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Two-level Algebraic Multigrid for the Helmholtz Problem

Petr Vanék, Jan Mandel, and Marian Brezina

1. Introduction

An algebraic multigrid method with two levels is applied to the solution of the
Helmholtz equation in a first order least squares formulation, discretized by Q1
finite elements with reduced integration. Smoothed plane waves in a fixed set of
directions are used as coarse level basis functions. The method is used to investigate
numerically the sensitivity of the scattering problem to a change of the shape of
the scatterer.

Multigrid methods for the solution of the Helmholtz equation of scattering are
known in the literature. A common disadvantage of multigrid methods is that the
coarsest level must be fine enough to capture the wave character of the problem, or
the iterations diverge [6, 7, 10]. One way to overcome this limitation is to use coarse
basis functions derived from plane waves [8]. However, manipulating such functions
becomes expensive since the cost does not decrease with the number of variables
on the coarse levels. It should be noted that functions derived from plane waves
can also be used as basis functions for the discretization of the Helmholtz equation
itself; such methods are known under the names of the Microlocal Discretization [5],
Partition of Unity Finite Element Method [1], or the Finite Element Ray Method
[11].

We propose a two-level method with coarse space basis functions defined as
a plane waves within an aggregate of nodes, zero outside the aggregate, and
then smoothed by a Chebyshev type iteration using the original fine level matrix.
This results in a method with good computational complexity and scalability.
This method falls under the abstract framework of black-box two-level iterative
methods based on the concept of smoothed aggregations [16]. The objective of the
smoothing of the coarse basis functions is to reduce their energy [9, 15, 16]. For a
related theoretical analysis of such two-level methods with high order polynomial
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smoothing of coarse basis functions, see [3], where a convergence result uniform
both with respect to coarse and fine level meshsize was proved for second order
eliptic problems discretized on unstructured meshes.

2. Problem Formulation and Discretization

In this section, we describe the first order least squares formulation and the
discretization of the two-dimensional scattering problem on a bounded domain.

Denote by H%v the space of all vector functions with divergence in L2. Let
O C Q be an obstacle in a domain Q C IR? that is sufficiently large with respect to
the size of O. To be more precise, § is assumed large enough to allow the scatteded
field to be almost radial near 0f.

We seek a complex pressure p € H!'(Q \ O) and its (complex) gradient
u € H®(Q\ O) minimizing the convex functional

(1)
F(p,u) = w, / IVp — ull® + ws / div(w) + K2pf? + wy / u-r— ikpl?,
0\0 Q\0 a0

where w;, wy, w3 are positive constants and r € IR? is the normalized radiusvector
of the point x € 09, i.e. r = x/||x||. The pressure p is subject to the Dirichlet
boundary condition on the boundary of the obstacle,

p(x) = —exp(ikd - x/[|d[}), ~ x €90,

where d € R? is the direction of the incident wave. The first two integrals are a
first order least square formulation corresponding to the Helmholtz equation

Ap+ k*p =0,
and the boundary integral enforces the radiation boundary condition

op _ .
= Q.
g kp on 0

Hence, all the integrals in (1) vanish for the minimizer of F' and the solution
of the minimization problem (1) is independent of the weights wy,wq,w3. We
choose the uniform Q1 finite elements for the discretization of the continuous
minimization problem, and minimize the functional over the finite element space.
As the derivatives of the gradient of a Q1-function are not Q1-functions themselves,
the discretization of the integrals in (1) creates an undesirable “artificial viscosity”
resulting in a damping of the numerical solution. In fact, it is easy to see on a
one-dimensional example, that the restriction of a plane wave on the mesh is not
a solution of the discrete problem. To avoid this, the volume integrals have been
discretized by the one point quadrature formula with the node in the middle of each
element. This restores the property that the discrete system allows plane waves as
solutions. Such inezact integration is frequently used to eliminate locking caused by
similar integrals in plate and shell finite elements. Since u = Vp satisfies V xu = 0,
adding the term

(2) / IV x uf?
e

to the functional F in (1), as suggested in [4, 8], does not change the solution and
makes the functional F' coercive in certain cases.
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In the discrete case, adding the integral (2) to F' changes the discrete solution
and may make it more accurate. We have not found an advantage to adding the
integral (2) in our experiments. The results with reduced integration alone were
satisfactory. Also, in the discrete case, the solution is no longer independent of the
weights w1, wo, w3. Based on our computations, we found no significant advantage
to other than unit weights, which are used in all computations reported here.

The discretization described above results in a Hermitian matrix with 3 complex
degrees of freedom per node. Because we wanted to take advantage of an existing
real code, our implementation treated the real and imaginary parts of the solution
as real unknowns, resulting in a real symmetric problem with 6 real degrees of
freedom per node. Further efficiency could be gained by an implementation in the
complex arithmetics.

3. Algebraic Multigrid

In this section, we describe the algebraic method used for solving the discretized
scattering problem. It is a variant of the method introduced in [3, 16]. We will
present the method as a variant of the multiplicative Schwarz method [2, 12], and
write it in terms of matrices.

3.1. The Multiplicative Schwarz Method. Let A be a symmetric, positive
definite n X n matrix, and N;, j = 0,...m, be full rank matrices with n rows.
Consider the following iterative method for the solution of the linear algebraic

system Ax = f:

(3) z — X

(4) z — z+N(NTAN) 'NI'(f-Az), i=1,...,m
(5) z — 2+ No(NJANy) 'NI(f - Az),

(6) z — z+ N(NTAN,)'NI(f - Az), i=m,...,1
(7) Xt g

Since (3)-(7) is a consistent stationary iterative method for the system Ax = f,
it can be written as x't! = x* + N(f — Ax'). We use the operator N, that is,
the output of (3)-(7) with x! = 0, as a preconditioner in the method of conjugate
gradients. The operator N is symmetric and positive definite, since [2, 12]

(8) NA=(I—T)- (I = T,)(I = Mo)(I — L,y -+ (I = ),

where II; is the A-orthogonal projection onto the range of N;.

3.2. Two-level Algebraic Multigrid by Smoothed Aggregation. It
remains to specify the matrices IV;. We first construct the matrix Ny. This matrix
is denoted Ny = P and called the prolongator. The prolongator is constructed
in two steps. In the first step, we construct a tentative prolongator capturing
precisely a selected set of functions (in the same sense as, for example, P1 finite
elements capture linear functions). In the second step, we suppress high-energy
components in the range of the tentative prolongator by smoothing it using a proper
prolongator smoother. The matrices N;, ¢ # 0, are injections that correspond to
overlapping blocks of unknowns. The blocks are derived from the nonzero structure
of the smoothed prolongator. As a prolongator smoother we use a properly chosen
polynomial in the stiffness matrix A. The degree of the prolongator smoother
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determines the smoothness of the coarse space as well as the amount of overlaps of
the blocks in the overlapping Schwarz method.

To construct the prolongator P, we first decompose the set of all nodes, where
an essential boundary condition is not imposed, into a disjoint covering

(9) {I,....n}=J A, AnA;=0fori#;.

i=1
We use a simple greedy algorithm that chooses aggregates of nodes that are
connected via nonzero terms of A, whenever possible, cf. [13, 16].

Let us consider the set of functions { f*}*, we want to be captured by the coarse
space functions. These functions should approximate the kernel of the constrained
problem well (e.g., constants in the case of Poisson equation, 6 rigid body modes
in the case of 3D elasticity). For solving the scattering problem here, our choice of
the set of functions {f*};'*, are the plane waves

falx) = e~ixalial,

where x € IR? is the position and d € IR? is the direction of the plane wave. We
choose a finite subset of plane waves; the numerical experiments in this paper are
performed with a coarse space built from plane waves in the n; = 8 directions
d = (1,0), (-1,0), (0,1), (0,-1), (1,1), (-=1,-1), (=1,1), (1,-1). Since plane
waves are not contained in the fine level space exactly, the vectors {f'}*, are
constructed as grid interpolations of the functions fq and their gradients.

For each function f?, let f* be its discrete representation in the finite element
basis. Each node has 6 degrees of freedom, namely, the real and imaginary parts
of p, 0.p, and 9,p. The decomposition (9) induces a decomposition of the degrees
of freedom into disjoint sets

{1,....nat=JDi, DiND;=0fori#j
i=1

where D; is the set of all degrees of freedom associated with the nodes of A;. We
then construct a tentative prolongator as the block matrix

(10) P = [ﬁlw” 7f)m]

where the j-th row of the block column P; equals to the j-th row of f if j € D,
and is zero otherwise. The prolongator P is then defined by

P = s(A)P,

where s is the polynomial of given degree d such that s(0) = 1 and
maxo<<p [$(A)?A| is minimal, with j an easily computable upper bound on the
spectral radius of A. It is easy to show [14] that p is a shifted and scaled Chebyshev
polynomial, equal to

A A 0 2km
s()\)-<1—;>-~-<l—a>, rk—§<1—cos2n+1>.

This construction of P attempts to minimize the energy of the columns of P.
Indeed, any column of the prolongator P is s(A)p, where p is a column of the
tentative prolongator P, and its squared energy norm is

Is(A)BI% = (s(A)p)" A(s(A)p) = " s*(A) Ap.
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TABLE 1. Model problem for performance experiments

Computational domain: [-2,2] x [-2,2]

Obstacle: [-0.3,0.3] x [-0.3,-0.3]

Dir. of the inc. wave: d=(1,1)

k varying

Mesh: regular 400 x 400 square mesh
Num. of dofs: 964,806

If the columns of P have bounded euclidean norm (which they do here), the
construction above gives an optimal bound on the energy of the columns of P,
uniform in the choice of P. See [3, 14] for more details, and [9] for a more direct
approach to minimizing the energy of the columns of P.

The iteration (5) has now the interpretation of a coarse grid correction, in terms
of multigrid methods. It remains to choose the matrices N; in the pre-smoothing
(4) and post-smoothing (6). Our choice is equivalent to a multiplicative overlapping
Schwarz method. The overlapping blocks are derived from the nonzero structure
of the prolongator P by choosing N; to consist of those columns j of the ng by ny
identity matrix, for which the j-the row of the block column p; from (10) is not
zero. The iterations (4) and (6) are now simply block relaxation with overlapping
blocks, with block i consisting of all variables that may become nonzero in the
range of the prolongator block column p;.

3.3. Parallel Implementation. The smoothing iterations (4) and (6) are
parallelized using a generalization of the well known red-black ordering for Gauss-
Seidel iteration. First, observe that if N/ AN; = 0, then the projections II; and II,
from (8) commute, and so the iteration steps ¢ and j in (4) or (6) are independent
and can be performed concurrently.

The method proceeds as follows. In the setup phase, a coloring of the adjacency
graph of the matrix (N AN;);; is found by a simple greedy algorithm. (Of
course, the graph is constructed by performing symbolic matrix multiplication only.)
Then NI'AN; = 0 for all indices i and j assigned the same color. The smothing
iteration (4) is then reordered so that all iteration steps with the same color are
done concurrently. Then the pre-smoothing (4) becomes

Z—z+ ( > Ni(NiTANi)‘lNiT>(f— Az), k=1,...,n,,
1E€Ck
where n, the number of colors and Ci, is the set of all indices of color k. The post-
smoothing (6) is same except that the colors are processed in the reverse order.

4. Performance Results

All experiments reported in this section have been carried out on a SGI ORIGIN
2000 with 64 R10000 processors and 4GB of memory. As the stopping condition,
we have used

) . 105 .
(APr', Ar')'/? < ——(AP1°, Ar")'/2
cond
where P is the preconditioner, cond is a Qondition number estimate computed from
the conjugate gradient coefficients, and r* is the residual after the i—th iteration. In

order to illustrate the effect of this stopping condition, we provide achieved relative
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TABLE 2. Performance of the method with varying k. H denotes
the side of the aggregates (squares). Mesh 400 x 400 elements.
Number of degrees of freedom 964,806. Number of processors 16.

H/h = 30.
k els./wave | H/wave | cond. | achieved rel. | setup time [s] | iter. time [s]
length length residual CPU/WALL | CPU/WALL
251.327 5 6.0 | 6.565 | 2.447x10°°|  49/64 115/131
125.663 10 3,0 15.63 | 1.670 x 107° 48/63 117/118
83.7758 15 2.0 31.67 | 1.729 x 107° 52/71 169/171
62.8318 | 20 15 | 6070 | L112x10°° 53/73 243/246
50.2654 25 1.2 103.9 | 8.939 x 10~ " 48/64 330/333
41.8879 30 1.0 1709 [ 7271 x 1077 50,65 446/451

TABLE 3. Performance of the method depending on the size H of
the aggregates. Fixed k = 125.6637. Mesh 400 x 400 elements.
Number of degrees of freedom 964,806. Number of processors 8.

H/h | H/wave | cond. | memory | setup [s] iter [s]
(els) | length [MB] | CPU/WALL | CPU/WALL
10 1.0 36.63 1,245 232/248 332/335
15 1.5 26.80 1,088 91/108 210/213
20 2.0 20.98 | 1,077 74/87 169/171
25 2.5 17.18 1,055 75/88 155/155
30 3.0 15.63 1,106 71/86 155/157
35 3.5 13.88 1,140 77/92 144/145
40 4.0 12.48 | 1,204 93/108 155/154
45 4.5 11.06 | 1,237 90/106 136/138
50 50 | 10.32 | 1,298 104/119 140/142

residuals (mesured in Euclidean norm) in Table 2. In all experiments presented
here we used a prolongator smoother of degree 4.

Three different types of experiments were done: testing the method in the case
of varying k, varying the coarse space size, i.e. the size of the aggregates A;, and
parallel scalability. In all experiments, we have used the scattering model problem
described in Table 1.

Due to the regular geometry of our testing problem, we were able to use a system
of square aggregates. The size of the side of those squares is denoted by H.

Our results are summarized in Tables 2 and 3, and graphs in Figures 1
and 2. In all the experiments, the actual iteration history was well characterized
by the condition number of the preconditioned matrix (we observed no spectral
clustering). In other words, the error was being reduced by the factor of about
(Vecond — 1)/(Vcond + 1) per iteration. The runtime condition number estimates
are reported.

We observe that the condition number of the preconditioned problem depends
on H/\j, the ratio of the subdomain size to the wavelength Ay = 2m/k. The
condition number decreases with this ratio increasing (due either to increasing the
frequency or to enlarging the subdomain size). We offer the following heuristic
explanation: In the case of Helmholtz equation, the low-energy functions are waves
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FIGURE 1. Parallel scalability of the iteration phase. k = 125.6637, H = 30h.
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FIGURE 2. Parallel scalability of the method (setup+iter). k = 125.6637, H = 30h.

with wavelength close to the parameter A. For the problem with A\; small compared
to the subdomain size, the direct subdomain solvers (playing the role of a smoother)
are capable of approximating such functions well.

The performance tests have shown that using 8 processors, we gain parallel
speedup of about 4 times, and the effect of adding more processors seems to
be decreasing. We believe that this scalability issue reflects the early stage of
parallelization of the code at the time of writing.
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