http://dx.doi.org/10.1090/conm/218/03030

Contemporary Mathematics
Volume 218, 1998
B 0-8218-0988-1-03030-2

A Nonoverlapping Subdomain Algorithm with Lagrange
Multipliers and its Object Oriented Implementation for
Interface Problems

Daoqi Yang

1. Introduction

A parallel nonoverlapping subdomain Schwarz alternating algorithm with La-
grange multipliers and interface relaxation is proposed for linear elliptic interface
problems with discontinuities in the solution, its derivatives, and the coefficients.
New features of the algorithm include that Lagrange multipliers are introduced on
the interface and that it is used to solve equations with discontinuous solution.
These equations have important applications to alloy solidification problems [1]
and immiscible flow of fluids with different densities and viscosities and surface
tension. They do not fit into the Schwarz preconditioning and Schur complement
frameworks since the solution is not in H'(f2), but is piecewise in H'(Q2), where
Q) is the physical domain on which the differential equations are defined. An ex-
pression for the optimal interface relaxation parameters is also given. Numerical
experiments are conducted for a piecewise linear triangular finite element discretiza-
tion in object oriented paradigm using C++. In this implementation, the class for
subdomain solvers inherits from the class for grid triangulation and contains type
bound procedures for forming stiffness matrices and solving linear systems. From
software engineering point of view, features like encapsulation, inheritance, poly-
morphism and dynamic binding, make such domain decomposition algorithms an
ideal application area of object oriented programming.

The organization of this work is as follows. In Section 2, the domain decom-
position method is described for general elliptic interface problems. In Section 3,
a finite element approximation with Lagrange multipliers is considered. Then in
Section 4, some implementation issues using object oriented techniques in C++
are discussed. Finally in Section 5, numerical examples are provided to check the
performance of the method.
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366 DAOQI YANG

2. The Domain Decomposition Method

Let €2 be a smooth bounded two-dimensional domain or a convex polygon with
boundary 02. Assume that € is the union of two nonoverlapping subdomains €
and €, with interface I'; that is, @ = Q; Uy, Q; Ny =0, and T = 4Q; N 9.
When ©; and 2, are disconnected, the decomposition can actually contain more
than two subdomains.

Consider the following elliptic interface problem: find u; € H'(;) and uy €
H'(Q) such that

(1) Lyw, = fin O, k=12,
(2) ur = g on 0 NI, k=1,2,
(3) u; —uy = pon I,
31“ OUQ
4 et Tl S
(4) a’/ix 4—61/31 non I,

where for k =1, 2,

2 2
== g (@) + 0o, - X ol gt

vk = {vF vk} is the outward normal unit vector to Q. I assume that f € L?(Q)
and g € H/2(0Q), and that u(z) and n(z) are given regular functions on I'. That
is, the solution of (1)-(4) is sought with specified strength of discontinuity, and so
is its conormal derivative. I also assume that the coefficients {agf)} are symmetric,
uniformly positive definite, and bounded on €, and b*) > 0 on €.

Equations of type (1)-(4) need be solved at each time step for the two-phase
generalized Stephan problems as encountered in alloy solidification processes [1,
pages 8, 15]. They have applications in many wave propagation and fluid flow
problems [1, 5]. In some cases, the interface conditions (3) and (4) are nonlinear
(1].

Schwarz overlapping and substructuring domain decomposition methods have
been analyzed for the special linear case (1)-(4) in which 4 = 0 and n = 0. It is
not clear that any of these methods applies directly to the general case with p # 0
and n # 0, since the solution is not in the space H'(Q), although its restriction
to (U is in the space H'(f). Finite element methods on the whole domain Q
without domain decomposition do not seem to apply. In [5], a special kind of finite
difference method without domain decomposition was considered for the problem
(1)-(4).

I now define formally the following domain decomposition method for problem
(1)-(4): Choose uf) € H'(S) satisfying ul|ono, =g, k =1,2. For n =0,1,2,-
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the sequence u € H'(Q) with u}!|snnao, = ¢ is constructed such that

2n+1
(5) L21u . 1n Ql,
"= o 4+ (1 - a)ud" + (1 — a)pon T}
(6) LZ u2n+l f in 92’
"= g™ + (1 - a)ud” — ap on T;
L, u2”+2 fin 4,
(7) aﬁ"“ 8u2 nt1 du"
-+ (1- )2+ (1 - B)onT;
L, u2"+2 f in QQ,
(8) 8u2"+2 ou’" oul"
o =3 31,,2 (1—5)—3?1,7—+ﬁ770nr
A A

where a, 8 € (0,1) are relaxation parameters that will be determined to ensure and
accelerate the convergence of the iterative procedure. This algorithm is motivated
by the ones proposed by Funaro, Quarteroni, and Zanolli [4], Marini and Quarteroni
[7, 8], Lions [6], Després [2], Rice, Vavalis, and Yang [10], Quarteroni [9], Douglas
and Yang [3], and Yang [11, 12], where regular problems with 4 = 0 and n = 0
were considered.

This algorithm is different from others in that Dirichlet and Neumann subdo-
main problems were solved at the same iteration levels but on different subdomains
in [4, 7, 8, 11] and Robin subdomain problems were solved in [6, 2, 12]. For prob-
lems with continuous solution and coefficients, this algorithm reduces to [10, 3],
where convergence results for general coefficients were not provided. In [13], a de-
tailed analysis for the algorithm will be made at the differential and discrete levels
and numerical tests using finite difference methods will be conducted.

3. Finite Element Approximation with Lagrange Multipliers

In this section, I reformulate the algorithm (5)-(8) by introducing Lagrange
multipliers on the interface to replace conormal derivatives. Finite elment dis-
cretization is then applied to subdomain problems. Although Lagrange multipliers
have been used in other contexts, it does not appear that they have been employed
to (5)-(8) before. I first introduce some notation. Denote the Hilbert spaces

Vi ={ve H' (Q), vlsansa, =0}, k=12,

and let o be the trace operator from V. onto H(I,éz(I’). Define the bilinear forms:

2
k) Ou Ow

9 ar(u,w) = / a;; —dz +/ bFyw de, k=1,2,

®  a= X [ [

i,j=1

(10) (u,w) = / ww dz, k=1,2.
Qe

For convenience I use the following norms in V; and V5,

(11) |lw||?2 = ap(w,w), Ywe Vi, k=12
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Then the variational formulation of the scheme (5)-(8) can be written as:

u2n+l
(12) ar(ui"™ w) - <8—3,,H— 7ow> = (f,wh, Vw e Vi,

u" = aud” + (1 - @)ud™ + (1 — ) on T
2n+1 uin !
(13) a2(u2 7w) - Wa’)’Ow = (faw)Q, Yw € VQa
us" = au?™ + (1 — a)ud™ — ap on T;
al(u1n+ ,’lU)
8u2n+l au2n+l
(0 = () + (1= 8 B o) + (o, € Vi
Vi Vg
aQ(uﬁvz+2,w)
6u2n+l 8u2n+1
(15) —ﬂ< +7, ’Yow>+(1—5)<—52y—2—,’>’0w>+(f,w)2, Yw € Vy;
vi A

for k = 1, 2. Here (-, -) denotes the inner product over the interface I', or the duality
between H(%Q(F) and its dual space.

Replacing the conormal derivatives %—% by the Lagrange multipliers A}, (12)-
(15) becomes !

(16) al(u%n+law) </\2n+1a’YOw> = (f? w)la Yw € Vla
" = qu 4+ (1 — a)ud™ + (1 — a)p on T
(17) a?(u§n+lvw) - </\§n+1»’)’()w> (faw)27 Yw S V27
wi"t = aud + (1 - a)ud” —apon T

al(u?n+2,w)
(18) = (BAITL (1 = BN 4 (1 = B)n, yow) + (f,w)1, Yw € Vi;

az(ugn-ﬁ-Q’w)
(19) = (=N 4+ (1= B)A T + B, vow) + (f,w)e, Yw € Va.

The procedure (16)-(19) is the domain decomposition method with Lagrange
multipliers at the differential level, a variant of (5)-(8). I now formulate its finite
element version. Let Ty, = {T'} be a regular triangulation of Q with no elements
crossing the interface I'. T define finite element spaces, for k = 1,2,

(200 WP ={weH' (%) : wlr € P(T) VT € Ty, w|p0ns0, =0},

where P.(T) denotes the space of polynomials of degree < r on T. Let Z" be the
space of the restrictions on the interface of the functions in W}*. Note that there
are two copies of such a space assigned on I', one from §2; and the other from 5. I
denote them by Z" and Z, respectively. Let {U', A}} € W} x Z}! denote the finite
element approximation of {u}, A} }. Then, the finite element domain decomposition
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method with Lagrange multipliers is constructed as follows:
al(U2n+la ) <A2n+1770w> = (faw)la Yw € Wlha
Ut = qU" + (1 - @)U + (1 —a)uon T

ag(UF™*, ) (A yow) = (fw),  Ywe Wy,
(22) 2n+1 _
Uj =aU? + (1 — a)U2" — ap on T}

(21)

(U2n+2, )

(23) = (BAT"T — (1= B)ATT + (1 = B)n,yow) + (f,wh, Vw € W
(U2n+2, )

(24) = (=BAT 1 (1 - AT + By, yow) + (fyw)a, Yw € W

In order to give a convergence result, I introduce two linear operators. Let
oh = {’lUIr' w € W}, k =1,2}. Define the extension operators Ry : ¢ € " —
{Rig,R2¢} € Wl x Z} by
(25) ar(RLp,w) — (Rip,w) =0, Ywe W}, Rip=6¢ on T.

Define ¢ and 7 to be two smallest finite real numbers such that
IRiIT _ IR39II5 _ -
sup <o, sup <T.
oear |R303 sein [RIGIR
The following results will be proved in [13].

(26)

THEOREM 1. The domain decomposition method (21)-(24) is convergent in the

energy norm if max{0, 1—%2::12} < a < 1 and max{0, l—TZUT;IH} < B <1 The
optimal relaxation parameters are o = #1—1}2 and 8 = ;%;% Furthermore,

the convergence is independent of the grid size h.

4. Object Oriented Implementation

The finite element domain decomposition algorithm (21)-(24) can be imple-
mented in an elegant way using the object oriented programming paradigm. Fea-
tures such as information hiding, data encapsulation, inheritance, dynamic binding,
and operator overloading can be employed very nicely in the algorithm. Below I
give a brief description of my implementation details in the terminology of C++-.

I first define a base class called “grid”, which generates a triangular grid in
a subdomain. Data members like vertices of the triangles and coordinates of the
vertices are protected members which can only be accessed by its members and
derived class. Function members like getting the total degrees of freedom and
printing a Matlab file for representing the triangulation are public that can be
accessed by any program. Each object of the class grid represents the triangulation
on each subdomain. The grid on different subdomains may not have to match on
the interface. However, for simplicity, I apply matching grids on the subdomains.

Then I define a derived class called “subdomain”, which inherits from the class
grid. The class subdomain contains private member functions for forming the stiff-
ness matrix and for performing the Dirichlet and Neumann sweeps. The stiffness
matrix forming function can access the triangulation information like triangle ver-
tices and coordinates of vertices, which are protected members of the base class
grid. In this step, I make use of my linear algebra library (which is built on object
oriented programming for matrix and vector manipulations) for numerical integra-
tion. A numerical quadrature can be viewed as an inner product of two vectors;
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using operator overloading, vectors can be multiplied directly, instead of an explicit
function call like in Fortran or C. The Dirichlet sweep member function first solves
the subdomain problem with Dirichlet boundary condition by choosing basis func-
tions vanishing on the interface and then finds the Lagrange multipliers by choosing
basis functions vanishing in the interior of the subdomain. The Neumann sweep
member function just solves the subdomain problem with Neumann boundary con-
dition on the interface. From these two steps, we see that the finite element method
with Lagrange multipliers on the interface is easier to implement than finite differ-
ence or finite element methods without Lagrange multiplers [5, 13]. In particular,
the subdomain finite dimensional problems are symmetric and positive definite in
our case, as opposed to unsymmetric and indefinite problems in [5].

Finally, a friend to the class subdomain is implemented to coordinate the Dirich-
let and Neumann sweeps and check the stopping criterion for the iterative process.
This friend function takes an array of subdomain objects as arguments and has
access to protected members of class grid and all members of class subdomain.

At the linear system solving steps inside the Dirichlet and Neumann sweeps,
I first define an abstract matrix class that just contains the number of rows of
the matrix, two pure virtual functions for matrix-vector multiplication and pre-
conditioning, and a function for the preconditioned conjugate gradient method.
Since the preconditioned conjugate gradient algorithm can be implemented once
we have a matrix-vector multiplication function and a preconditioning function, it
is defined in the abstract matrix class and inherited by classes for banded matri-
ces and sparse matrices. With operator overloading (one kind of polymorphism),
the preconditioned conjugate gradient function can be written in about the same
number of lines and format as the algorithm (which increases the readability of the
code) and is defined only once in the abstract class. It then can be called in the
derived classes for banded matrices and sparse matrices which need to define the
matrix-vector multiplication and preconditioning functions according to their data
structures of the matrix storage. However, the banded Gauss elimination function
has to be defined in every derived class since it can not be performed without
knowing the structure of the matrix. Note that the banded matrix inherits the
row number from the abstract matrix class and needs to define a data member for
the bandwidth. For unsymmetric problems, GMRES instead of conjugate gradient
method or banded Gauss elimination is used.

5. Numerical Examples

In this section, I present some numerical experiments for the iterative procedure
(21)-(24). In all of my test, I let the domain Q = {(z,y) : 0 <2 < 1,0 <y <
0.5,z >y} U{(z,y):0<z<0.50<y <1,z <y} and the interface I' be the line
segment {(z,y) : x = y,0 < z < 0.5}, which divides Q into ; = {(z,y) : 0 <z <
L0<y<05x>y}and Q= {(z,y) : 0 <z <0.5,0 <y <1,z <y} Piecewise
linear triangular finite elements are applied on each subdomain. One copy of the
solution at the interface is kept from each subdomain due to its discontinuity. Note
that a global finite element solution on the whole domain €2 may not exist. The
relaxation parameters a and [ are taken to be 0.5, which leads to fast convergence
and thus optimal parameters are not used. Initial guess is chosen to be zero in
all cases. I define iterative errors as the relative errors between the iterates at the
current and previous iteration levels and true errors as the relative errors between
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TABLE 1. Iterative and true errors for Example 2. The errors are
shown in the L*°-norm.

Grid size 5 X 5 Grid size g5 X g5
Tteration | Iterative error | True error | Iterative error | True error
1 3.16E-1 2.75E-1 3.25E-1 2.93E-1
2 3.77E-2 1.05E-2 3.96E-2 3.21E-2
3 4.97E-3 5.33E-3 5.28E-3 7.55E-3
4 6.78E-4 6.01E-3 7.49E-4 2.27E-3
5 9.76E-5 5.91E-3 1.13E-4 3.02E-3

the current iterate and the true solution. All norms will be measured in the discrete
max (| - || ()5 |- | (02,)) sense, which is different from the discrete L°°(2) norm
since there are two different values on the interface from the two subdomains due
to discontinuity.

EXAMPLE 2. Let

o Low. 0 0w L
—81'(6 8$) 8y(e ay)+ ul*.fl» anla

1+z+y
8211,2 8211,2 .
Tom2 _é)_y? =f2,  in{y,
ug = g, on 0 NNk =1,2.
The functions fi, fo, g1, g2, i, and 1 are chosen such that the exact solution is
up(z,y) =10z +y, in Qy, ua(z,y) = sin(z +y), in Q.
Table 1 shows the results for the iterative and true errors in the maximum
norm on the whole domain {2.
Now we consider a more difficult problem with convection on one side of the
interface and general variable coefficients. In the Stephan problem [1], for the case
of two incompressible phases, one solid and one liquid, with different densities, a

convective term must be added to the heat-flow equation in the liquid region in
order for mass to be conserved across phase-change interface.

EXAMPLE 3. Let

et x 1 1 u
i v \V/ , v A
([z ey] u1)+[1+x+y 1+x+y] u1+1+x+y
=f1(55ay)> in Qla

-V. ([ ;I;;y) le:_(aiy) } Vu2> + (2 + sin(z) + cos(y))us

= f?(xay), in QQa
ur = gx, onoQNoNk=1,2.

The functions fi, fa2, g1, 92, 4, and n are chosen such that the exact solution is

ui(z,y) =™, in Qy, uz(z,y) = 5e*¥sin(13x)cos(13y), in Qs.

Table 2 shows the results for the iterative and true errors in the maximum
norm on the whole domain €.

Numerical experiments show that the iterative method is insensitive to strong
discontinuities in the solution and coefficients and leads to accurate approximate

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



372 DAOQI YANG

TABLE 2. Iterative and true errors for Example 3. The errors are

shown in the L°°-norm.

Grid size 5 X 75 Grid size 55 X g5
Iteration | Iterative error | True error | Iterative error | True error
1 1.97E-1 3.84E-1 2.33E-1 5.02E-1
2 8.77E-3 5.82E-3 1.09E-2 9.56E-3
3 3.38E-5 3.21E-3 4.16E-5 1.53E-3
4 1.41E-7 3.18E-3 1.78E-7 1.48E-3
5 6.27E-10 3.18E-3 8.29E-10 1.48E-3
solutions. Although the relaxation parameters o and 3 can be chosen in some

optimal fashion, the method converges pretty fast with a« = 8 = 1/2 even for
very complicated problems. It is observed that this method converges faster than
Lions type methods [6] with a few subdomains which is suitable for most interface
problems. Also, sharp interfaces of the true solution can be captured fairly easily
and accurately. In [13], finite difference methods are applied to subdomain problems
and similar numerical results are obtained.

To my knowledge, this paper is the first one to apply the Schwarz domain de-
composition methodology to interface problems with discontinuous solution, conor-
mal derivatives, and coefficients. This is a first attempt to solve time-dependent
generalized Stephan problems such as alloy solidification and immiscible flow with
surface tension. Applying non-matching grids will make my algorithm more attrac-
tive and suitable for such problems in that finite element grids can be generated
separately in different subdomains and collaborative PDE solvers can be applied.
Another salient feature of this algorithm is that symmetrical and positive definite
linear systems are solved at each iteration for problems like Example 2 which is
not symmetrical and positive definite in the whole domain. Implementations in
the object oriented paradigm also make the algorithm easier to code and modify
to meet the need of more complicated situations. Our future work will try to solve
two and three dimensional application problems with more complex geometry and
interface. Mortar elements may also be applied to this kind of problems.
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