http://dx.doi.org/10.1090/conm/218/03054

Contemporary Mathematics
Volume 218, 1998
B 0-8218-0988-1-03054-5

Parallel Computing for Reacting Flows Using
Adaptive Grid Refinement

Robbert L. Verweij, Aris Twerda, and Tim W.J. Peeters

1. Introduction

The paper reports on the parallelisation of the computational code for mod-
elling turbulent combustion in large industrial 3D glass melting furnaces. Domain
decomposition is used to perform the parallelisation. Performance optimisation is
examined, to both speed up the code as well as to improve convergence. Local grid
refinement is discussed using several different refinement criteria.

The numerical simulation of turbulent reacting flows requires advanced models
of turbulence, combustion and radiation in conjunction with sufficiently fine numer-
ical grids to resolve important small scale interactions in the areas of flame front,
high shear and near solid walls. These simulations are very CPU- and memory-
demanding. Currently, many of the numerical simulation have to be performed with
relatively simple models, hampering an accurate prediction. Parallel processing is
regarded nowadays as the promising route by which to achieve desired accuracy
with acceptable turn-around time.

Domain decomposition is very suitable technique to achieve a parallel algo-
rithm. Furthermore, it allows block-structured refinement quite easily. In this
manner the number of grid points can be minimised, giving rise to a very efficient
distribution of grid points over the domain.

2. Physical model

Figure 1 shows a typical furnace geometry, where the preheated air (T' = 1400
K, v =9 m/s) and the gas (T = 300 K, v = 125 m/s) enter the furnace separately.
The turbulence, mainly occurring because of the high gas-inlet velocity, leads to
good turbulent mixing. This mixing is essential for combustion of the initially non-
premixed fuel and oxidiser into products, which exit the furnace at the opposite
side.

The maximum time-averaged temperatures encountered in the furnace are typ-
ically 2200 K, at which temperature most of the heat transfer to the walls is by
radiation.

The implementation involves the solving of the 3D incompressible (variable
density) stationary conservation laws for mass, momentum, energy and species.
The hydrodynamic and caloric equations of state are added to relate the pressure

1991 Mathematics Subject Classification. Primary 65N55; Secondary 65Y05, 76 T05.

©1998 American Mathematical Society

PG

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

PARALLEL COMPUTING FOR REACTING FLOWS 539

Flame

Airinlet /GOs inlet
Flue

gases

FIGURE 1. Artist’s impression of a furnace geometry with flame.

to the density and the enthalpy to the temperature. The equations are averaged
using Favre-averaging. The mean flow equations are closed using the standard
high-Reynolds k — & turbulence model with standard values for all constants. Wall
functions are used to bridge the low-Reynolds region near the walls. The heat
transfer to the walls is not too much influenced by the velocity field in the near-
wall region, justifying this assumption. The conserved-scalar approach is used to
model the combustion. The chemistry is modelled with a constrained-equilibrium
assumption. An assumed shape 8 Probability Density Functions (PDF) is used to
obtain the mean values of the thermochemical quantities. Radiative heat transfer
in the furnace is calculated using the Discrete Transfer Model. A more detailed
description of turbulent combustion modelling for furnaces can be found in [1, 6].

3. Numerical model

The modelled equations are discretised using the Finite Volume Method on
a colocated, Cartesian grid [4]. The SIMPLE-algorithm is applied to couple the
pressure and velocity fields and satisfy mass- and momentum conservation. The
linearised systems are solved using the Sip-algorithm or the GMRES-algorithm. The
convective terms are discretised using central discretisation, as suggested by [4],
but other convective schemes (upwind, tvd) are also available. Full multi-grid [4]
is used to improve the convergence behaviour of the multi-block code.

For the domain decomposition the grid-embedding technique [3] is used. This
means that one global (coarse) grid is defined, and the domains are defined as
subdomains of this coarse grid, where minimal overlap between the blocks is used.
Every subdomain can be refined with respect to the coarse grid, with the restriction
that adjacent blocks can only be equally fine, twice as fine or twice as coarse as
the neighbouring blocks. This is not really a restriction, since the truncation error
over the interface is of the order of the size of the coarser block, so patching a very
fine block to a very coarse block would not lead to better numerical accuracy. A

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

540 ROBBERT L. VERWEL] ET ALL.

IIGRRNN - T]
{If | i |
I i
it =
Il
i e L o
- H !—_ — —1 — i) ,
e e S e e : — -

FIGURE 2. Two-dimensional view of a domain decomposition into
five blocks with three different levels of grid refinement. For clarity
the overlap areas between the blocks have not been drawn.

2D slice of a typical domain decomposition with local grid refinement is shown in
Figure 2.

To couple the domains, one layer of halo-cells (auxiliary control volumes) was
used [7]. The values on the internal boundaries are copied into the halo-cells of the
neighbouring domains. This way of coupling renders the need for explicit boundary
conditions on the internal boundaries superfluous and guarantees that the converged
solution is independent of the block decomposition, if all blocks are equally fine.

The local grid refinement was implemented by computing the fluxes on the fine
grid side of the interfaces only, and then sending them to the coarser grids and
adding them there. This yields a flux conservative scheme over the block-interface.
For the other quantities, tri-linear interpolation and splines are used. This also
uniquely defines the value of the gradients on the interfaces.

4. Parallel implementation

The domain decomposition was used as a basis for parallelisation. Static load
balancing is performed; every domain contains (approximately) the same amount
of grid-points and the amount of work per grid point was assumed to be constant
for all points. All processors were assumed to be equally fast. In combination with
local grid refinement some load-imbalance was accepted to minimise the number of
blocks and optimise the number of grid points needed.

Exactly one domain is computed per processor, so that the (old) sequential
single-block program could easily be used for multi-block computations. The SPMD
(Single Program, Multiple data) programming model was used. Typically 4 to 32
domains were used to perform the calculations.

In this study, PvM and MPI were adopted on clustered workstations and the
machine specific message passing tool SHMEM on the CRAY T3E. Changing from one
message passing interface to another proved easy, since all communication was hid-
den in a few generic subroutines, named for example parsend or parrecv. In domain
decomposition the number and size of messages is relatively small compared to the
computations done. Hence switching from MPI to SHMEM didn’t yield significantly
better results.

5. Results

5.1. Performance optimisation. First the speedup of the code was exam-
ined. The 3D version of the code, called FURNACE is shown in Figure 3 on the left
for two grid-sizes (20 and 50%). On the right the speedup for a 2D version of the

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

PARALLEL COMPUTING FOR REACTING FLOWS 541

16 45
:i w»—--a Fine (initial) 40} ®--—a BIGMIX 65,000 nodes
13 o——e [deal / o——a [deal
12 | ¢+ Coarse (Inita) e 35
11 | === Finc (optimised) - / 0
510 ,/ - g
= 9 e /“ b=l 25
5] ,:// 9]
Q8 (7 220
wv 7 ’f' 73
6 24 15
5
. 10
3 5
2
1 0
123456780910111213141516 0 5 10 15 2 25 30
#PE's #PE’s

FIGURE 3. Speedup for several turbulent combustion codes left:
3D right: 2D

code, called BIGMIX, with more elaborate chemistry [6] is shown. All test-runs
have been performed on a CRAY T3E AC80-128.

Note that FURNACE scales better for finer grids, as is expected. The super-
linear speedup of BIGMIX can be explained by assuming better cache-use, because
of the two dimensionality of the arrays. Triggered by the sensitivity of the code per-
formance on the cache-use, the original code was slightly rewritten, and optimised
to enable better vector-length controlling. Compiler-options were investigated and
it was found out that -03,Unro112,nojump together with the enabling of the CRAY
T3E data-stream buffers significantly improved the singe PE performance as well as
the speedup, since there was less load-imbalance. This is shown in Figure 3 (left)
too.

The effect of load imbalance can also be seen in the weird bend in the speedup
curve in the left figure around 8 and 12 PE’s, where speedup seems to decrease
and then increase again, especially for the coarse grid. This bend been analysed by
plotting the time spent in different parts of FURNACE. It can be seen from Figure
4 that when using more blocks the amount of time spent in updating the internal
boundaries (which requires communication) becomes the bottleneck. This is prob-
ably due to the fact that from if there are more than 8 blocks in the decomposition,
some blocks have more neighbours than others, which implies that some blocks will
updating more boundaries than others. This assumption is asserted in the next
paragraph.

Further time-reduction was obtained by minimising the amount of I/O requests.
I/O is very expensive and still highly sequential on parallel machines (although
recently MPI-2 defines a standard to optimise this, which has not been used here).
In general it was found that if a data-block needs to be read in by all processors,
it is the quickest to let 1 PE read the data and then global scatter it to all other
PE’s.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

542 ROBBERT L. VERWEL] ET Al.

TABLE 1. Load imbalance for complete problem

Time needed (s) sliced decomp. rectangular decomp.
Total program time 2150 1700

Parallel working time 1140 (53%) 1241 (73%)
Total barrier waiting time | 606 (28%) 106 (6%)
Total communication time | 85 (4%) 77 (5%)

TABLE 2. Relative change of some variables with respect to their
finest grid values

Grid size heat flux flue temp. flue Oy conc. flue NO, conc.
16 x 24 x 20 + 17% + 2% + 2% -33%
24 x36x30| + 12% + 3% + 1% -25%
32 x 48 x 40 + 8% + 3% + 1% -12%
32 x 72 x 60 + 0% + 0% + 0% + 0%

In the original code every variable could be read from file independently, causing
much I/O interrupts. In the modified code, all data was available in a single data-
file, and the amount of file checking was minimised. The total amount of I/O time
for both methods is depicted in Figure 4 for a run on 16 PE’s, the total amount
of data to be read from disk is 16 x 5.4Mb (this includes the lookup table for
chemistry) The amount of data written to disk is 16 x 1.4Mb. The differences per
PE are much smaller in the modified code, and the mean time spent in I/O was
brought down from 197.1 seconds to 15.4 seconds.

The assumption that load imbalance was caused by the fact that some blocks
have more neighbours than others was asserted next. 200 iterations were done on a
coarse (16x24x20) grid, used in previous studies [1, 6]. This grid was split into four
blocks in two different configurations, shown in Figure 5. In the left decomposition
all blocks have exactly two neighbours (the rectangular decomposition), in the
right one the middle two blocks have two neighbours (the sliced decomposition),
and the outer blocks one. Every block contains the same amount of points. Both
decompositions lead to exactly the same converged solution, but the timings are
quite different, as shown in Table 1.

The rectangular decomposition yields much better timing results than the sliced
decomposition. This confirms the assumption that in the sliced decomposition, the
two middle blocks have much more communications to do, creating an huge load-
imbalance in that part of the code. This effect becomes smaller if the number
of points per blocks becomes bigger. Note that the total communication time is
approximately equal in both cases, and is small compared to the entire program
time. The smaller parallel working time in the rectangular decomposition is because
of better cache use, we assume. The load imbalance becomes smaller if the number
of points per block become larger, as could be seen in Figure 4.

5.2. Local grid refinement. The block-structured approach allows for local
grid refinement in each block, as was already explained in the previous section.
The need for local grid refinement becomes clear from Table 2, where the relative
change of some variables with respect to the value of the variable on the finest grid
is printed, if the global grid is varied from relatively coarse to very fine.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

PARALLEL COMPUTING FOR REACTING FLOWS 543

250.0 ¢
M M
2000 } 1nn e _TﬂTj
é 150.0 | [
£
- 100.0
50.0
oo Ll e e
1 23456728 910111213141516
Block number
50 r
Building
40 | M Solving
g - Boundary update
g 307 _
g ERENE 11
G
© 20}
5
A~
10
0 : I .
2 4 8 12 16
#blocks used

FIGURE 4. top: Total time spent in I/O for each PE bottom:
Percentage of time spent in different parts of the code for different
number of blocks

Although the temperature and the heat flux are not so much influenced by finer
grids, the predictions for the concentrations show a great grid sensitivity, mainly be-
cause they depend heavily on the mixture fraction concentration prediction, which
also varies considerably.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

RN ROBBERT L. VERWELL BT AL

FIGURE 5. Two block decompositions of the same grid. left: Rect-
angular decomposition right: Sliced decomposition.

Also another, standard, testcase was performed: The laminar lid-driven cavity
at Re = 100. This testcase was also used by [5] to test his dynamic local grid
refinement. Also here grid independent results were only obtained at a 2562 grid,
in agreement with [8], showing the amount of grid points needed without local
refinement.

Statical grid refinement was applied first; the blocks where manually gener-
ated, based on experience and intuition rather than some fundamental refinement
criterion. This did yield satisfactory results, in the sense that first results yielded
reduction of grid points from 38 % for the entire combustion computations [1] to
80 % for the cavity.

Next, dynamical grid refinement was implemented. Some error estimator should
provide information about the refinement. In literature, the Richardson extrapo-
lation is often used as criterion for refinement. However, for combustion problems,
where geometry and physics are complex, the coarsest reliable mesh contains so
many grid points that a uniform refinement, just to estimate the error, cannot
be afforded. Muzaferia [5] developed a method, similar to Richardson extrapola-
tion, which is based on the difference of higher- and lower order approximation
of the fluxes to approximate the truncation error. Apart from this method, a
more physical criterion was build in, to reflect our believe that in complex flows
steep gradients of relevant quantities also mark regions which should be refined
[2]. Hence the gradient of an ’'interesting quantity’ is used as an error indication.
In the furnace-simulation another interesting quantity like temperature or density
could be used. However, in most flows it is not the gradient, but the curvature (the
second derivative) which yields the areas of high shear. These three criteria have
been implemented and tested on several flows.

To test the different criteria the laminar lid-driven cavity was computed, to
compare the results to [5], and since this problem converges very quickly at low
Reynolds numbers. Grid independent results were only obtained at a 2562 grid,
in agreement with [8], showing the amount of grid points that are needed without
local refinement. The results are in excellent agreement with those of [5] and [8].
However, switching to other criteria gave different results. Figure 6 shows the

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

PARALLEL COMPUTING FOR REACTING FLOWS 545

BSOS
g
N
7
7
s 77
/7
et) S I A
a b
C d

FIGURE 6. Grids, obtained with different local refinement criteria
a Vectorplot of field b Maximum curvature ¢ Method of [5] and
present method d Maximum velocity-gradient criterion

different grid refinements after 2 levels of refinement starting with a uniform 82
grid, and allowing 4 blocks in both directions.

The results for refinement criterion ¢ (the Muzaferia method) are in excellent
agreement with those of [5] and [8]. All three criteria yield plausible refinement
regions at first view and comparable minimum values for the streamlines. More
testcases need to be considered to determine which criterion yields the most ac-
curate results by comparing them to the ’true’ solution, ie. the grid independent
solution.

A backdraw of the block-structured refinement is that it leads to severe load
imbalance, as shown in Table 3. This could be overcome by using a different way
of defining the new domain decomposition. Currently the decomposition is based
on a minimal number of blocks. Other options might be to use many very small
blocks (although this will probably influence the convergence behaviour) or to run
several blocks on 1 PE, which is currently not possible.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

546 ROBBERT L. VERWEL] E'T AL

TABLE 3. Load imbalance due to local grid refinement.

grid points
Criterion | # blocks Max Min Total

Muzaferia 6 128 4 220
Gradient 7 256 4 292
Curvature 7 128 8 376

6. Conclusions

Load imbalance is a underestimated problem in most CFD applications. Par-
allelisation by domain decomposition is a straightforward and efficient way to par-
allelise combustion codes. When combined with multigrid, convergence becomes
independent of the number of blocks used. Good tuning of a program significantly
improves the performance on cache-based machines like the CRAY T3E.

Dynamical grid refinement yields significant reduction of grid points with the
same accuracy. This is needed since tests showed the need of huge grids for realistic
applications. Different criteria can be applied to determine the refinement, yielding
different regions of refinement. The choice for the 'best’ criterion is not obvious
yet, and might even depend on the application.

References

1. G.P. Boerstoel, Modelling of gas-fired furnaces, Ph.D. thesis, TU Delft, may 1997.

2. W.L. Chen, F.S. Lien, and M.A. Leschziner, Local mesh refinement within a multi-block struc-
tured grid scheme for general flows, Comp. Meth. Appl. Mech. Eng. 144 (1997), no. 3, 327-327.

3. P. Coelho, J.C.F. Pereira, and M.G. Carvalho, Calculation of laminar recirculating flows using
a local non-staggered grid refinement system., Int. J. Num. Meth. F1. 12 (1991), 535-557.

4. J.H. Ferziger and M Peri¢, Computational methods for fluid dynamics, Springer-Verlag, Berlin,
1996.

5. S. Muzaferia and D. Gosman, An adaptive finite-volume discretisation technique for unstruc-
tured grids, Tech. Report Ms. No. G0353, Dept. of Mech. Eng., Imperial College of Science,
Technology and Medicine, 1997.

6. T.W.J. Peeters, Numerical modeling of turbulent natural-gas diffusion flames., Ph.D. thesis,
TU Delft, September 1995.

7. M. Perié, M. Schifer, and E. Schreck, Computation of fluid flow with a parallel multigrid
solver., Parallel Computational Fluid Dynamics 1991, Elsevier Science Publishers. B.V.; 1992,
pp. 297-312.

8. M.C. Thompson and J.H. Ferziger, An adaptive multigrid technique for the incompressible
navier Stokes equations, Journ. Comp. Phys. 82 (1989), 94-121.

DEPARTMENT OF APPLIED PHYSICS, DELFT UNIVERSITY OF TECHNOLOGY, LORENTZWEG 1,
2628 CJ DELFT, THE NETHERLANDS
E-mail address: R.Verweij@tn.tudelft.nl

DEPARTMENT OF APPLIED PHYsICS, DELFT UNIVERSITY OF TECHNOLOGY, LORENTZWEG 1,
2628 CJ DELFT, THE NETHERLANDS

E-mail address: A.Twerda@tn.tudelft.nl

DEPARTMENT OF APPLIED PHYSICS, DELFT UNIVERSITY OF TECHNOLOGY, LORENTZWEG 1,

2628 CJ DELFT, THE NETHERLANDS
E-mail address: T.W.J.Peeters@tn.tudelft.nl

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

