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Some Results on Schwarz Methods for a Low—Frequency
Approximation of Time-Dependent Maxwell’s Equations in
Conductive Media

Andrea Toselli

1. Introduction

In this paper, we recall some recent theoretical results on two-level overlapping
Schwarz methods for finite element approximations of Maxwell’s equations and
present some numerical results to compare the performances of different overlapping
Schwarz methods, when varying the number of subregions, the mesh size of the
coarse space and the time step of the implicit finite difference scheme employed.

When studying low-frequency electromagnetic fields in conductive media, the
displacement current term in Maxwell’s equations is generally neglected and a para-
bolic partial differential equation is solved. The electric field u satisfies the equation

Ou oJ
—1 on_ 93 .
(1) curl (p 'curlu) + o e 50 D Q,

where J(x,t) is the current density and p and o are the magnetic permeability
and the electric conductivity of the medium. For their meaning and for a general
discussion of Maxwell’s equations, see [3]. Here 2 is a bounded, three-dimensional
polyhedron, with boundary I' and outside normal n. For a perfect conducting
boundary, the electric field satisfies the essential boundary condition

(2) uxn|pr =0.

For the analysis and solution of Maxwell’s equations suitable Sobolev spaces must
be introduced. The space H(curl,{2), of square integrable vectors, with square
integrable curls, is a Hilbert space with the scalar product

(3) a(u,v) = (curlu,curlv) + (u,v),

where (-,-) denotes the scalar product in L?(2). The subspace of H(curl, Q) of
vectors with vanishing tangential component on T' is denoted by Hy(curl,2). For
the properties of H(curl, Q) and Hy(curl, 2), see [5].

In the following section, we recall the variational problem associated with (1)
and (2), and the finite element spaces employed for its approximation. In Section 3,
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we describe the two-level Schwarz method studied and state some theoretical results
about its convergence properties. Section 4 is devoted to the numerical results.

2. Discrete problem

When an implicit FD scheme is employed and a finite element space V' C
Hy(curl, Q) is introduced, equations (1) and (3) can be approximated by:
Find u € V such that

4) ay(u,v) = (u,v) +n (curlu,curlv) = (f,v), Vv eV,

at each time step; 7 is a positive quantity, proportional to the time step At, and f
depends on the solution at the previous steps, as well as on the right hand side of
(1). See [1] for the finite element approximation of Maxwell’s equations, and [10]
for the time approximation of parabolic problems.

For the finite element approximation, we first consider a shape-regular trian-
gulation 7, of the domain €, consisting of tetrahedra. Here h is the maximum
diameter of 7;,. We employ the Nédélec spaces of the first kind, of degree k > 0,
which were introduced in [8]; see also [5]. Other choices of finite element spaces
are also possible, see [9], as well as triangulations made of hexahedra and prisms,
see [8], [9].

Let V' C Hy(curl, Q) be the Nédélec space of degree k, built on T}, of vectors
with vanishing tangential component on the boundary. We recall that vectors in
V' are not continuous, in general, but that only the continuity of their tangential
component is preserved across the faces of the tetrahedra, as it is physically required
for the electric field. The degrees of freedom associated to this finite element space
involve integrals of the tangential components over the edges and the faces, as well
as moments computed over each tetrahedron. See [8], [9], [5] and the references in
[12] and [7] for further details on Nédélec spaces.

3. Additive two—level method

In order to build a two-level overlapping preconditioner for (4), we have to
introduce an additional coarse triangulation and a decomposition of §2 into over-
lapping subregions. This can be done in a standard way; see [11] as a general
reference for this section.

We suppose that the triangulation 7} is obtained by refining a shape-regular
coarse triangulation Ty, H > h, made of tetrahedra {Qi}ile. Let us consider a
covering of , say {Q2.}/_,, such that each open set £, is the union of tetrahedra

of 75, and contains ;. Define the overlapping parameter 6 by
8 = min{dist(99Q;, Q2;)}.

We suppose that 6 > aH, for a constant oo > 0 (generous overlap), and that
every point P € () belongs to at most N, subregions (finite covering).

The coarse space V} is defined as the Nédélec space over the coarse triangula-
tion Ty, H > h, and the local spaces V; C V, associated to the subregions {2/},
are obtained by setting the degrees of freedom outside 2, to zero. Since the tri-
angulations 7}, and 7y are nested, the coarse space Vi is contained in V; see [6].
The space V' admits the decomposition V' = ZiJ:O Vi.
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Let us now define the following projections for i = 0,--- , J:
(5) T,:V—V,
(6) ay (Tiu,v) = a, (u,v), Vv eV,
where a,(-,-) is defined in (4) and let us introduce the additive Schwarz operator
J
(7) T=YT;:V-—V.
=0

We solve the equation
Tu=g,

with the conjugate gradient method, without any further preconditioner, employing
ay(+,-) as the inner product and a suitable right hand side g; see [4], [11].

Two-level multiplicative schemes can also be designed; see [4],[11]. The error
e, at the n-th step satisfies the equation

(8) enry1=Fe,={I-Ty) - (I -Ty)e,, ¥Yn>0.

Different choices of multiplicative and hybrid operators are also possible and Krylov
subspace methods, such as GMRES, can be employed as accelerators; see [11] for a
more detailed discussion. A hybrid method will be considered in the next section.

The main result concerning the convergence properties of the standard additive
and multiplicative algorithms is contained in the following theorem:

THEOREM 1. If the domain §2 is convex, and the triangulations T, and Ty
shape-reqular and quasiuniform, then the condition number of the additive algorithm
and the norm of the error operator E are bounded uniformly with respect to h, the
number of subregions and n. The bounds increase with the inverse of the relative
overlap H/6 and the finite covering parameter N..

A proof of this theorem can be found in [12], for the case n = 1, and in [7]
for the general case. We remark that the proofs employ the discrete Helmholtz
decomposition of Nédélec spaces and suitable projections onto the spaces of discrete
divergence—free functions; see [5] and [6]. The convexity of the domain Q and the
quasiuniformity of the meshes appear to be necessary for the error bounds of discrete
divergence—free vectors.

4. Numerical results

In this section we present some numerical results to analyze the dependence
of some Schwarz algorithms on the overlap, the number of subdomains and the
time step. We will also show some results for a non-convex domain, for which
the analysis carried out in [12] and [7] is not valid. We consider the Dirichlet
problem (4) and use hexahedral Nédélec elements.

We have tested the following Schwarz algorithms:

(i) The Conjugate gradient method applied to the additive one-level operator

J
Tos1 = Z T:,
=1
where the T; are the projections onto the local subspaces, defined in (5), (6).
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TABLE 1. Estimated condition number and N, (in parenthesis),
versus H/é and the number of subregions: additive one-level algo-
rithm, Q = (0,1)%, n = 1, 16 x 16 x 16-element fine mesh (13,872

unknowns).

2x2x2|4x4x4|8x8x%x8
H/6=38 28.7 (8) - -
H/6=4 14.3 (8) | 40.0 (8) -
H/6=8/3| 10.1 (8) - -
H/6=2 8.62 (8) | 13.5(8) | 46.4 (8)
H/6=4/3| 8.02(8) |27.0(27) -
H/§=1 - 5.19 (27) | 15.5 (27)

TABLE 2. Estimated condition number and N, (in parenthesis),
versus H/6 and the number of subregions: additive two-level algo-
rithm, Q = (0,1)3, n =1, 16 x 16 x 16-element fine mesh (13,872
unknowns).

2x2x2|4x4x4|8x8x%x8
H/6=38 15.7 (8) -
) | 10.3 (8) -

Hi6=4 | 967 (3

H/6=8/3 | 848 (8) - -
Hi6=2 | 8.42(8) | 891 (3) | 9.23 (3)
H/6 =473 | 8.73 (8) | 27.0 (27) -

H/6=1 - 182 (27) | 26.3 (27)

(ii) The Conjugate gradient method applied to the additive two-level operator

J
Tox=To+ Y T,
1=1
where the T the projection onto the coarse space V.
(iii) The GMRES method applied to the non-symmetric two—level hybrid oper-
ator

J
Thy =1 — (I —To) <I—wZTi>,

i=1
where w is a scaling parameter.

Our results have been obtained on a SUN Ultral, using the PETSc 2.0 library;
see [2].

The independence of the condition number on the diameter h of the fine mesh
is observed, when the number of subdomains and the relative overlap §/H are fixed;
the results are not presented here.

We first consider a unit cube 2, with a fixed value of n = 1. Tables 1 and 2
show the estimated condition numbers for algorithms (i) and (ii), as functions of
the relative overlap and the number of subregions; in parenthesis, we also show the
value of N, defined in the previous section. We observe:
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TABLE 3. Number of iterations versus H/§ and the number of
subregions, to reduce the residual error by a factor 107%: additive
two-level algorithm (ii), = (0,1)3, n = 1, 16 x 16 x 16-element
fine mesh (13,872 unknowns).

8 | 64
H/§=8 |26] -
Hi§=4 |24]22
H/5=8/3 23] -

Hjs=2 |21[21
HJ6=4/3]21 |33
Hi6=1 | - |27

TABLE 4. Number of iterations and residual error (in parenthesis),
versus H/é and the number of subregions, to reduce the residual
error of the preconditioned system by a factor 10~9: hybrid two-
level algorithm (iii) with optimal scaling, Q = (0,1)%, n =1, 16 x
16 x 16—element fine mesh (13,872 unknowns).

8 64
H/6=8 |28 (4.5x107%) -

H/6=4 [26(1.6x1073)[26 (9.8 x107°)
H/6=8/3]24 (7.3 x107°) -

H/6=2 [23(1.0x107°)]24 (8.6 x 107°)
H/6=4/3120(28x107°) |50 (1.3 x 1077)
H/6=1 - 20 (4.8 x 1079)

e For both algorithms, the condition number decreases with H/6 decreasing,
when the number of subregions and N, are fixed. In accordance with the
analysis in [7], the condition number increases with N.; the bound of the
largest eigenvalue of the Schwarz operators grows linearly with N..

e For a fixed value of the relative overlap and N,, the condition number grows
rapidly with the number of subregions for the one-level algorithm, while it
grows slowly for the two-level case.

e The two—level algorithm behaves better than the one—level method when the
overlap is small, but seems more sensitive to N,.

For the same domain Q = (0,1)* and the same value of n = 1, Tables 3 and 4
show the number iterations for algorithms (ii) and (iii), as functions of H/§, for the
cases of 8 and 64 subregions. In order to compare the two methods, a reduction by a
factor 107° of the residual error of the unpreconditioned system was chosen for the
CG algorithm in (ii), while a reduction by a factor 10~ of the residual error of the
preconditioned system was considered in (iii). In Table 4, we also show the residual
error of the unpreconditioned system in parenthesis. GMRES was restarted each
30 iterations.

The results show that algorithm (iii) gives a number of iterations that is compa-
rable to the ones of (ii). According to our numerical tests, the optimal value of the
scaling factor w depends on the overlap and the number of subregions. The results
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TABLE 5. Estimated condition number versus H/é and the num-
ber of subregions: additive one-level algorithm, Q = (0,1)* \
[0,1/2]3, 16 x 16 x 16—element fine mesh (12,336 unknowns).

2Xx2x2|4x4%x4|8x8x%x8
H/6=8 31.5 - -
Hi6=4 15.0 41.2 -
H/6=2 8.65 13.6 48.9
H/6=1 - 5.84 18.5

TABLE 6. Estimated condition number versus H/¢ and the num-
ber of subregions: additive two-level algorithm, Q = (0,1)3 \
[0,1/2]*, 7 =1, 16 x 16 x 16—element fine mesh (12, 336 unknowns).

2x2%x2|4x4x4|8x8x%x8
H/6=8 52.2 - -
H/6=4 43.4 17.3 -
H/6=2 36.2 17.1 10.2
H/6=1 - 24.8 27.2

in Table 4 were obtained with optimal scaling. We also ran some tests with a sym-
metrized version of the hybrid algorithm, obtained by adding another smoothing
step on the subdomains, see [11], but the results are not so good as in (iii) and are
not presented here. The full multiplicative preconditioner was not implemented in
the PETSc version that we used.

We have also considered the case = (0,1)3\ [0, 1/2]?, in which £ is not convex
and for which the analysis carried out in [12] and [7] is not valid. Tables 5 and
6 show the estimated condition numbers for algorithms (i) and (ii), as functions
of the relative overlap and the number of subregions; in order to facilitate the
comparison, we have shown the number of subregions and elements corresponding
to the discretization of the whole (0,1)3. We observe:

e All the remarks made for the case Q = (0,1)% are still valid, in general,
except that the one-level algorithm behaves better than the two-level one,
unless the number of subregions is large.

e The one-level algorithm shows a slight increase of the condition number,
compared to the convex case, while a considerable deterioration of the per-
formances of the two-level algorithm is observed, unless the number of sub-
regions is large.

e Theorem 1 seems to be valid for this particular choice of non convex domain,
even if the constants are found to be larger than the ones in the convex case.

Finally, we have tested algorithms (i) and (ii) for different values of . We recall
that 7 is proportional to the time step of the FD scheme employed for the approx-
imation of (1). According to the analysis in [7] the condition number of algorithm
(ii) can be bounded independently of 7. For methods (i) and (ii), Figures 1 and 2
show the estimated condition numbers as functions of 7, for different values of the
overlap and 8 subregions. Figures 3 and 4 show the results for 64 subdomains.
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conton number

FIGURE 1. Estimated condition number versus n (H/é = 8, solid
line; H/é = 4, dashed line; H/6 = 2, dotted line): additive 1-level
algorithm, 2 = (0, 1), 16 x 16 x 16-element fine mesh, 8 subregions.

FIGURE 2. Estimated condition number versus n (H/§ = 8, solid
line; H/6 = 4, dashed line; H/§ = 2, dotted line): additive 2-level
algorithm, Q = (0,1)3, 16 x 16 x 16-element fine mesh, 8 subregions.

For values of n larger than 0.1, the same remarks made for the case n = 1 hold.
But, in practice, for smaller values of 7, the performances of the two-level method
deteriorate and the algorithm becomes inefficient for very small . The coarse space
correction is not effective if n < ¢(8) 62, where ¢(6) is found to be close to one. On
the contrary the condition number of method (i) is found to be decreasing with the
time step and, as 7 tends to zero, tends to N.. For < ¢(6) 62, the latter algorithm
has better performances than the two-level one, or, in other words, for a fixed value
of the time step, the overlap should not be too large or the coarse space correction
will not be effective.
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FIGURE 3. Estimated condition number versus n (H/6 = 4, solid
line; H/6 = 2, dashed line; H/6 = 4/3, dotted line): additive 1-
level algorithm, = (0,1)%, 16 x 16 x 16-element fine mesh, 64
subregions.
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FIGURE 4. Estimated condition number versus n (H/§ = 4, solid
line; H/6 = 2, dashed line; H/6 = 4/3, dotted line): additive 2—
level algorithm, = (0,1)%, 16 x 16 x 16-element fine mesh, 64
subregions.
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