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1. Introduction

In this paper, we introduce and analyze a special mortar finite element method.
We restrict ourselves to the case of two disjoint subdomains, and use Raviart-
Thomas finite elements in one subdomain and conforming finite elements in the
other. In particular, this might be interesting for the coupling of different models
and materials. Because of the different role of Dirichlet and Neumann boundary
conditions a variational formulation without a Lagrange multiplier can be presented.
It can be shown that no matching conditions for the discrete finite element spaces
are necessary at the interface. Using static condensation, a coupling of conforming
finite elements and enriched nonconforming Crouzeix-Raviart elements satisfying
Dirichlet boundary conditions at the interface is obtained. Then the Dirichlet
problem is extended to a variational problem on the whole nonconforming ansatz
space. In this step a piecewise constant Lagrange multiplier comes into play. By
eliminating the local cubic bubble functions, it can be shown that this is equiva-
lent to a standard mortar coupling between conforming and Crouzeix-Raviart finite
elements. Here the Lagrange multiplier lives on the side of the Crouzeix-Raviart
elements. And in contrast to the standard mortar P1/P1 coupling the discrete
ansatz space for the Lagrange multiplier consists of piecewise constant functions
instead of continuous piecewise linear functions. We note that the piecewise con-
stant Lagrange multiplier represents an approximation of the Neumann boundary
condition at the interface. Finally, we present some numerical results and sketch the
ideas of the algorithm. The arising saddle point problems is be solved by multigrid
techniques with transforming smoothers.

The mortar methods have been introduced recently and a lot of work in this
field has been done during the last few years; cf., e.g., [1, 4, 5, 14, 15]. For the
construction of efficient iterative solvers we refer to [2, 3, 20, 21]. The concepts
of a posteriori error estimators and adaptive refinement techniques have also been
generalized to mortar methods on nonmatching grids; see e.g. [13, 22, 25, 24].
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Originally introduced for the coupling of spectral element methods and finite ele-
ments, this method has thus now been extended to a variety of special situations
6, 7, 11, 12, 26].

2. The continuous problem

We consider the following elliptic boundary value problem

Lu:= —div(aVu) +bu = f inQ,
u = 0 onI:=0900

(1)

where  is a bounded, polygonal domain in IR* and f € L*(2). Furthermore, we
assume a = (aij)%j:l to be a symmetric, uniformly positive definite matrix-valued
function with a;; € L>(Q2), 1 < 4,j <2, and 0 < b € L>®(Q). The domain Q
is decomposed into two nonoverlapping polyhedral subdomains Q; U Qs, and we
assume that meas(922 N IN) # 0. On Q; we introduce a mixed formulation of
the elliptic boundary value problem (1) with a Dirichlet boundary condition on
I':= 002 N0y, whereas on 5 we use the standard variational formulation with
a Neumann boundary condition on I'. We denote by n the outer unit normal of
Q. The Dirichlet boundary condition on I' will be given by the weak solution
uy in 0y and the Neumann boundary condition by the flux j; in ©;. Then, the
ansatz space for the solution (ji,u;) in § is given by H(div;Q;) x L?(Q) and
by Hi.p,(902) :== {v € H' ()] v|r, = 0}, where I'y := 92N 09, for the solution
ug in 9. We recall that no boundary condition on I' has to be imposed on the
ansatz spaces. In contrast to the standard case, Neumann boundary conditions
are essential boundary conditions for the mixed formulation, i.e. they have to be
enforced in the construction of the ansatz spaces. The coupling of the mixed and
standard formulations leads to the following saddle point problem:

Find (i, u,us) € H(div; Q) x L3()) x H&:,,_Z(Qg) such that

ai(ji,q1) +b(qr,u) —d(qr,u2) = 0, qi € H(diV§Ql)1
(2) b, vi) = clur,vr) = —(fiv1)o0,, v €L* (),
—d(ji,v2) —ag(uz,v2) = —(f,v2)o0, v2€ Hyp,(Q).
Here the bilinear forms a;(+,-), 1 <1i <2, b(-,-), ¢(+,-) and d(-,) are given by
as(wy,vy) = fm (aVvy Vwy + bug wo) dx, vy, woy € H(],;I,Z(Qg),
ai(p1,qi) = fgzl a 'py - qdz, Pi, Qi € H(div; ),
blai,v1) = fgzl divq; vy dr, v1 € L*(), q) € H(div; Qy),
c(wy,vy) = ];21 bw, v, dz, vy, wy € L*(Qy),
d(qi,v2) = (qin,v), qi € H(div; ), v € Hip, (),

and (-,-), stands for the duality pairing of H~'/?(T') and H'/2(I'). The kernel of
the operator B : H(div; Q) x Hjp () — L*(€)), which is associated with the
linear form b(-,v;) is KerB := {(qu,v2) € H(div; Q) x Hj (Q)] divg = 0}. On
H(div; Q) x H} - (), we introduce the nonsymmetric bilinear form a(o,7) :=
as(wo,vy) + d(p1,ve) + a1 (pr,a1) — d(qy,ws) where o := (qy,v2), T := (pP1,w2),
and the norm || | is given by o[ := [v2(]2.0, + lla1 3,0, Taking the continuity
of the bilinear forms, the Babuska-Brezzi condition, and the coercivity of a(-,-) on
KerB, a(o,0) > allo||?, o € KerB, into account, we obtain unique solvability of
the saddle point problem (2); see e.g. [19].
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3. Discretization and A Priori Estimates

We restrict ourselves to the case that simplicial triangulations 7, and 7j,
are given on both subdomains Q; and 2;. However, our results can be easily
extended to more general situations including polar grids. The sets of edges of
the meshes are denoted by &, and &,,. We use the Raviart-Thomas space of
order k1, RTy, (Q1;7r,) C H(div;Q;), k1 > 0, for the approximation of the flux
j1 in ©Qy, the space of piecewise polynomials of order ki, Wi, (Q1;75,) 1= {v €
L*(Q1)| v|r € Py, (T), T € Ty, } for the approximation of the primal variable u; in
1, and conforming Py, finite elements Sk, (Q; 7p,) C H&Fz(Qz) in Q9. Associated
with this discretization is the following discrete saddle point problem:

Find (jn,, un,, un,) € BTk, (13 Th,) X Wi, (13T, ) X Sk, (Q2; Ty, ) such that

(3)
al(jh17qh) + b(qhaufn) - d(Qh,Uhg) - 0, qn € RTk1 (Ql;ﬁn)a
b(n,swn)  — c(un,, wp) = —(f,wn)o,, wh € Wi, (S5 Ty, ),
—d(jr,,vn) — a2(Unyyvh) = (fLUh)0:0s,  Un € Sk, (25 Thy)-

It can be easily seen that the discrete Babuska-Brezzi condition is satisfied with
a constant independent of the refinement level. In addition, the kernel of the
discrete operator By, is a subspace of KerB. Therefore, an upper bound for the
discretization error is given by the best approximation, and we obtain the well
known a priori estimate, see e.g. [19],

Hj - jhl H?iiv;Ql + ”U — Uh, H(Q);Ql + “u - uhz“%;i)g

2(k1+1 . 2k
<C (Rl a1, i, + 17, ri0) + B3 el 0, )

if the problem has a regular enough solution. In fact, the constant C' is independent
of the ratio of h; and ho and there is no matching condition for the triangulations
71, and Ty, at the interface required.

4. An Equivalent Nonconforming Formulation

It is well known that mixed finite element techniques are equivalent to noncon-
forming ones [8]. Introducing interelement Lagrange multipliers, the flux variable as
well as the primal variable can be evaluated locally and the resulting Schur comple-
ment system is the same as for the positive definite variational problem associated
with a nonstandard nonconforming Crouzeix-Raviart discretization [19]. In addi-
tion, the mixed finite element solution can be obtained by a local postprocessing
from these Crouzeix-Raviart finite element solution.

We now restrict ourselves to the lowest order Raviart-Thomas ansatz space
(k1 = 0). To obtain the equivalence, we consider the enriched Crouzeix-Raviart
space NC(Q; Tr, ) := CR(Q; Ty, )+B3(1; Tn,, ) where CR(Qy; Ty, ) is the Crouzeix-
Raviart space of piecewise linear functions which are continuous at the midpoints
of the triangulation 7, and equal to zero at the midpoints of any boundary edge
e € &, NON. Bs(Q;7y,) is the space of piecewise cubic bubble functions which
vanish on the boundary of the elements. Then, we can obtain equivalence between
the saddle point problem

(5) al(jhlaqh) + b(qhauhl) = d(qhauhz)a qh € RTO(QI77711)
b(Gnyswn) — c(un,wn) = =(f,wn)o.0,, wp € Wo(Qu1;Th,)
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and the positive definite problem: Find ¥;,, € NC%(Q; 7, ) such that
(6) ane(Wny,vn) = (£, Mo¥n)o,,  ¥n € NC'(Qy;Th,).

Here, aNC(cbh, ’l/)h) = Z'I'ET;LI f’l' er (ani)h)th + bHO¢h H(ﬂj}h d.’I,', and H() stands

for the L%-projection onto Wy(Q;7,,). P, 1 is the weighted L2-projection, with

weight a1, onto the three dimensional local Raviart-Thomas space of lowest order,

and NCY(Q1;7,) := {tbn € NC(QU:Tp,)| [ ¥p,do = [ gdo, e € &, NT}.
Using the equivalence of (5) and (6) in (3), we get:

Find (¥, up,) € NC¥2(;7Ty,) x Sk, (Q; Tp,) such that

(7)
ane(Why s ¥n) = (. Xo¥n)o,, ¥ € NC°(Q;Tn,),
az(Un,,vn) + d(Pp-1(aVVy,),vn) = (f,vn)0.0.s U € Sk, (25 Th,).

Note that the ansatz space on §; depends on the solution in Q5.

For the numerical solution, we transfer (7) into a saddle point problem where
no boundary condition has to be imposed on the ansatz spaces at the interface.
It can be shown that the Dirichlet problem (6) can be extended to a variational
problem on the whole space NC(21;75,). In fact, we obtain

(8)  anc(Why,¥n) = d(Py-1(aV¥y ), ¥) = (f, Hovn)o0,,  ¥n € NC(Q15Tn,).

Let M(T;&,) = {pu € L*(T)| ule € Py(e), e € Ex, NT} be the space of piecewise
constant Lagrange multipliers associated with the 1D triangulation of I inherited
from 7Tj,. Then, the condition ¥, € NC"2(;;7},) is nothing else than ¥, €
NC(Q1;7p,) and

(9) /p,(\I/hl - uhz) do =0, uwe M(F;ghl).
r
THEOREM 1. Let (¥, ,up,) € NC"2(Qy; T, ) X Sk,(Q2;Th,) be the solution
of (7). Then, upy := (Vpy,up,) and Ay := P,-1(aVVy,)|r is the unique so-

lution of the following saddle point problem: Find (upr,Ap) € (NC(Q;Th,) X
Sk, (23 Thy)) x M(T; €, ) such that

G:(U]\[,"U) - d(/\f\fvv) = f(U), vE NC(QDIII’H) X SkQ(QQ;IZ;LQ)7
d(/‘l’v uﬂ/[) = 07 IS M(F7 ghl )

Here the bilinear and linear forms are given by:
a(w,v) 1= ag(w,v) + ayc(w,v), v, w € NC(Q;Th,) X Sky(Q2; Thy),

d(p,v) = [ vl —vle,)do, € M(T;E,),
f(’l)) = (fv U)O;Qz + (fv HOU)O;SZI .

Taking (8) and (9) into account, the assertion is an easy consequence of (7).

Theorem 1 states the equivalence of (3) and (10) in the case k; = 0 with ji, =
P,-1(aVupla,), up, = Hounr|o, and up, = uarrlq,. In fact, (10) is a mortar finite
element coupling between the conforming and nonconforming ansatz spaces. The
Lagrange multiplier A\y; = jp, 0| is associated with the side of the nonconforming
discretization, and it gives an approximation of the Neumann boundary condition
on the interface T'.

(10)

REMARK 2. For the numerical solution, we will eliminate locally the cubic
bubble functions in (10). In particular, for the special case b = 0 and the diffusion
coefficient a is piecewise constant, we obtain the standard variational problem for
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Crouzeix-Raviart elements where the right hand side f is replaced by Ilpf. Then,
the nonconforming solution Wy, is given by

3
5 .
Uh, |7 = un, 7 + - ;hﬁi Hoflr(MAeAs), T €Ty,

where \;, 1 < ¢ < 3 are the barycentric coordinates, and h., is the length of the
edge e; C 0T, 1 <1 < 3. Here, up, stands for the Crouzeix-Raviart part of the
mortar finite element solution of (10) restricted on (CR(21; 7Th, ) X Sk, (Q22; Th,)) ¥
M(Fa ghl )

5. Numerical algorithm

The numerical approximation of (2) is based on the equivalence between mixed
and nonconforming finite elements. Thus, we use the variational problem given
in Theorem 1, where additional Lagrange multipliers at the interface are required.
We recall that the cubic bubble functions in the saddle point problem (10) can be
locally eliminated. Thus, we obtain finally a reduced saddle point problem defined
on (CR(Ql,%l) X SkQ(QQ;ﬂz)) X M(F;ghl).

The construction of efficient iterative solvers for this type of saddle point prob-
lems has often been based on domain decomposition ideas; see e. g. [2, 3, 21].
This approach involves a preconditioner for the exact Schur complement. Here, we
apply standard multigrid methods with transforming smoothers. The analysis of
transforming smoothers for mortar finite elements is similar to the analysis for the
Stokes problem given in [16, 23]. The technical details for the mortar case will be
presented in a forthcoming paper.

In contrast to the Stokes problem, the Schur complement for mortar elements is
of smaller dimension. It is associated with the one dimensional interface. Thus the
Schur complement of the constructed smoother can be assembled exactly without
loosing the optimal complexity of the algorithm. In addition, the condition number
of the Schur complement of the smoother is bounded independent of the meshsize.
And our numerical results indicate that optimal order convergence also can be
obtained with an approximate Schur complement.

We present two numerical examples implemented using the software toolbox
UG [9, 10] and its finite element library. Two different model problems are
considered. We consider —div (aVu) = 1 on (0;2) x (0;1) with homogeneous
Dirichlet boundary conditions and a discontinuous coefficient a. On subdomain
Qy := (0;1) x (0;1), a is equal to 1, and on subdomain Q; := (1;2) x (0;1), a is
equal to 0.001. This example shows the effect of nonmatching grids with different
stepsizes and a piecewise constant discontinuous diffusion coefficient. In addition,
the triangulation on o is slightly distorted. Whereas the second example is a
simple model for a rotating geometry with two circles which can occur for time
dependent problems. Here, we solve —Awu = sin(x) + exp(y) with homogeneous
Dirichlet boundary conditions on the unit circle, and €, is the interior circle (see
Figure 1).

To apply multigrid algorithms to mortar finite elements, we consider a hierarchy
Xo, X1, X2, ..., X}, of finite element spaces, where

Xl = CR(Ql,'Th(lz)) X 51(92,7;1"(21)) X M(F;gh(ln)
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FiGure 1. Triangulation for example 1 (left) and example 2 (right)

and h(llvl) = 2h(]l), hglvl) = th(zl). Note, that the finite element spaces are nonnested
in the first component.
The fine grid problem is of the form

Ar By
(11) Kyzk = fr, Ky = ( Bl;: Ok ) )

where the matrix Ay corresponds to the bilinear form a of Theorem 1, and the
matrix By describes the mortar finite element coupling corresponding to the bilinear
form d. Starting with a vector 2, the multigrid iteration for the solution of (11)
consists of preconditioning steps

2 =z 4+ My(dy)  with  d} = fi — Ky},

where the multigrid corrections ¢}, = Mj(d},) are defined recursively. On the coarser
levels, [ = 0,... ,k—1, we need the stiffness matrix K; and the restricted defect d;.
Appropriate grid transfer and smoothing matrices are required:

The prolongation matrix P, corresponding to the grid transfer V,_; — V;
can be constructed as a block diagonal matrix for the three ansatz spaces. On
S1(Q9, Ty, ) we choose piecewise linear interpolation. In case of problem 2, we re-
place the piecewise linear elements on {25 by piecewise bilinear elements, and use the
bilinear interpolation operator. On C R(2y, 7y, ), we use the averaged interpolation
introduced by Brenner [18], and for M(T; &}, ) a piecewise constant interpolation.
The restriction matrix is the transposed operator R = P/

For the smoothing process of the correction vector

(12) et = ot Ky - Kael),

we consider a smoothing matrix of the following form

i A BIN_ (Ao 1 A 'Bf
b B 0 B, -5 0 1 ’

where A; := (diag(A;) — lower(A4,))diag(A;)~ ' (diag(A;) — upper(4;)) is the sym-
metric Gauf-Seidel decomposition of A;. The construction of the approximated
Schur complement S; is motivated by the following Lemma. In case of the Stokes
problem, it is given in [16], (Lemma 3.2).

LeMMA 3. If S;:= B, A;' B, then the iteration (12) satisfies the smoothing
property
, 4|
K _m < U
It )l < el gy

where c? 1s the start iterate and ¢ := K l_ldl denotes the exact correction for the
given defect d; on level [.
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TABLE 1. Asymptotic convergence rates (average over a defect
reduction of 107!V)

Example 1 Example 2
number of elements number of elements
Q Qo conv. rate 0 Qo conv. rate
2048 32 0.24 1024 1024 0.22
8192 128 0.23 4096 4096 0.22
32768 512 0.19 16384 16384 0.21
131072 2048 0.21 65536 65536 0.19

For H?-regular domains, a L?-estimate can be derived and similar to [17] the
approximation property can be obtained. This proves W-cycle convergence for the
multigrid method. Note, that due to the nonconforming part in the discretization
the Galerkin property does not hold (K;_; # R;K;P,) and standard methods for
the proof of V-cycle convergence fail.

For our numerical experiments, the Schur complement B; A;' B} of the
smoother K is replaced by the damped symmetric GauB-Seidel decomposition of
the approximate Schur complement

S; = B; diag(A;))"'B/.
Now, de can define the multigrid V-cycle ¢; = My (d;).
For =0,
set Cy = K()_ld().
For | > 0,
set ¢ =0,
define ¢/, ...,c/" by the smoothing iteration (12),
restrict the defect dj_; = R(d; — K;¢)°),

1
apply the coarse grid correction ¢/ = ¢/ + PM; 1 (d;_1),

. 1 1
and post smoothing steps ¢,°"", ..., /o1
set ¢, = cjo 1

In the computations, we use vy = v; = 2.

The convergence rates are given in Table 1. In both cases robust results and
asymptotic convergence rates independent of the refinement level are obtained.
Multigrid V-cycles with transforming smoothers are efficient iterative solvers for
saddle point problems arising from mortar finite element discretizations.
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