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1. Introduction

This work continues our earlier investigations [2], (3] and [8]. The intention
is to develop efficient numerical solvers to recover the diffusion coefficient, using
observations of the solution u, from the elliptic equation

(1) -V (¢(z)Vu) = f(z) in u=0 on ON.

Our emphasis is on the numerical treatment of discontinuous coefficient and effi-
ciency of the numerical methods. It is well known that such an inverse problem is
illposed. Its numerical solution often suffers from undesirable numerical oscillation
and very slow convergence. When the coefficient is smooth, successful numerical
methods have been developed in [5] [7]. When the coefficient has large jumps,
the numerical problem is much more difficult and some techniques have been pro-
posed in [2] and [3]. See also [9], [4] and [6] for some related numerical results in
identifying some discontinuous coefficients.

The two fundamental tools we use in [2] and [3] are the total variation (TV)
regularization technique and the augmented Lagrangian technique. The TV reg-
ularization allows the coefficient to have large jumps and at the same time it will
discourage the oscillations that normally appear in the computations. The aug-
mented Lagrangian method enforces the equation constraint in an H~! norm and
was studied in detail in [7]. Due to the bilinear structure of the equation constraint,
the augmented Lagrangian reduces the output-least-squares (OLS) minimization to
a system of coupled algebraic equations. How to solve these algebraic equations
is of great importance in speeding up the solution procedure. The contribution
of the present work is to propose an overlapping domain decomposition (DD) and
a multigrid (MG) technique to evaluate the H~! norm and at the same time use
them as a preconditioner for one of the algebraic equations. Numerical tests will
be given to show the speed-up using these techniques.
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2. The augmented Lagrangian method

Let ug be an observation for the solution u and w, be an observation for the
gradient Vu, both may contain random observation errors. Due to the illposedness
of the inverse problem, it is often preferable to use the OLS minimization to recover
g(x). Let us define K = {q| ¢ € L>(R),0 < k1 < q(z) < ky < 0o}, with k; an
ko known a priori, to be the admissible set for the coefficient. Let the mapping
e: K x H}(Q) — H™Y(Q) be e(q,u) = —V - (VqgVu) — f, which is the equation
constraint. We shall use R(¢q) = [, v/|Vq|?> + edz, which approximate the TV-
norm of ¢(z), as the regularization term. In our experiments, the value of € is
always taken in € € [0.001,0.01]. The OLS minimization can be written

o 1 o
(2) B 5”“ — udllF2(0) + §||VU — dy|lf2 () + BR(q)-

For more details on numerical approximations of the TV-norms, we refer to Chan
and Tai [3]. As the inverse problem is illposed, its numerical solution is very
sensitive to the observation errors. When the observation errors are very large,
we must use proper noise removal procedure, see section 4 of [3] for the detailed
algorithms that remove noise from the observations.

The Lagrangian method is often used for minimization problems with equal-
ity constraint. However, the augmented Lagrangian method is better when the
minimization problem is illposed or the Hessian matrix of the cost functional has
very small positive eigenvalues. For minimization (2), the associated augmented
Lagrangian functional is

1 1 .
(3) Lr(q, u, /\) = 5 ||u - ’U/d“%z(g) + §HVU - Ugll%,?(ﬂ) + ﬁR(Q)

T

+§||€(Qau)||?1—1(sz) + (A elg, u))-1(0)
Vge K, ue Hy(Q), N € H '(Q).

The following algorithm is used to find a saddle point for L,(q,u, \):

Algorithm

Step 1 Choose ug € H}(Q), Ao € H~1(Q) and r > 0.

Step 2 Set u® =wu,_1. For k=1,2,..., knaz, do:

Step 2.1 Find ¢* € K such that

(4) a = arg min Lo(g,uf™ May).

Step 2.2 Find uf € H} () such that

(5) ut = arg uerll}?(lﬁ) Lo(gF u, Anzh).

Step 3 Set u, = u,q, = ¢%, and update A\, as A, = Ay—1 + 7€(gn, Un)-

In our simulations, we take ke = 2. The above algorithm has a linear rate of
convergence, see [7]. Second order scheme can also be used to search for a saddle
point, see [7, p.98]. If (¢*,u*, \*) is a saddle point of L,, then (¢*,u*) is a minimizer
of (2). For fixed u¥~! and ¢, the minimization problems of Step 2.1 and Step 2.2 are
equivalent to two algebraic equations. See [3] for the detailed matrix representation
of the corresponding algebraic equations. Problems (4) and (5) are solved by direct
solver in [2] and [3]. The numerical accuracy and the executing time is superior
to earlier literature results. However, we must improve the efficiency and use some
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iterative solvers in order to be able to solve real life large size problems. Without
using iterative solvers, the memory limit will prevent us from doing simulations
for real life three dimensional problems. To use an iterative solver, the rate of
convergence of the iterative solver is of great concern for the efficiency of the whole
algorithm. Moreover, the way that the H~!-norm is evaluated is very critical in
avoiding the solving of large size sparse matrices in the iterative procedure. Let A
denote the Laplace operator, which is a homeomorphism from H}(Q) to H~(Q).
It is true that [|A~! f|| Hi() = [flln-1(0). Thus, we need to invert a sparse matrix

A in order to compute the H !-norm. However, we can obtain the H -norm of f
by inverting smaller size matrices with the domain decomposition methods or using
multigrid type methods to avoid inverting any matrices by using the theorem of
the next section.

3. Space decomposition methods

Recent research reveals that both domain decomposition and multigrid type
methods can be analysed using the frame work of space decomposition and subspace
correction, see Chan and Sharapov [1], Tai and Espedal [11] [12], Tai [10] and Xu
[14]. In this section, we show that we can use them to evaluate the H~'-norm.

We present the results for a general Hilbert space and for general space decom-
position techniques. For a given Hilbert space V', we denote V* as its dual space
and use (-, -) to denote its inner product. Notation (-, -) is used to denote the duality
pairing between V and V*. We consider the case where V' can be decomposed as a
sum of subspaces:

V=WVi+Vo+t. - 4+V,.
Moreover, we assume that there is a constant C; > 0 such that Vv € V, we can find
v; € V; that satisfy:

m m

©) v=Yu, and (vaznv) < Cilply

and there is an Cy > 0 such that

7) ZZ::W)J <CQ<Z||M||V> (valuv) Vv, € Vi and Yo, €V .

THEOREM 1. Assume the decomposed spaces satisfy (6) and (7), then
I f1lv- S

8 <
(®) o =(X

Details of the proof of the above theorem will be given in a forthcoming paper.
The theorem shows that in order to get || f||v+, we just need to use some parallel
processors to compute || f||?. and sum them together. For domain decomposition

%/> <Collfllv- VfeVTCV

methods, we need to invert some smaller size matrices to get || f|
methods, no matrices need to be inverted.

f/ . For multigrid

4. Numerical Tests

Let 2 = [0,1] x [0,1]. For a given f and piecewise smooth g, we compute the
true solution from (1) and get its gradient Vu. Let Ry and Rg be vectors of random
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numbers between [—1/2,1/2]. The observations are generated by

(9) ug = u+ 6Rallugl 2y, Ty = Vu+ Ry @y[|L2 (o) -

We shall use finite element (FE) approximations. The domain Q is first divided
into subdomains §2;,7 = 1,2, - -- , m with diameters of the size H, which will also be
used as the coarse mesh elements. Fach subdomain is refined to form a fine mesh
division for 2 of mesh parameter h (h << H). Each subdomain §2; is extended by a
size § = cH (0 < ¢ < 1) to get overlapping subdomains ¢. Let S&(Q), SZ(02%) and
SA(Q) be the bilinear FE spaces with zero traces on the corresponding boundaries
on the fine mesh, subdomain Q¢ and coarse mesh respectively. It is true that

So() = SgTQ) + > Se ().
=1

For the above decomposition, the constants C; and Cs do not depend on the mesh
parameters h and H, see [14]. Estimate (8) shows that we only need to invert
the matrices associated with the subdomains and the coarse mesh to get the H~!
norms.

In order to use multigrid type techniques, we take {2 as the coarsest mesh and
use rectangular elements. At a given level, we refine each element into four elements
by connecting the midpoints of the edges of the rectangles of a coarser grid. Starting
from 2 and repeating the above procedure J times, we will get J levels of meshes.
Let Vi, k =1,2,---, J be the bilinear FE spaces over the levels and denote {¢F}*,
the interior nodal basses for the k" level FE space, it is easy to see that

J nyg
V=> "V} with V=V, V}=span(e}).
k=1i=1
For the multigrid decomposition, the subspaces V¥ are one dimensional and the
constants C, C5 are independent of the mesh parameters and the number of levels.
No matrix need to be inverted to get the H~! norms.

The bilinear FE spaces introduced above will be used as the approximation
spaces for u and \. Piecewise constant FE functions on the fine mesh are used to
approximate the coefficient g. For a given ¢,u and A, let B(q,u,\) and A(g, A) be
the matrices that satisfy

OL,(q,u,\)/0q = B(q,u,\)q,  OL.(q,u,\)/0u = A(q, \)u.

Let BF = B(¢%,uf~', \,_1) and A¥ = A(¢%,\,_1). Assume that the solution of
(4) is in the interior of K, then (4) and (5) are equivalent to solving

(10) a) Bugy=on, b)) Ay =6,

1

with some known vector o and 8*. Due to the regularization term R(q), the

matrix B¥ depends on ¢¥. A simple linearization procedure is employed to deal
with the nonlinearity, see [3, 13]. If we use conjugate gradient (CG) method to
solve the equations (10), it is not necessary to know the matrices, we just need to
calculate the product of the matrices with given vectors. It is easy to see that the
equations in (10) have symmetric and positive define matrices. We use CG without
preconditioner to solve (10.a) and use a preconditioned CG to solve (10.b). The
stopping criteria for the CG iterations is that the residual has been reduced by a
factor of 107!” or the iteration number has reached 300 (In Table 2 the maximum
iteration number is 5000 in order to see the CPU time usage for bad ). The
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a) True coefficent b) Identified coefficent c) ldentified coefficent

d) Observation for u e) Observation for u_x
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FIGURE 1. The identified coefficients and the observation data.

constants k; and ky used for defining the admissible coefficient set are taken to be
k1 =0, ko = co. The simulations are tested with a sequential machine in program-
ming language C++. Three different methods are used for the preconditioner and
for evaluating the H~! norms:

1. Do LU decomposition (LU-D) for the Laplace operator and use it as the

preconditioner and also for the H~! norms.

2. Use domain decomposition for the preconditioning and also for the H~!

norms.

3. Use multigrid for the preconditioning and also for the H~! norms.

As the tests are done with a sequential machine, the multiplicative version of
the MG and DD methods are used. In Table 1, the CPU time for different iteration
numbers is given. We have used § = 0.00125 and h = /128. Here and later h
and nx denote the mesh size and number of elements used both for the z- and y-
directions, respectively. We observe that the domain decomposition approach and
the multigrid approach are much faster than the LU-decomposition. The multigrid
method is slightly better than the domain decomposition method. The identified
coefficients and the observations are shown in Figure 1. In identifying the coefficient
in subfigure 1.b), we have added 10% of noise and used h = 1/128, 3 = 0.00025,r =
100. At iteration 20, ”qn — q”LZ(Q) = 0.0631 and ||€(qn, un)||L2(Q) = 1.5 X% 10—7. In
subfigure 1.c), the identified coefficient is with noise level § = 100% and we have
used h = 1/128,3 = 0.03125,r = 100. At iteration 20, [lgn — q|/z2(n) = 0.1013 and
||e(qn,un)||L2(Q) =1.1x1075.
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TABLE 1. CPU time (in sec.) versus iteration with g =
0.00125, h = 1/128.

iter = MG DD LU-D
1 31.87 94.04 942.76
3 12127 370.15 3350.17
5 221.68 668.06 5999.82
7 327.14  954.52  8749.58
9  433.74 1244.67 11509.80

11 541.47 1538.97 14227.90
12 653.80 1836.38 16935.80
15 777.22 2137.01 19628.30
17 885.29 2439.20 22309.40
20 1043.60 2887.72 26300.10

TABLE 2. CPU time (in Sec.) versus 3 with h = 1/64, iteration = 20.

8= MG DD LU-D
0.00001 1309.67 3270.60 5009.87
0.00005  544.13 1320.36 2146.69
0.00025 256.89 758.76 1107.20
0.00125 173.72 431.31  747.76
0.00625 172.15 459.70  728.08
0.03125  224.22 566.91  922.79

TABLE 3. CPU time (in Sec.) versus h = 1/nz with § =
0.00125, iteration = 20.

nr = MG DD LU-D
16 6.06 16.83 9.88
32 24.56  60.89 61.71
64 171.76 406.91 720.45
128 1393.95 3859.8 35258.20

The regularization parameter 3 is introduced to prevent numerical oscillations.
If it is chosen to be big, the discontinuity is smeared out and large errors are intro-
duced. If it is chosen to be too small, it can not control the numerical oscillations
and so prevent us from getting accurate numerical solutions. From our numerical
tests, we find that the value of 8 is also of critical importance for the rate of conver-
gence for the CG method. In Table 2, the CPU time in seconds for different values
of 3 is compared for the three different approaches. It is clear that very small or
very large [ increases the computing time.

Table 3 is used to show the CPU time usage for different mesh sizes h. Let us
note that the finest mesh is of size h = 1/128 with a total number of grid points
128 x 128 ~ 2 x 10%. For inverse problems we considered here, there are not many
numerical approaches that can handle such a large number of unknowns. It shall

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



DD AND MULTIGRID FOR INVERSE PROBLEMS 529

also be noted that 100% of observation errors are added to the observations, i.e.
6 =100% in (9), see d) e) f) of Figure 1.
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