ap(v, PHew),Yv € Vi, w € Vy,

respectively.
The two level additive Schwarz preconditioner B : Vj, — V}, is defined by

N
B:=1j AL + ZA;‘Q,«.

i=1

It can be easily seen that the operator P = BA, =1 ,h,n PhH °+ vazl P; is symmetric
positive-definite with respect to an(-,-).

On the basis of Theorem 2 and Theorem 3, we obtain the following theorem
which shows that P is uniformly bounded from both above and bellow when
6 = O(H,).
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THEOREM 4. The following estimate holds:
Aap(u,u) < ap(Pu,u) < Agap(u,u),Vu € Vi,

where o

A2/A < CN, (1+ 6—28 + —676) ,
which is independent of the diameter of subdomains. This allows us to use
subdomains of arbitrary shape.
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