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Preface 

The annual International Conference on Domain Decomposition Methods for 
Partial Differential Equations has been a major event in Applied Mathematics and 
Engineering for the last ten years. The proceedings of the Conferences have become 
a standard reference in the field, publishing seminal papers as well as the latest 
theoretical results and reports on practical applications. 

The Tenth Conference on Domain Decomposition Methods took place at the 
University of Colorado at Boulder from August 10 to August 14, 1997. It was 
organized by Charbel Farhat, Department of Aerospace Engineering Science, Xiao-
Chuan Cai, Department of Computer Science, both at the University of Colorado 
at Boulder, and Jan Mandel, Department of Mathematics at the University of 
Colorado at Denver. 

Driven by the availability of powerful parallel processors, the field of Domain 
Decomposition has matured during the past ten years. The focus of new methods 
has been shifting from positive definite elliptic problems to complicated applica-
tions, nonlinear problems, systems, and problems with non-elliptic numerical be-
havior, such as wave propagation and the Helmholtz equation. At the same time, 
the advent of practical massively parallel computers poses new challenges for elliptic 
equations, especially on arbitrary, nonuniform meshes. These Proceedings contain 
contributions from all these areas. The focus of the Conference, as reflected in the 
selection of invited speakers, was on realistic applications in structural mechanics, 
structural dynamics, computational fluid dynamics, and heat transfer. 

The Conference had 171 registered participants. There were 16 invited ple-
nary lectures and 113 mini-symposia and plenary presentations. These proceedings 
contain 13 invited and 41 mini-symposia and contributed papers. All papers have 
been refereed. The Proceedings are divided into four parts. The first part contains 
invited papers. The rest of the volume contains mini-symposia and contributed 
presentations, further divided into Algorithms, Theory, and Applications. 

Previous proceedings of the International Conferences on Domain Decompo-
sition were published by SIAM, AMS, and John Wiley & Sons. We welcome the 
return of the Proceedings to AMS. We would like to acknowledge the help of the 
AMS staff in deciding the format and preparing the Proceedings. We would like to 
thank particularly Dr. Sergei Gelfand for encouraging us to abolish the page limit 
for invited presentations. 

We wish to thank the members of the International Scientific Committee, and in 
particular the Chair, Petter Bj0rstad, for their help in setting the scientific direction 
of the Conference. We are also grateful to the organizers of the mini-symposia for 
attracting high-quality presentations. 

xi 
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xii PREFACE 

Timely production of these Proceedings would not have been possible without 
the cooperation of the authors and the anonymous referees. We would like to thank 
them all for their graceful and timely response to our various demands. 

The organizers of the Conference would like to acknowledge the sponsors of 
the Conference, namely the National Science Foundation, ANSYS, Inc., the Sandia 
National Laboratories, the Colorado School of Mines, the University of Colorado at 
Boulder, and the University of Colorado at Denver. Their generous support made 
the Conference possible and, among other things, allowed the organizers to fund 
the participation of graduate students. 

Finally, we would like to express our appreciation to Ms. Cathy Moser, the 
Secretary of the Conference, who made all organizational details run smoothly, and 
Dr. Radek Tezaur, the Technical Editor of these Proceedings, who finalized the 
formatting of the papers in AMS-Ib'IEX and prepared the whole book for printing. 

The complete program of the Conference is available at the Conference Web 
site http: /lwww-math. cudenver. edu/ dd10. More related information, including 
links to other Domain Decomposition conferences and books, can be found at the 
Official Domain Decomposition Web site at http://www. ddm. or g. The purchaser 
of this volume is entitled to the online edition of this book by AMS. To gain access, 
follow the instructions given on the form found in the back of this volume. 

Jan Mandel 
Charbel Farhat 

Xiao-Chuan Cai 
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Contemporary Mathematics 
Volume 218, 1998 
B 0-8218-0988-1-02999-X 

Nonmatching Grids for Fluids 

Yves Achdou, Gassan Abdoulaev, Jean-Claude Hontand, 
Yuri A. Kuznetsov, Olivier Pironneau, and Christophe Prud'homme 

1. Introduction 

We review some topics about the use of nonmatching grids for fluids. In a 
first part, we discuss the mortar method for a convection diffusion equation. In a 
second part, we present a three dimensional Navier-Stokes code, based on mortar 
elements, whose main ingredients are the method of characteristics for convection, 
and a fast solver for elliptic equations for incompressibility. Finally, preliminary 
numerical results are given. 

Since the late nineteen eighties, interest has developed in non-overlapping do-
main decomposition methods coupling different variational approximations in dif-
ferent sub domains. The mortar element methods, see [10], [28], have been de-
signed for this purpose and they allow us to combine different discretizations in 
an optimal way. Optimality means that the error is bounded by the sum of the 
subregion-by-subregion approximation errors without any constraints on the choice 
of the different discretizations. One can, for example couple spectral methods with 
finite elements, or different finite element methods with different meshes. 

The advantages of the mortar method are: 
• It permits to use spectral methods with flexibility. 
• It is well suited for partial differential equations involving highly heteroge-

neous media. 
• Mesh adaption can be made local [9]. 
• It enables one to assemble several meshes generated independently: this 

is important, since constructing meshes is not an easy problem in three 
dimensions. 

• In the finite elements context, it permits the use of locally structured grids 
in the subdomains, thence fast local solvers. Besides, for computational fluid 
dynamics, structured grids are very helpful in boundary layers for instance. 

• It permits the use of sliding meshes see [6]. 

1991 Mathematics Subject Classification. Primary 65M55; Secondary 76D05, 65M60, 65N55. 
The second and fourth authors were partially supported by French-Russian Liapunov Insti-

tute for Informatics and Applied Mathematics and INRIA. This work was partially carried out 
at the CEMRACS summer school, http:/ jwww.asci.fr/cemracs. The first author was partially 
supported by CNRS PICS 478. The computations were performed on the Cray T3E at IDRIS, 
Orsay, France. 

@1998 American Mathematical Society 
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4 YVES ACHDOU ET AL. 

In this paper, we focus on the use of the mortar method for the simulation of fluid 
dynamics problems. 

After reviewing the method for symmetric problems, we propose and analyze a 
mortar method suited for convection-diffusion problems. We show that upwinding 
terms should be added at the interfaces between subdomains. 

Then, we discuss a 3D N avier-Stokes code with nonmatching grids, which is 
being developed at laboratory ASCI (Applications Scientifiques du Calcul Intensif) 
in Orsay(France). This code is based on a projection-characteristics scheme [4] and 
on a fast parallel solver for the pressure. With such a scheme, the involved elliptic 
operators are time-invariant and symmetric. The solver we use for the pressure 
has been developed in [22] and tested in [1]. It is used for solving the saddle 
point linear system arising from the mortar element discretization of the pressure 
equation. Other solvers or preconditioners have been developed for nonmatching 
grid problems, e.g substructuring preconditioners in the space of weakly continuous 
functions [14, 5, 16], or Neumann-Neumann preconditioners [23]. 

Finally, we present some results both in 2D and 3D. The 2D results are also 
obtained with a mortar element method, but with a vorticity stream-function for-
mulation. The 3D results are preliminary, since the code is in progress. 

2. A brief review on the mortar method 

Assume that we have to solve the elliptic problem: find u E H 1 (0) such that 

(1) a(u,v) = (f,v), \fv E H 1(0) 

in a two dimensional domain n, where a(.' . ) is a second order bilinear form, con-
tinuous on H 1(0). We shall assume for simplicity that a(u,v) =In 'Vu· 'Vv, which 
corresponds to a Neumann problem, and that the right hand side f is such that (1) 
has a solution, unique up to the addition of constants. Consider a nonoverlapping 

- K-domain decomposition 0 = u Ok. We assume that each subdomain Ok is a piece-
k=l 

wise regular, curved polygon. For simplicity only we also suppose that the domain 
decomposition is geometrically conforming. It means that if {kl = nk n fi'z (k =I= l) 
and "/kl =I= 0, then {kl can be either a common vertex of Ok and Oz, or a common 
edge, or a common face. In the last case we define rkl = /kl as the interface be-
tween Ok and Dz. Note that fkz = fzk· The union r of all ank \8D is called the 
skeleton (or interface) of the decomposition. 

Let us introduce the spaces Xk:::::: H 1(0k)· It is also possible to define the local 
bilinear forms ak on xk X xk by ak(uk, Vk) =Ink 'Vuk. 'Vvk, and the global bilinear 
form 

K K K 

(2) a: II Xk x II Xk---> JR., a(u, v) = ~.::>k(uk, vk)· 
k=l k=l k=l 

Suppose that each Ok is provided with its own discretization Xk,h of Xk. In 
what follows, the discrete spaces are of finite element type, but the proposed method 
can also be used for any discretization of the variational problem. To derive a 
global discretization of H 1 (n), yielding an accurate Galerkin approximation of (1), 
the mortar element method was introduced in [10]. Reviewing the basics of the 
method, the global discrete space is a subspace of xh = II Xk,h obtained by 

l:::;k:::;K 
imposing matching conditions on each face rkl· On any such face, there are two 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



NONMATCHING GRIDS FOR FLUIDS 5 

values, the traces Vk (respectively V!) of a function defined in nk (respectively n!)· 
For k < l such that 1an! n ank1 > 0 , denote by Wk,l,h (respectively Wl,k,h) the 
trace of the finite element space Xk,h (respectively Xl,h) on rkl· Let Wk,l,h be a 
subspace of codimension two of either Wk,l,h or Wl,k,h· We refer to [10] for more 
details and the exact definition of this subspace. We then set 

(3) yh = { ~ E (X h : fo)r·'~ll ko < l :,~ch wthat I an! n ank I > 0, } . 
- Jrkl Vk- vl 'P = ' vtp E k,l,h 

The discrete problem reads: find uh E Yh such that 

(4) 

It has been established in [10] that the resulting discretization error is as good as 
for comparable conforming finite element or spectral approximations. Indeed, if 
the solution of (1) is regular enough (in H~+') then the error in the norm llvi!I,* = 
Ja(v,v) is bounded by a constant time the sum of the subregion by subregion best 
approximation errors. 

3. The mortar method for convection-diffusion problems 

In this section, we present a mortar method suited for non symmetric problems. 
Since this method is only studied theoretically here and is not implemented in our 
Navier-Stokes code, this section can be seen as a digression. Let us consider the 
stationary scalar linear convection dominated convection-diffusion equation: 

(5) -r:b.u + \7 · ({3u) + (J"U = f 
u=g 

inn, 
on an, 

where n is a bounded polygonal domain in JR2 , (J and E are two constants, E being 
small. It is assumed that the velocity {3 is smooth and that CJ - ~ l\7 · .BI > iT > 0. 
In the following, we take g = 0 in (5). 

If optimal error estimates are desired, the mortar method reviewed above can-
not be applied in a straightforward manner. We shall show that upwinding terms 
are needed at the interfaces between subdomains. 

In this section, we work with triangular meshes in the subdomains and P1 

elements and we assume that the triangulations in the subdomains are regular and 
quasi uniform. Let hk be the maximal diameter of the triangles in nk. We shall 
assume that E « hk. In this case, introducing upwinding by using e.g. streamline 
diffusion methods, see [20], is necessary because a standard Galerkin approach for 
discretizing (5) would produce oscillations. 

We denote by Xkh the space of continuous and piecewise linear functions on 
the triangulation of nk, vanishing on ank nan, and yh is defined as in (3). 

Consider a family (8kh<k<K of small positive parameters : 8k "'hk and the 
non symmetric bilinear form ak xk X xk -+ R 
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It corresponds to a streamline diffusion method applied in subdomain nk, see [20]. 
However, the discrete problem: find uh E Yh such that 

K 

Vvh E Yh, a(uh, vh) = L r f(vkh + 8k V' 0 (f3vkh)) 
k=l Jnk 

(7) 

with 
K 

(8) a(u,v) = Lak(uk,vk) 
k=l 

would not necessarily yield optimal error estimates. Indeed, 

(9) 
a(u,u) = 
LI::;k:<:;K fnk EjV'uk !2 + (a-+ ~ V' · f3)u% + hk IV' · (f3ukW + a-hk V' · (f3uk)uk 

+~ L!rkti#O frkl f3.nkl(u%- uf) 

and it is not possible to control the term 

~ L l f3.nkl(u%- uf) 
!rkti#O kt 

in an optimal way. Therefore, we shall also introduce a stabilizing term for each 
interface fk1: fork< l : jfkd f 0, let us define the bilinearform iikl: (Xk xX1)2 --+ 

lR: 

(10) iikl(uk,ul,Vk,vl)=l (f3·nkl)-(uk-ul)vk+1 (f3·nlk)-(ul-uk)vl, 
rkt rkt 

where x- denotes the negative part of x: x ~(jxj - x). The bilinear form 
a:X x X --+ IR is now defined by 

(11) a(u, v) = L ak(uk, vk) + L iikl(uk, Ut, vk, Vt). 
l:<:;k<:::K k<l : Wkti#O 

The chosen discretization of (5) is: find uh E Yh such that 

(12) Vvh E Yh, a(uh,vh) = L 1 f(vkh + 8k\i' · (f3vkh)). 
l:<:;k:<:;K nk 

REMARK 1. Note that the upwinding is done by the streamline diffusion meth-
od inside the subdomains, and by some discontinuous Galerkin like method at the 
interfaces between subdomains, where no strong continuity is available. 

Let II vII denotes the broken norm : 

(13) llvll 2 = L {f ljV'vkj 2 +% l v~ + 8; l (\7 · (f3vk)) 2}, 
l:<:;k:<:;K nk nk nk 

and jvj the semi-norm 

2 1 '"" 1 2 jvj =- ~ l/3 · nkll(vk- vl) 
2 r k<l : !rkti#O kl 

(14) 

We will prove an error estimate in the following norm : 

(15) 
The stability of the method stems from the following lemma: 
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LEMMA 2. lf'Vk E {1, K}, Dk::; 2 ~ 2 , then for any v E Yh, 

(16) a(v,v) 2lllvlll 2 -

From this lemma and from the best fit estimate in the L2-norm when ap-
proaching a sufficiently regular function by a function in Yh (see [8]), we obtain the 
following result, which states that optimal error estimates are obtained, similarly 
as for the conforming case. 

PROPOSITION 3. Assume that the solution of (5} is in HJ(O) n IJ H 2 (0k) 

and that 

(17) 

then there exists a constant C such that, if uh is the solution of ( 12), 

(18) lllu- uhlll ::; C L h! llukiiH 2 (0k)· 
lSkSK 

PROOF. It is seen from [10], [8] (see in particular [8], remark 7), that there 
exists uh in Yh such that wh = u - uh satisfies 

(19) (,tK /.,, IVwkhl') l <: C vtK h,llukiiH'(n,: 

and 

(20) 

These approximations results have been obtained when proving that the mortar 
method leads to optimal error estimates for an elliptic problem. Choosing other 
jump condition on interface, i.e. other spaces Yh often lead to poorer approximation 
results (see [10]). Therefore, from assumption (17) , 

(21) lllwhlll S C L hi llukiiH 2 (0k)· 
lSkSK 

Let eh = uh- uh and eh = u- uh. From (5) and (12) one obtains that 

(22) a(eh, eh) = E L t5k 1 b.u\J.(f3ekh) + E L 1 au (ekh- ezh)· 
I<:kSK nk k<l: [rk,[#O rk, ankz 

Therefore since eh = eh - Wh, 

lllehlll 2 

= a(eh, wh)+ 

E L 8k 1 b.u\J.(f3(ekh- Wkh)) + E L r au (ekh- ezh)· 
lSk<:K ok k<l: [rk,[#O lrk, ankl 

(23) 

The last two terms are consistency errors. Using arguments very similar to those 
of [20], it can be proved that 

(24) L h! llukiiH2(0k)· 
lSk<:K 
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It can also be seen that 

E L 8k 1 /j.u\J.(f3(ekh- Wkh)) 
l~k~K ih 

(25) :::; Ell/j.ull£2(!1) L 8kii'V.((3(ekhll£2(ih) + 8kll\l.((3(wkhiiL2(!1k) 
l<k<K 

:::; C (111ehlll +- ~ ht llukiiH2(!1k)) L ht llukiiH2(!1k)· 
19~K 19~K 

Finally, since e E Yh, calling 7rh the L 2 projection on Wh (see [10]), 

(26) 11 au - - I 11 au - - I f a(ekh- eth) = f (J- 7rh)-a (ekh- eth) ' 
rkl nkt rkl nkl 

and using the lemma 4.1 of [10], 

(27) 

Collecting all the above estimates yields the desired result. D 

Such a discretization can be generalized to nonlinear conservation laws, see [3]: 

(28) -E/j.u + \J. f(u) +au = d 
u =0 

inn 
on an. 

As above, one must add a flux term on the interfaces 
(29) 

akt(Uk,Ut,Vk,Vt)=-1 nkt·(f(uk)Vk-f(ut)vt)+ r nkt·g(uk,Ut)(vk-Vt) 
rkt lrkl 

where nkl · (g( uk, Ut) is a Godunov flux: 

nkl·g(uk,ut)= min nkt·f(u) ifuk::;ul. 
Uk~U~Ul 

One can choose instead an Osher flux: 

nkl. g(uk,ul) = ~nkl. (f(uk) + f(ut)) + ~ r lnkl. f'(u)l. 
2 2 J(uk,ut) 

4. A N avier Stokes solver using the mortar element method 

Getting back to what we have implemented, the proposed scheme is based on 
both projection and the characteristic Galerkin methods. As we shall see, the main 
advantage of such a scheme is that 

• Thanks to the characteristics methods, the linear problems solved at each 
time step involve time invariant and symmetric elliptic operators. 

• Thanks to the projection method, the problems for pressure and velocities 
are decoupled since the linearized Stokes problem is not solved exactly. 
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The code is implemented in three dimensions and is based on a fast solver for the 
pressure, which shall also be reviewed in this section. We shall also present 2D 
results with a mortar method, but the 2D code is based on a stream function-
vorticity formulation. 

In the following, we consider the time-dependent Navier-Stokes problem in 
which homogeneous Dirichlet condition has been assumed for simplicity. For a 
given body force f (possibly dependent on time) and a given divergence-free initial 
velocity field uo, find a velocity field u and a pressure field p such that u = uo at 
t = 0, and fort> 0, 

(30) 
f!Jt-v~u+(u·V')u+V'p=f innx(O,T), 
V'. u = 0 inn X (0, T), 
u = 0 on an X (0, T). 

4.1. The scheme. 
4.1.1. The Galerkin characteristics method. As in [25],[27], the total time 

derivatives are approximated by a finite difference formula in space and time, lead-
ing to a Eulerian-Lagrangian method: fy~ = ~~ + u · V'u is discretized by 

_!_(um+l- um 0 xm) 
8t ' 

where xm(x) is the solution at time tm of the backward Cauchy problem: 

(31) 
dXm 
b(x,r) = um(Xm(x, r)) T E [tm, tm+l], 

(32) 

It can be seen easily that 

wm 0 xm(x, tm) ~ wm(x- 8tum(x)). 

Therefore, at each time step, if we did not combine the characteristics method with 
a projection scheme, we would have to solve the linearized Stokes problem 

(33) 

(34) 

1 
8t (um+l - um 0 xm(x, tm))- v8um+l + V'pn+l = 0, inn 

V' . un+l = 0 in n. 
4.1.2. The spatial discretization. We introduce Vh and Yh two mortar finite 

element approximations of (HJ(n))3 and L2(n). For instance, we can take a mortar 
version of the Q1 iso Q2, Q1 method: if the subdomains nk are meshed with 
hexahedrons, and if the functions of Xk,h are continuous and piecewise polynomial 
of degree 1 in each variable (Q1), the space Yh is given by (3). Then the mortar 
space vh is composed of the Ql functions on the finer mesh (obtained by dividing 
each hexahedron of the initial mesh into eight hexahedra), vanishing on an and 
matched at subdomains interfaces with a corresponding mortar condition. 

We assume that the two spaces satisfy the Babuska-Brezzi inf-sup condition 
[12, 7]: there exists c > 0 such that 

. f E:=l Ink Vkh · V' Qkh > m sup c. 
QhEYh vhEVh llvhlhAqhllo -
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10 YVES ACHDOU ET AL. 

We now introduce a discrete divergence operator Ch : Vh ------> Yh and its transpose 
C'f:: yh -----tv~ as follows: for every couple (vh,%) in vh X yh we have 

(35) 
K 

(Chvh,qh) = L r Vkh. \lqkh = (vh,C[qh)· 
k=l lnk 

Calling Ah : Vh ______, V~ the stiffness operator for the velocity 

the discrete Stokes problem at time tm+l reads: 

(36) 
(37) 

where gm+l is computed from um 0 xm(x, tm). 
4.1.3. The characteristic-projection scheme. The projection method was intro-

duced in [15] and [29]. It consists of using two approximations for the velocity at 
time step tm+l namely u~+I and u~+l. The approximation u~+I is sought in the 
previously defined space Vh. The second approximation u~+l belongs to the space 

(38) 

where the operator '\7 is defined by: 
K 

(39) '\7: Yh .-. II (L2(nk))3 
k=l 

(40) 

It is possible to extend the operator Ch by Dh: Dh : Vh ______, Yh: 

(41) 
K 

(Dhvh, qh) = L r Vkh. \lqkh 
k=l lnk 

and to define D'f: by (vh,D'f:qh) = (Dhvh,qh)· 
We are now interested in defining a projection/Lagrange-Galerkin scheme. We 

define two sequences of approximate velocities { uh E Vh} and { uh E Vh} and one 
sequence of approximate pressures {Ph' E Yh} as follows: 

(42) 

(43) 

• Initialization: the sequences { uh'}, { iih'} are initialized by for example 
u~ = u~ = u~ and the sequence {Ph'} is initialized by p~ = p~. 

• Time loop: For 0 ::; m, solve 

(A -m+l ) (~ ) (uh'- iih'(Xh') ) _ (J( m+l) ) hUh- , Vh - M , Vh + 6t , Vh - t , Vh , 
\;/vh E Vh, 

and 
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The velocity u~+l can be seen as the L2 projection of u~+l on the space of discrete 
divergence free functions. It satisfies only a weak non penetration condition at the 
boundary. 

In practice, the projected velocity uh must be eliminated from the algorithm as 
follows (see Rannacher [26] or Guermond [19]). Form 2: 1, replace uh' in (42) by 
its definition which is given by (43) at the time step tm. In (43), u~+l is eliminated 
by applying Dh to the first equation and by noting that Dh is an extension of Ch· 
If by convention we set p!; 1 = p~, the algorithm which should be implemented in 
practice reads for m 2: 0: 

(44) (A -m+l ) (CT m ) (f(tm+l) ) + (uh'(Xh) ) uh , vh + h Ph , vh = , vh 8t , vh 

and 

(45) 

Thanks to the choice of the space Vh (38) and of discretization for the divergence 
operator ( 41), the projection step can be rewritten: find p~+l in Yh such that 

which is exactly the mortar discretization of the Poisson problem (1). 
This algorithm has been analyzed for conforming discretizations (no mortars) 

in [4]. Roughly speaking, the results are the following: It is shown that provided 
the time step is of O(hdf4 ), where his the mesh size and dis the space dimension 
(2 :::; d:::; 3), the proposed method yields for finite time Tan error of O(h1+1 + 8t) 
in the L2 norm for the velocity and an error of O(h1 + 8t) in the H 1 norm (or the 
L2 norm for the pressure), where lis the spatial discretization order, if the solution 
is regular enough. 

Second order schemes in time can also be implemented. 
4.1.4. The projection method as a preconditioner. As shown by Cahouet and 

Chabard [13], Guermond[19], or Turek [30], the ingredients used by the projection 
method can be used to construct a good preconditioner for the generalized Stokes 
problem. Therefore, it is possible to solve iteratively the Stokes problem (33) in 
the spaces vh X yh instead of using a projection scheme. Such an approach would 
be efficient at high Reynolds numbers or with small time steps. 

4.2. A preconditioner for the mortar saddle point problem in three 
dimensions. Here we work in three dimensions, and we suppose that the parti-
tioning into subdomains is regular and quasiuniform. We define by dk the diameter 
of nk and d an average diameter: there exists two constants cl and c2 such that 
C1d < dk < C2d, Vk E {1, ... K}. We also suppose for simplicity that the meshes in 
the subdomains are also regular and quasiuniform with constants and mean diame-
ter independent of the subdomain. In particular, there exists two constants c1 and 
C2, such that for any k E {1, ... K} the diameter of the elements in nk are greater 
than c1h and smaller than c2h. 

We consider the saddle point problem: 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



12 YVES ACHDOU ET AL. 

(47) ( ~ B~ ) ( ~ ) = ( ~ ) 

arising from the discretization by the mortar method of the elliptic equation 

(48) 

(49) 

-D..p + Ep = f in 0, 
ap 
an= 0 on an 

where f is a positive parameter which may be taken as small as desired. Thus 
the Neumann problems in the subdomains are well posed. We use this equation 
as an approximation of the Poisson problem that is satisfied by the pressure, with 
f = 10-4 or f = 10-5 . 

The matrix A is a block diagonal matrix, each block corresponds to a discrete 
Neumann problem in Ok. The matrix B is the matrix of the jump bilinear form bh 
in the nodal bases of xh and wh = TII8!1zn8!1kl>0 Wk,l,h: 

(50) 

As proved in [8], the saddle point problem (47) enjoys a Babuska-Brezzi condition 
with an inf-sup constant independent on the parameter h. Therefore, ( 4 7) is well 
posed. 

The preconditioned iterative algorithm described below has been proposed by 
Y. Kuznetsov in [22] and its parallel implementation has been fully described and 
tested in [1]. We assume that the subdomains have an aspect ratio bounded by a 
constant and that the coarse mesh is quasi uniform. Let A be a symmetric invertible 
matrix and let B be a symmetric and positive definite matrix. If the solutions of 
the generalized eigenvalue problem 

AX= vBX 

belong to the union of the segments [d1; d2]U[d3; d4], where d1 ~ d2 < 0 < d3 ~ d4, 
the generalized Lanczos method of minimal iterations [24] for solving iteratively 
the system AX= F, with the preconditioner B has a convergence rate depending 
on the generalized condition number ~ = :~:f~;: 1 1 ~~U. 

Therefore, the idea is to use as a preconditioner for the saddle point prob-
lem ( 4 7) the matrix 

B = ( ~u ~A ) , 

where Ru (resp. RA) is spectrally equivalent to A, (resp. SA = BA- 1 BT) (by 
spectrally equivalent, we mean that the condition number does depend neither on 
h, nor on the diameters of the subdomains nor on f). For such a choice of B, it 
can be proved that the generalized condition number ~ does not depend on the 
parameters above. The matrices Ru and RA must also be chosen such that the 
systems Ruv = w and RAJ-L = j3 are easy and inexpensive to solve. 
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It is natural to take Ru block diagonal with one block per subdomain: Ru = 
diag(Rk) with the blocks Rk spectrally equivalent to the matrices Ak. Denote 

(51) 

0 

where Ak is the stiffness matrix (related to the Laplace operator with Neumann 
boundary condition in nk), Mk is the mass matrix. Let Pk be the l2 orthogonal 

0 ~ 

projector onto the kernel of Ak, Pk = h - Pk and Hk is any symmetric positive 
definite matrix spectrally equivalent to .A; 1. Then, if Rk is chosen such that 

-1 ~ ~ 1 
(52) Rk = PkHkPk + Eh3 Pk, 

it can be proved that Rk is spectrally equivalent to Ak [22]. It is for example pos-
sible to choose Hk as an additive multilevel preconditioner (see [11, 31, 18]), and 
this proves very efficient, since the cost of the matrix-vector product is proportional 
to the number of unknowns, and therefore optimal. The choice of the exponent 3 
in the formula (52) is linked to the dimension and would have to be changed in 
dimension 2. 

The construction of the preconditioner for S >. consists of three stages: 
• the first step consists of constructing a matrix S>. spectrally equivalent to 

S>. such that the product of a vector by S>. is rather cheap; 
• in the second step, a coarse grid preconditioner R>. is proposed for S>. or 

equivalently for S>.; 
• in the third step, a gene~lized Chebyshev method with preconditioner R>. 

is applied to the matrix s)... 
Let us call Sk the discrete Dirichlet to Neumann operator (Schur complement 

of the matrix Ak)· The matrix S>. is chosen in the form 

(53) 
K 

~ " - T S>. = L BkHkBk, 
k=1 

where Bk is the block of B corresponding with the degrees of freedom located on 
ank, and where ii k is spectrally equivalent to s~: 1 : the matrix ii k is chosen as 

(54) 

where Prk is the l2 orthogonal projector onto the one dimensional space spanned 
by the vector of dimension nrk (nrk is the number of grid nodes on ank) whose 
components are 1, Prk = Irk - Prk. The matrix Hrk is chosen to be spectrally 
equivalent to 

0 

where Mrk denotes the nrk X nrk mass matrix on ank and where Srk is the Schur 
0 

complement of the matrix Ak. 
The coarse space preconditioner R>. is defined as 

(55) 1 
a=--tdh2, 
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where Dk is a diagonal matrix, obtained by lumping the matrix (1/h)BrkBrk T 
It is proved in [22] that the condition number of R:). 1 S>.. can be bounded by 

cdjh where cis a positive constant independent of h, d and the small parameter E. 

Finally, the inverse of the preconditioner R>.. can be defined by 

(56) R).' ~ [h ~ g (h ~ fl,il;:'SA) l 8),1 , 

where I>.. is then>.. x n>., identity matrix (n>.. is the dimension of the space Wh), (31 

are the Chebyshev parameters corresponding to the spectral bounds of R>, 1 S>.,. If 
the number L of the preconditioned Chebyshev iterations is fixed to a value of the 
order 0( ji), it can be proved that 

thence, 

In order to have an optimal preconditioner in terms of arithmetical complexity, the 
matrix-vector product by S>.. should be done in O(d-h-~) operations at most. It 
is possible to construct such a matrix by noticing that, if ilk is a matrix spectrally 
equivalent to the inverse of Ak, defined in (51), then the block of ilk, corresponding 

0 

to the nodes located on the boundary of nk, is spectrally equivalent to (Srk + 
~Mrk )- 1 . For example, if Sk is defined by using the Bramble Paschiak and Xu 
preconditioner [11] or the multilevel diagonal scaling preconditioner [31] then the 
global cost of the product by S>.. is of order 0( dh 2 ). 

4.3. Numerical three dimensional experiments. The goal of this section 
is to demonstrate the very good parallel properties of the mortar element method 
and the block-diagonal preconditioner described above. Therefore we consider only 
uniform grids and decompositions into equal subdomains. The equation 

-D..p+t.p = f 
with E = w-4 is solved in a parallelepiped. All the computations have been per-
formed on the Cray T3E computer with up to 64 processors used. As a stopping 
criterion for the iterative method, we want to reduce the preconditioned residual 
by a factor T/ while the number of Chebyshev iterations is constant and equal to 8, 
except when mentioned explicitly. For all computations, the number of multigrid 
levels is equal to 4, except in section 4.3.1. 

Note that even with matched grids at subdomains' interfaces the solution is dif-
ferent from that of the single domain case, because of the mortar element treatment 
of the interface. 

4.3.1. Computing time versus problem size. The unit cube is decomposed into 
64 cubic subdomains. In each subdomain the grid is uniform and contains N nodes, 
N taking the value 253 , 333 , 41 3 . The total number of nodes varies from 1 000 000 
to 4 410 944. The table 1 displays the dependence of the elapsed CPU time and 
of the number of iterations on N. The desired accuracy is w-7 and the number 
of Chebyshev iterations is 8 or 16. For these tests, the number of multigrid levels 
equals 3, and the number of processors is fixed at 64. 
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TABLE 1. Number of iterations and elapsed CPU time vs the num-
ber of unknowns in the subdomains and the number of Chebyschev 
iterations, with 64 processors. 

8 Cheb. it. #iter 82 82 82 
Tcpu 39 81 141 

16 Cheb. it. #iter 66 68 68 
Tcpu 48 97 165 

TABLE 2. CPU time (speed-up) vs the number of processors and 
stopping criterion. 

Number of 16 32 64 Number of 
processors 4 sd./pr. 2 sd.jpr. 1 sd.jpr. iterations IIBuk"ll 
TJ = 10-5 89(1) 45(1.97) 23(3.86) 24 1.5e-5 

TJ = 10-6 24 7(1) 124(1.99) 64(3.85) 65 1.1e-6 

TJ = 10-7 351(1) 177(1.98) 91(3.85) 92 6.5e-8 

15 

The CPU time varies slightly sub linearly with the number of unknowns. This 
can be explained by cache effects when the size of the problem is increased. 

4.3.2. Computing time versus stopping criterion and number of processors. In 
Table 2 the elapsed CPU time (in seconds) versus the stopping criterion E and the 
number of processors is shown. 

We wish to estimate the speed-up of the method, i.e. the dependence of the 
elapsed CPU time with the number of processors, the global mesh size of the prob-
lem and the number of subdomains being fixed. The total number of grid nodes is 
equal to 129 x 129 x 129 = 2146 689, and the number of subdomains is 4 x 4 x 4 = 64. 
The subdomains are grouped into 16, 32 or 64 clusters (Nc = Nz x NJ x N:), so 
that 16 = 4 x 2 x 2 (4 subdomains per cluster), 32 = 4 x 4 x 2 (2 subdomains per 
cluster), 64 = 4 x 4 x 4 (1 subdomains per cluster). In the Table 2 the elapsed CPU 
time (in seconds) versus the stopping criterion rJ and the number of processors is 
shown. In the last column we give the Euclidean norm of Buk", which is nothing 
but the jump of the computed solution on the interfaces. 

The actual speed-up, given in parentheses, is very close to the ideal, demon-
strating thus very good parallel properties of the method. The speed-up is estimated 
with respect to the 16-processors case. 

4.3.3. Scalability. The next series of results (Table 3) prove the excellent scala-
bility of the algorithm. Now each subdomain is a cube with the edge length 0.5 and 
has a grid composed of 33 x 33 x 33 nodes. The number of processors used for com-
putation increases linearly with the number of subdomains, so that there is always 
one subdomain per processor. As we can see from the Table 3, the convergence rate 
is almost independent on the number of subdomains, although the boundary value 
problem is not the same, provided the grid in each subdomain does not change, and 
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TABLE 3. Number of iterations and CPU time vs the number of 
processors and stopping criterion for cubic subdomains. 

TJ = 10-5 #iter 27 29 29 
Tcpu 23 27 28 

TJ = 10-6 #iter 43 45 46 
Tcpu 37 42 45 

TJ = 10-7 #iter 67 69 70 
Tcpu 58 63 69 

TABLE 4. Effect of nonmatching grids. 

II case 1 I case 2 I 
#iter 82 90 
Tcpu 81 87 

the CPU time increases less than 19%, when the number of processors goes from 
16 to 64. This increase of CPU time can be explained by the fact that the average 
number of mortar sides per subdomain increases with the number of subdomains. 

4.3.4. Nonmatching uniform grids. In this series of tests, we focus on the ef-
fect of nonmatching grids on the performances of the solver. The unit cube is 
divided into 4 x 4 x 4 subdomains. We compare two cases: in the first case, all 
the subdomains have a grid with 33 x 33 x 33 nodes, so the grids are matched at 
the interfaces. In the second case, only the subdomains located in the half space 
x3 > 0.5 have 33 x 33 x 33 nodes while the other subdomains have 25 x 25 x 25 
nodes. For these tests, the number of multigrid levels equals 3, and the number of 
Chebyshev iterations is 8. 

The performances of the solver are slightly affected by the presence of non-
matching grids. In this example, the load balancing is very bad, so the CPU time 
is governed by the processors taking care of the finest grids. 

5. Numerical results 

5.1. 2D results. The 2D results presented here have been obtained with a 
characteristic Galerkin scheme, and a mortar element method. Here we have used 
the stream function-vorticity formulation, so the scheme is different from what has 
been described above, since the velocity is exactly divergence free. The linearized 
Stokes problem at each time step is computed by using a variant of the Glowinski-
Pironneau algorithm see [17, 2]. 

Here we present simulations for the flow around a cylinder at Reynolds number 
9500. This is a quite unsteady flow, which displays many structures. In Figures 1 
and 2, we plot the vorticity at several times steps. 

A part of the domain partition is plotted in the figure. The finite element used 
is an over parametric Q1 element. The grids in the subdomain are structured and 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



2.0•10'' 

NONMATCHING GRIDS FOR FLUIDS 

VORTICITY ·Time ( 3.40) 
Reynoldsi9500JN00.:.11611001Donwnsi961Tim<S~epl )401 

~ .. 

VORTICITY· Time ( 4.40) 
R~)'fl<>ld• 19~0(1) Nodes(l61 1001 Doma•nS!%IT1mcStep1 .Uill 

VORTICITY· Time ( 5.40) 
Reynold•i95001Nodeoll611001Domoln>I%1TuneS!epl 'i401 

!~ 

VORTICITY ·Time ( 4.00) 
Reynoldsl95001 N<>de<il61100l0oma•n•I'I61Tim<S!ep( ~001 

Hb:JO" 

-56xJO" ~-~~---+-, .1-..-...,.1.-~-.-< 

X-Axis 

VORTICITY· Time ( 5.00) 
Reynold<I9~001Node•il61JOOI Domamsi%1Tm~eS1cpl 5001 

20.10" 

·R 
"';! l(b.IO" 
> 

.~.6,10 1 ' ~-~~-~-+-, .1-.._...,.1. __ ---< 
X-Axis 

VORTICITY· Time ( 6.00) 
!O.Jd'f""""'""_.,::;''c;:::Y"";::;."';::.;'9:"100;;:;".::;:·"~;::;"':::.;"';::;."";:::""•:;::"";:_::"%;,;;«•:;:;~'="'.,::;"":;::_' ---, 

.(' 

' X-Axls 

FIGURE 1. Flow around a cylinder at Reynolds number 9500 be-
tween t=3.4s and t=6s : zoom 
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refined with a geometrical progression near the walls. The global number of nodes 
is rv 160000 and the time step is 0.01. Although it is not seen, the meshes are 
not matched at the interfaces between the subdomains. However, the grids are fine 
enough so that there are no visible jumps. 

The code is implemented with the parallel library PVM, and is not especially 
optimized. Such a computations takes two nights on a cluster of 8 HP9000 series700 
workstations. 

In Figure 3, we have plotted the drag coefficient as a function of time. 
This coefficient is in good agreement with other computations [21]. 
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FIGURE 2. Flow around a cylinder at Reynolds number 9500 at 
time t=6s : zoom 
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FIGURE 3. Flow around a cylinder at Reynolds number 9500: drag 

5.2. 3D results. 
5.2.1. A lid driven cavity at Reynolds number 5000. This test is concerned with 

a cubic lid driven cavity at Reynolds number 5000. The flow is driven at the upper 
wall , where its velocity is 1. On the other walls, a no-slip condition is imposed. 
The number of grid nodes is 2 100 000. The time step is 0.01. In Figure 4(left), we 
display the contour lines of the norm of the velocity in the cross-section y = 0.5. 
One can see two principal recirculations in the bottom of the cavity near the corners. 
The right part of the figure is a crossection in the cross-wind direction: x = 0.766. 
Here we see pairs of vortices in the bottom of the cavity: this instability is called 
the Taylor-Gortler instability. Note that , at this Reynolds number, this instability 
is highly unstationary. 

The 3D code is written in C++ and parallelized with MPI. Therefore it has 
been possible to run it on several machines, e.g. PC with Linux, quadriprocessor 
HP9000, biprocessor Silicon Graphics , IBM SP2, Cray T3E. The present test has 
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Driven cavity at reynolds 5000 
64 subdomains with 32x32x32 gridsize 
Left view: velocity in [Y :::0.5] plane 
Right view: velocity in IX=:Q;l-66!-J)Iaae-----,------:;r------:;,---

Taylor-Gortler like vortices 

FIGURE 4. Flow in a driven cavity at Reynolds 5000: the Taylor-
Gortler instability 
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been run on the Cray T3E at ldris(Orsay). One particularity of our code is that a 
single processor can handle several subdomains, 

• for portability reasons. 
• for load balancing: a discrete optimization algorithm is used to share the 

load and thus the subdomains between the processors in an optimal way. 

There are 64 subdomains and 64 processors are used. Here the grids are 
matched, but the discretization is still non conforming, because no continuity is 
imposed at crosspoints and edges. For a single time step, ( 4 elliptic problems, the 
convection step, the computation of the gradient of the pressure, and the divergence 
of the velocity) it takes 55 s. 

5.2.2. Flow behind a cylinder at Reynolds number 20. This test is concerned 
with the flow behind a cylinder at Reynolds number 20. There are 144 subdomains, 
(2 layers of 72 subdomains). We have displayed both the domain partition and the 
norm of the velocity on a crossection which lies at the interface between the two 
layers of subdomains: here, the continuity conditions are quite relaxed. However, 
the flow seems well computed even at the interface. To conclude, the computation 
seems correct though no quantitative tests have been done yet. 
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Cylinder at reynolds 20 with 144 subdomains 
Velocity in [Y=2.05] plane 
Dimension in X direction: 24.5 
Dimension in Y direction: 4.1 

Dimension in Z direction: 4.1 

Cylinder 

velocity 
1.800<Je.t00 
1.6222e-+OO 
1.4444e+OO 
1.2667e+OO 
1.0889e+OO 
9.1llle-OI 
7.3333e-Ol 
5.5556e-Ol 
3.7778e-01 
2.0000e-01 

FIGURE 5. Flow behind a cylinder at Reynolds number 20 

6. Conclusion 

Discretization methods allowing nonmatching grids are useful for many reasons 
and in particular because they permit the use of locally structured grids. In this 
paper, we have presented two aspects of the use of nonmatching grids for compu-
tational fluid dynamics: 

• We have shown how to modify the mortar method to deal with convection-
diffusion problems 

• We have presented a code in progress for the three dimensional incompress-
ible Navier-Stokes equations. 

The code is based on a characteristics-projection scheme, allowing us to use a 
fast solver developed in [22]. The tests presented above assess the efficiency of 
the scheme. We have presented also numerical results for high Reynolds flows 
in 2D and preliminary results in 3D. The results are correct despite the lack of 
strong continuity but quantitative tests remain to be done. These tests are not 
complete. In particular, we should investigate if mortar methods are still robust 
at high Reynolds number with rather coarse meshes, or if additional continuity 
constraints (continuity at edges or at crosspoints) should be added. We also plan 
to test the mortar method for compressible fluids. 
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A Parallel Non-Overlapping Domain-Decomposition 
Algorithm for Compressible Fluid Flow Problems on 

Triangulated Domains 

Timothy J. Barth, Tony F. Chan, and Wei-Pai Tang 

1. Introduction 

This paper considers an algebraic preconditioning algorithm for hyperbolic-
elliptic fluid flow problems. The algorithm is based on a parallel non-overlapping 
Schur complement domain-decomposition technique for triangulated domains. In 
the Schur complement technique, the triangulation is first partitioned into a num-
ber of non-overlapping subdomains and interfaces. This suggests a reordering of 
triangulation vertices which separates subdomain and interface solution unknowns. 
The reordering induces a natural 2 x 2 block partitioning of the discretization ma-
trix. Exact LU factorization of this block system yields a Schur complement matrix 
which couples subdomains and the interface together. The remaining sections of 
this paper present a family of approximate techniques for both constructing and 
applying the Schur complement as a domain-decomposition preconditioner. The 
approximate Schur complement serves as an algebraic coarse space operator, thus 
avoiding the known difficulties associated with the direct formation of a coarse 
space discretization. In developing Schur complement approximations, particular 
attention has been given to improving sequential and parallel efficiency of imple-
mentations without significantly degrading the quality of the preconditioner. A 
computer code based on these developments has been tested on the IBM SP2 us-
ing MPI message passing protocol. A number of 2-D calculations are presented 
for both scalar advection-diffusion equations as well as the Euler equations gov-
erning compressible fluid flow to demonstrate performance of the preconditioning 
algorithm. 

The efficient numerical simulation of compressible fluid flow about complex 
geometries continues to be a challenging problem in large scale computing. Many 
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(a) Ux + Uy =' 0, Entrance/exit flow. (b) yux - xuy = E~u, Recirculation flow 
in advection limit. 

FIGURE 1. Two model advection flows. 

computational problems of interest in combustion, turbulence, aerodynamic perfor-
mance analysis and optimization will require orders of magnitude increases in mesh 
resolution and solution unknowns to adequately resolve relevant fluid flow features. 
In solving these large problems, algorithmic scalability 1 becomes fundamentally 
important. To understand algorithmic scalability, we think of the partial differ-
ential equation discretization process as producing linear or linearized systems of 
equations of the form 

(1) Ax-b=O 

where A is some large (usually sparse) matrix, b is a given right-hand-side vector, 
and x is the desired solution. For many practical problems, the amount of arithmetic 
computation required to solve (1) by iterative methods can be estimated in terms 
of the condition number of the system K:(A). If A is symmetric positive definite 
(SPD) the well-known conjugate gradient method converges at a constant rate 
which depends on K:. After n iterations of the conjugate gradient method, the error 
E satisfies 

(2) 11Enll2 (JK:(A)-1)n 
IIE0 II2 ~ JK:(A) + 1 

The situation changes considerably for advection dominated problems. The matrix 
A ceases to be SPD so that the performance of iterative methods is not always linked 
to the condition number behavior of A. Moreover, the convergence properties asso-
ciated with A can depend on nonlocal properties of the PDE. To see this, consider 
the advection and advection-diffusion problems shown in Fig. 1. The entrance/exit 
flow shown in Fig. 1(a) transports the solution and any error components along 45° 
characteristics which eventually exit the domain. This is contrasted with the recir-
culation flow shown in Fig. 1 (b) which has circular characteristics in the advection 
dominated limit. In this (singular) limit, any radially symmetric error components 
persist for all time. The behavior of iterative methods for these two problems is 

1the arithmetic complexity of algorithms with increasing number of solution unknowns 
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FIGURE 2. Convergence behavior of ILU preconditioned GMRES 
for entrance/exit and recirculation flow problems using GLS dis-
cretization in a triangulated square (1600 dofs). 

notably different. Figure 2 graphs the convergence history of ILU-preconditioned 
GMRES in solving Cuthill-McKee ordered matrix problems for entrance/exit flow 
and recirculation flow discretized using the Galer kin least-squares ( GLS) procedure 
described in Sec. 2. The entrance/exit flow matrix problem is solved to a 10-8 

accuracy tolerance in approximately 20 ILU-GMRES iterations. The recirculation 
flow problem withE= 10-3 requires 45 ILU-GMRES iterations to reach the 10-8 

tolerance and approximately 100 ILU-GMRES iterations with f = 0. This differ-
ence in the number of iterations required for each problem increases dramatically 
as the mesh is refined. Any theory which addresses scalability and performance of 
iterative methods for hyperbolic-elliptic problems must address these effects. 

2. Stabilized Numerical Discretization of Hyperbolic Systems 

Non-overlapping domain-decomposition procedures such as those developed in 
Sec. 5 strongly motivate the use of compact-stencil spatial discretizations since 
larger discretization stencils produce larger interface sizes. For this reason, the 
Petrov-Galerkin approximation due to Hughes, Franca and Mallet [13] has been 
used in the present study. Consider the prototype conservation law system in m 
coupled independent variables in the spatial domain 0 c Rd with boundary surface 
rand exterior normal n(x) 

(3) 

(4) 

with implied summation over repeated indices. In this equation, u E Rm denotes 
the vector of conserved variables and fi E Rm the inviscid flux vectors. The vector 
g can be suitably chosen to impose characteristic data or surface flow tangency 
using reflection principles. The conservation law system (3) is assumed to pos-
sess a generalized entropy pair so that the change of variables u( v) : R m 1--+ R m 
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symmetrizes the system in quasi-linear form 

(5) 

with u,v symmetric positive definite and f\, symmetric. The computational domain 
0 is composed of non-overlapping simplicial elements Ti, 0 = UTi, Ti n T1 = 
0, i =/= j. For purposes of the present study, our attention is restricted to steady-
state calculations. Time derivatives are retained in the Galerkin integral so that 
a pseudo-time marching strategy can be used for obtaining steady-state solutions. 
The Galerkin least-squares method due to Hughes, Franca and Mallet [13] can be 
defined via the following variational problem with time derivatives omitted from 
the least-squares bilinear form: Let V" denote the finite element space 

(6) 

Find v" E V" such that for all w" E Vh 

(7) B(vh, wh)gal + B(vh, wh)ts + B(v", wh)bc =-= 0 

with 

1 (wTu(v),~- w~,r(v)) dO 
n 

B(v, w)gal 

B(v, w)ls L J (rvw.x,)T T (f,ivv,x,) dO 
TEll 7' 

B(v, w)bc 1r wT h(v, g; n) dr 

where 
(8) 

1 1 
h(v_, v+, n) = 2 (f(u(v-); n) + f(u(v+)i n))- 2IA(u(v); n)l(u(v+)- u(v_)). 

Inserting standard C 0 polynomial spatial approximations and mass-lumping of the 
remaining time derivative terms, yields coupled ordinary differential equations of 
the form: 

(9) D Ut = R(u), R(u): Rn--+ R" 

or in symmetric variables 

(10) D u.vVt = R(u(v)), 

where D represents the (diagonal) lumped mass matrix. In the present study, 
backward Euler time integration with local time linearization is applied to Eqn. 
(9) yielding: 

(11) 

The above equation can also be viewed as a modified Newton method for solving the 
steady state equation R( u) = 0. For each modified Newton step, a large Jacobian 
matrix must be solved. In practice !:::..tis varied as an exponential function IIR(u)ll 
so that Newton's method is approached as IIR(u)ll--+ 0. Since each Newton iterate 
in (11) produces a linear system of the form (1), our attention focuses on this 
prototype linear form. 
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(a) Mesh triangulation (80,000 ele-
ments). 

(b) Mach number solution contours 
(broken lines) and mesh partition 
boundaries (bold lines). 

FIGURE 3. Multiple component airfoil geometry with 16 subdo-
main partitioning and sample solution contours (Moo = .20, o: = 
100). 

3. Domain Partitioning 

In the present study, meshes are partitioned using the multilevel k-way parti-
tioning algorithm METIS developed by Karypis and Kumar [14]. Figure 3(a) shows 
a typical airfoil geometry and triangulated domain. To construct a non-overlapping 
partitioning, a dual triangulation graph has been provided to the METIS partition-
ing software. Figure 3(b) shows partition boundaries and sample solution contours 
using the spatial discretization technique described in the previous section. By 
partitioning the dual graph of the triangulation, the number of elements in each 
subdomain is automatically balanced by the METIS software. Unfortunately, a 
large percentage of computation in our domain-decomposition algorithm is propor-
tional to the interface size associated with each subdomain. On general meshes 
containing non-uniform element densities, balancing subdomain sizes does not im-
ply a balance of interface sizes. In fact, results shown in Sec. 6 show increased 
imbalance of interface sizes as meshes are partitioned into larger numbers of sub-
domains. This ultimately leads to poor load balancing of the parallel computation. 
This topic will be revisited in Sec. 6. 

4. Matrix Preconditioning 

Since the matrix A originating from (11) is assumed to be ill-conditioned, a 
first step is to consider the prototype linear system in right (or left) preconditioned 
form 

(12) (AP- 1 )Px- b = 0. 

The solution is unchanged but the convergence rate of iterative methods now de-
pends on properties of AP- 1 . Ideally, one seeks preconditioning matrices P which 
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(a) Diffusion dominated problem. (b) Advection dominated problem. 

FIGURE 4. Convergence dependence ofiLU on the number of mesh 
points for diffusion and advection dominated problems using SUPG 
discretization and Cuthill-McKee ordering. 

are easily solved and in some sense nearby A, e.g. K(AP- 1) = 0(1) when A is SPD. 
Several candidate preconditioning matrices have been considered in this study: 

4.1. ILU Factorization. A common preconditioning choice is incomplete 
lower-upper factorization with arbitrary fill level k, ILU[k]. Early application and 
analysis of ILU preconditioning is given in Evans [11], Stone [22], and Meijerink 
and van der Vorst [16]. Although the technique is algebraic and well-suited to 
sparse matrices, ILU-preconditioned systems are not generally scalable. For exam-
ple, Dupont et al. [10] have shown that ILU[O] preconditioning does not asymptot-
ically change the O(h-2 ) condition number of the 5-point difference approximation 
to Laplace's equation. Figure 4 shows the convergence of ILU-preconditioned GM-
RES for Cuthill-McKee ordered matrix problems obtained from diffusion and ad-
vection dominated problems discretized using Galerkin and Galerkin least-squares 
techniques respectively with linear elements. Both problems show pronounced con-
vergence deterioration as the number of solution unknowns (degrees of freedom) 
increases. Note that matrix orderings exist for discretized scalar advection equa-
tions that are vastly superior to Cuthill-McKee ordering. Unfortunately, these 
orderings do not generalize naturally to coupled systems of equations which do not 
have a single characteristic direction. Some ILU matrix ordering experiments are 
given in [6]. Keep in mind that ILU does recluster eigenvalues of the preconditioned 
matrix so that for small enough problems a noticeable improvement can often be 
observed when ILU preconditioning is combined with a Krylov projection sequence. 

4.2. Multi-level Methods. In the past decade, multi-level approaches such 
as multigrid has proven to be one of the most effective techniques for solving dis-
cretizations of elliptic PDEs [23]. For certain classes of elliptic problems, multigrid 
attains optimal scalability. For hyperbolic-elliptic problems such as the steady-state 
Navier-Stokes equations, the success of multigrid is less convincing. For example, 
Ref. [15] presents numerical results using multigrid to solve compressible Navier-
Stokes flow about a multiple-component wing geometry with asymptotic conver-
gence rates approaching .98 (Fig. 12 in Ref. [15]). This is quite far from the usual 
convergence rates quoted for multigrid on elliptic model problems. This is not too 
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(a) Effect of increasing mesh overlap. (b) Effect of increasing number of sub-
domains. 

FIGURE 5. Performance of GMRES with additive Schwarz precon-
ditioning. 

surprising since multigrid for hyperbolic-elliptic problems is not well-understood. 
In addition, some multigrid algorithms require operations such as mesh coarsening 
which are poorly defined for general meshes (especially in 3-D) or place unattainable 
shape-regularity demands on mesh generation. Other techniques add new meshing 
constraints to existing software packages which limit the overall applicability of the 
software. 

4.3. Additive Schwarz Methods. The additive Schwarz algorithm [19] is 
appealing since each subdomain solve can be performed in parallel. Unfortunately 
the performance of the algorithm deteriorates as the number of subdomains in-
creases. Let H denote the characteristic size of each subdomain, 8 the overlap 
distance, and h the mesh spacing. Dryja and Widlund [8, 9] give the following 
condition number bound for the method when used as a preconditioner for elliptic 
discretizations 

(13) 

where C is a constant independent of H and h. This result describes the dete-
rioration as the number of subdomains increases (and H decreases). With some 
additional work this deterioration can be removed by the introduction of a global 
coarse subspace. Under the assumption of "generous overlap" the condition number 
bound [8, 9, 4] can be improved to 

(14) K:(AP- 1) ::; C (1 + (H/8)). 

The addition of a coarse space approximation introduces implementation problems 
similar to those found in multigrid methods described above. Once again, the 
theory associated with additive Schwarz methods for hyperbolic PDE systems is 
not well-developed. Practical applications of the additive Schwarz method for the 
steady state calculation of hyperbolic PDE systems show similar deterioration of the 
method when the coarse space is omitted. Figure 5 shows the performance of the 
additive Schwarz algorithm used as a preconditioner for GMRES. The test matrix 
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(a) Partitioned domain. (b) Induced 2 x 2 block discretization 
matrix. 

FIGURE 6. Domain decomposition and the corresponding block 
matrix. 

was taken from one step of Newton's method applied to an upwind finite volume 
discretization of the Euler equations at low Mach number (Moo = .2), see Barth 
[1] for further details. These calculations were performed without coarse mesh 
correction. As expected, the graphs show a degradation in quality with decreasing 
overlap and increasing number of mesh partitions. 

4.4. Schur complement Algorithms. Schur complement preconditioning 
algorithms are a general family of algebraic techniques in non-overlapping domain-
decomposition. These techniques can be interpreted as variants of the well-known 
substructuring method introduced by Przemieniecki [17] in structural analysis. 
When recursively applied, the method is related to the nested dissection algorithm. 
In the present development, we consider an arbitrary domain as illustrated in Fig. 6 
that has been further decomposed into subdomains labeled 1 - 4, interfaces labeled 
5 - 9, and cross points x. A natural 2 x 2 partitioning of the system is induced 
by permuting rows and columns of the discretization matrix so that subdomain 
unknowns are ordered first, interface unknowns second, and cross points ordered 
last 

(15) A _ [Avv 
X- A 

IV 
Avi] (xv) = (!v) 
An XI h 

where xv, XI denote the subdomain and interface variables respectively. The block 
LU factorization of A is then given by 

(16) A= LU = [Avv OJ [J Al)bAvi] 
Aiv I 0 S ' 

where 

(17) 
is the Schur complement for the system. Note that Avv is block diagonal with 
each block associated with a subdomain matrix. Subdomains are decoupled from 
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each other and only coupled to the interface. The subdomain decoupling property 
is exploited heavily in parallel implementations. 

In the next section, we outline a naive parallel implementation of the "exact" 
factorization. This will serve as the basis for a number of simplifying approxima-
tions that will be discussed in later sections. 

4.5. "Exact" Factorization. Given the domain partitioning illustrated in 
Fig. 6, a straightforward (but naive) parallel implementation would assign a pro-
cessor to each subdomain and a single processor to the Schur complement. Let Ii 
denote the union of interfaces surrounding V;. The entire solution process would 
then consist of the following steps: 

Parallel Preprocessing: 

(18) 

(19) 

1. Parallel computation of subdomain Av,v, matrix LU factors. 
2. Parallel computation of Schur complement block entries associated with each 

subdomain vi 
!:15- =A- A- 1 A -. I; I;'D; V;V; 'D;I; 

3. Accumulation of the global Schur complement S matrix 
#subdomains 

S =An- L !:1SI;' 
i=l 

Solution: 
Step (1) 
Step (2) 
Step (3) 
Step (4) 
Step (5) 
Step (6) 

uv = Av-1v bv 
t 1 1 t 

Vf. = AI v uv; 
' _ b ' :..-.#subdomains 

WI - I- L.,i=l 'Vf, 
XI= s-lWI 

Yv = Av I xi , , , A-'-l 
X'[); = uv, - 'D;'D; Y'D; 

(parallel) 
(parallel) 
(communication) 
(sequential, communication) 
(parallel) 
(parallel) 

This algorithm has several deficiencies. Steps 3 and 4 of the solution process are 
sequential and require communication between the Schur complement and subdo-
mains. More generally, the algorithm is not scalable since the growth in size of the 
Schur complement with increasing number of subdomains eventually overwhelms 
the calculation in terms of memory, computation, and communication. 

5. Iterative Schur complement Algorithms 

A number of approximations have been investigated which simplify the exact 
factorization algorithm and address the growth in size of the Schur complement. 
During this investigation, our goal has been to develop algebraic techniques which 
can be applied to both elliptic and hyperbolic partial differential equations. These 
approximations include iterative (Krylov projection) subdomain and Schur com-
plement solves, element dropping and other sparsity control strategies, localized 
subdomain solves in the formation of the Schur complement, and partitioning of 
the interface and parallel distribution of the Schur complement matrix. Before 
describing each approximation and technique, we can make several observations: 

Observation 1. (Ill-conditioning of Subproblems) For model elliptic problem 
discretizations, it is known in the two subdomain case that ,;(Av;vJ = O((L/h) 2 ) 

and ,;(S) = O(L/h) where L denotes the domain size. From this perspective, 
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both subproblems are ill-conditioned since the condition number depends on the 
mesh spacing parameter h. If one considers the scalability experiment, the situa-
tion changes in a subtle way. In the scalability experiment, the number of mesh 
points and the number of subdomains is increased such that the ratio of subdo-
main size to mesh spacing size Hjh is held constant. The subdomain matrices for 
elliptic problem discretizations now exhibit a O((H/h) 2 ) condition number so the 
cost associated with iteratively solving them (with or without preconditioning) is 
approximately constant as the problem size is increased. Therefore, this portion of 
the algorithm is scalable. Even so, it may be desirable to precondition the subdo-
main problems to reduce the overall cost. The Schur complement matrix retains (at 
best) the O(L/h) condition number and becomes increasingly ill-conditioned as the 
mesh size is increased. Thus in the scalability experiment, it is ill-conditioning of 
the Schur complement matrix that must be controlled by adequate preconditioning, 
see for example Dryja, Smith and Widlund [7]. 

Observation 2. (Non-stationary Preconditioning) The use of Krylov pro-
jection methods to solve the local subdomain and Schur complement subproblems 
renders the global preconditioner non-stationary. Consequently, Krylov projection 
methods designed for non-stationary preconditioners should be used for the global 
problem. For this reason, FGMRES [18], a variant of GMRES designed for non-
stationary preconditioning, has been used in the present work. 

Observation 3. (Algebraic Coarse Space) The Schur complement serves as 
an algebraic coarse space operator since the system 

(20) Sxi = bi - AivAl)bbv 

globally couples solution unknowns on the entire interface. The rapid propagation 
of information to large distances is a crucial component of optimal algorithms. 

5.1. ILU-GMRES Subdomain and Schur complement Solves. The first 
natural approximation is to replace exact inverses of the subdomain and Schur com-
plement subproblems with an iterative Krylov projection method such as GMRES 
(or stabilized biconjugate gradient). 

5.1.1. Ite:rative Subdomain Solves. Recall from the exact factorization algo-
rithm that a subdomain solve is required once in the preprocessing step and twice 
in the solution step. This suggests replacing these three inverses with m 1 , m 2 , and 
m3 steps of GMRES respectively. As mentioned in Observation 1, although the 
condition number of subdomain problems remains roughly constant in the scalabil-
ity experiment, it still is beneficial to precondition subdomain problems to improve 
the overall efHciency of the global preconditioner. By preconditioning subdomain 
problems, the parameters m 1, m2, m3 can be kept small. This will be exploited 
in later approximations. Since the subdomain matrices are assumed given, it is 
straightforward to precondition subdomains using ILU[k]. For the GLS spatial 
discretization, satisfactory performance is achieved using ILU[2]. 

5.1.2. Iterative Schur complement Solves. It is possible to avoid explicitly com-
puting the Schur complement matrix for use in Krylov projection methods by al-
ternatively computing the action of S on a given vector p, i.e. 

(21) Sp = Anp- AivAl)bAviP· 

Unfortunately S is ill-conditioned, thus some form of interface preconditioning is 
needed. For elliptic problems, the rapid decay of elements away from the diagonal 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



A PARALLEL NON-OVERLAPPING DOMAIN-DECOMPOSITION ALGORITHM 33 

in the Schur complement matrix [12] permits simple preconditioning techniques. 
Bramble, Pasciak, and Schatz [3] have shown that even the simple block Jacobi 
preconditioner yields a substantial improvement in condition number 

(22) ti(SP,S 1):::; CH- 2 (1 + log2 (H/h)) 

for C independent of hand H. For a small number of subdomains, this technique 
is very effective. To avoid the explicit formation of the diagonal blocks, a number 
of simplified approximations have been introduced over the last several years, see 
for examples Bjorstad [2] or Smith [21]. By introducing a further coarse space 
coupling of cross points to the interface, the condition number is further improved 

(23) ti(SP,S 1 ):::; C (1 + log2 (H/h)). 

Unfortunately, the Schur complement associated with advection dominated dis-
cretizations may not exhibit the rapid element decay found in the elliptic case. 
This can occur when characteristic trajectories of the advection equation traverse 
a subdomain from one interface edge to another. Consequently, the Schur comple-
ment is not well-preconditioned by elliptic-like preconditioners that use the action 
of local problems. A more basic strategy has been developed in the present work 
whereby elements of the Schur complement are explicitly computed. Once the el-
ements have been computed, ILU factorization is used to precondition the Schur 
complement iterative solution. In principle, ILU factorization with a suitable re-
ordering of unknowns can compute the long distance interactions associated with 
simple advection fields corresponding to entrance/exit-like flows. For general ad-
vection fields, it remains a topic of current research to find reordering algorithms 
suitable for ILU factorization. The situation is further complicated for coupled 
systems of hyperbolic equations (even in two independent variables) where multi-
ple characteristic directions and/or Cauchy-Riemann systems can be produced. At 
the present time, Cuthill-McKee ordering has been used on all matrices although 
improved reordering algorithms are currently under development. 

In the present implementation, each subdomain processor computes (in paral-
lel) and stores portions of the Schur complement matrix 

(24) 

To gain improved parallel scalability, the interface edges and cross points are par-
titioned into a smaller number of generic "subinterfaces". This subinterface parti-
tioning is accomplished by assigning a supernode to each interface edge separating 
two subdomains, forming the graph of the Schur complement matrix in terms of 
!_hese supernodes, and applying the METIS partitio~ing software to this graph. Let 
Ij denote the j-th subinterface such that I = Ujfj. Computation of the action 
of the Schur complement matrix on a vector p needed in Schur complement solves 
now takes the (highly parallel) form 

#subinter faces #subdomains 

(25) Sp= " A== p(Ii)- " l:::iSr,· p(Ii)· ~ I 1 I 1 ~ 
j=l i=l 

Using this formula it is straightforward to compute the action of S on a vector p 
to any required accuracy by choosing the subdomain iteration parameter mi large 
enough. Figure 7 shows an interface and the immediate neighboring mesh that 
has been decomposed into 4 smaller subinterface partitions for a 32 subdomain 
partitioning. By choosing the number of subinterface partitions proportional to 
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FIGURE 7. Interface (bold lines) decomposed into 4 subinterfaces 
indicated by alternating shaded regions. 

the square root of the number of 2-D subdomains and assigning a processor to 
each, the number of solution unknowns associated with each subinterface is held 
approximately constant in the scalability experiment. Note that the use of iterative 
subdomain solves renders both Eqns. (21) and (25) approximate. 

In our investigation, the Schur complement is preconditioned using ILU fac-
torization. This is not a straightforward task for two reasons: (1) portions of the 
Schur complement are distributed among subdomain processors, (2) the interface 
itself has been distributed among several subinterface processors. In the next sec-
tion, a block element dropping strategy is proposed for gathering portions of the 
Schur complement together on sub interface processors for use in IL U precondition-
ing the Schur complement solve. Thus, a block Jacobi preconditioner is constructed 
for the Schur complement which is more powerful than the Bramble, Pasciak, and 
Schatz (BPS) form (without coarse space correction) since the blocks now corre-
spond to larger subinterfaces rather than the smaller interface edges. Formally, 
BPS preconditioning without coarse space correction can be obtained for 2D ellip-
tic discretizations by dropping additional terms in our Schur complement matrix 
approximation and ordering unknowns along interface edges so that the IL U fac-
torization of the tridiagonal-like system for each interface edge becomes exact. 

5.1.3. Block Element Dropping. In our implementation, portions of the Schur 
complement residing on subdomain processors are gathered together on subinter-
face processors for use in ILU preconditioning of the Schur complement solve. In 
assembling a Schur complement matrix approximation on each subinterface proces-
sor, certain matrix elements are neglected: 

1. All elements that couple subinterfaces are ignored. This yields a block Jacobi 
approximation for subinterfa.ces. 

2. All elements with matrix entry location that exceeds a user specified graph 
distance from the diagonal as measured on the triangulation graph are ig-
nored. Recall that the Schur complement matrix can be very dense. The 
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Uyy = 0. 

(b) Advection dominated problem. Ux + 
Uy = 0. 

FIGURE 8. Effect of the subproblem iteration parameters mi on 
the global FGMRES convergence, m1 = m2 = m3 for meshes 
containing 2500, 10000, and 40000 solution unknowns. 

graph distance criteria is motivated by the rapid decay of elements away 
from the matrix diagonal for elliptic problems. In all subsequent calcula-
tions, a graph distance threshold of 2 has been chosen for block element 
dropping. 

Figures 8( a) and 8(b) show calculations performed with the present non-overlap-
ping domain-decomposition preconditioner for diffusion and advection problems. 
These figures graph the number of global FGMRES iterations needed to solve the 
discretization matrix problem to w-6 accuracy tolerance as a function of the num-
ber of subproblem iterations. In this example, all the subproblem iteration param-
eters have been set equal to each other (m1 = m 2 = m 3). The horizontal lines 
show poor scalability of single domain ILU-FGMRES on meshes containing 2500, 
10000, and 40000 solution unknowns. The remaining curves show the behavior 
of the Schur complement preconditioned FGMRES on 4, 16, and 64 subdomain 
meshes. Satisfactory scalability for very small values (5 or 6) of the subproblem 
iteration parameter mi is clearly observed. 

5.1.4. Wireframe Approximation. A major cost in the explicit construction of 
the Schur complement is the matrix-matrix product 

(26) 

Since the subdomain inverse is computed iteratively using ILU-GMRES iteration, 
forming (26) is equivalent to solving a multiple right-hand sides system with each 
right-hand side vector corresponding to a column of Av;I;. The number of columns 
of Av;I; is precisely the number of solution unknowns located on the interface sur-
rounding a subdomain. This computational cost can be quite large. Numerical 
experiments with Krylov projection methods designed for multiple right-hand side 
systems [20] showed only marginal improvement owing to the fact that the columns 
are essentially independent. In the following paragraphs, "wireframe" and "super-
sparse" approximations are introduced to reduce the cost in forming the Schur 
complement matrix. 
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FIGURE 9. Wireframe region surrounding interface and precondi-
tioner performance results for a fixed mesh size (1600 vertices) and 
16 subdomain partitioning. 

The wireframe approximation idea [5] is motivated from standard elliptic do-
main-decomposition theory by the rapid decay of elements in S with graph distance 
from the diagonal. Consider constructing a relatively thin wireframe region sur-
rounding the interface as shown in Fig. 9(a). In forming the Eqn. (26) expression, 
subdomain solves are performed using the much smaller wireframe subdomains. In 
matrix terms, a principal submatrix of A, corresponding to the variables within the 
wireframe, is used to compute the (approximate) Schur complement of the inter-
face variables. It is known from domain-decomposition theory that the exact Schur 
complement of the wireframe region is spectrally equivalent to the Schur comple-
ment of the whole domain. This wireframe approximation leads to a substantial 
savings in the computation of the Schur complement matrix. Note that the full 
subdomain matrices are used everywhere else in the Schur complement algorithm. 
The wireframe technique introduces a new adjustable parameter into the precon-
ditioner which represents the width of the wireframe. For simplicity, this width is 
specified in terms of graph distance on the mesh triangulation. Figure 9(b) demon-
strates the performance of this approximation by graphing the total number of 
preconditioned FGMRES iterations required to solve the global matrix problem to 
a 10-6 accuracy tolerance while varying the width of the wireframe. As expected, 
the quality of the preconditioner improves rapidly with increasing wireframe width 
with full subdomain-like results obtained using modest wireframe widths. As a con-
sequence of the wireframe construction, the time taken form the Schur complement 
has dropped by approximately 50%. 

5.1.5. Supersparse Matrix- Vector Operations. It is possible to introduce further 
approximations which improve upon the overall efficiency in forming the Schur com-
plement matrix. One simple idea is to exploit the extreme sparsity in columns of 
Av,i, or equivalently the sparsity in the right-hand sides produced from Av:v, Av,r, 
needed in the formation of the Schur complement. Observe that m steps of GM-
RES generates a small sequence of Krylov subspace vectors [p, A p, A 2 p, ... , Amp] 
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TABLE 1. Performance of the Schur complement preconditioner 
with supersparse arithmetic for a 2-D test problem consisting of 
Euler flow past a multi-element airfoil geometry partitioned into 4 
subdomains with 1600 mesh vertices in each subdomain. 

Backsolve Global 
Fill-Level Distance k GMRES Iterations Time( k) /Time( oo) 

0 26 0.325 
1 22 0.313 
2 21 0.337 
3 20 0.362 
4 20 0.392 

00 20 1.000 

where pis a right-hand side vector. Consequently for small m, if both A and pare 
sparse then the sequence of matrix-vector products will be relatively sparse. Stan-
dard sparse matrix-vector product subroutines utilize the matrix in sparse storage 
format and the vector in dense storage format. In the present application, the 
vectors contain only a few non-zero entries so that standard sparse matrix-vector 
products waste many arithmetic operations. For this reason, a "supersparse" soft-
ware library have been developed to take advantage of the sparsity in matrices 
as well as in vectors by storing both in compressed form. Unfortunately, when 
GMRES is preconditioned using ILU factorization, the Krylov sequence becomes 
[p,AP- 1 p,(-:!P- 1 ) 2_p, ... ,(AP- 1 )m p]. Since the inverse of the ILU approxi-
mate factors L and U can be dense, the first application of ILU preconditioning 
produces a dense Krylov vector result. All subsequent Krylov vectors can become 
dense as well. To prevent this densification of vectors using IL U preconditioning, a 
fill-level-like strategy has been incorporated into the ILU backsolve step. Consider 
the ILU preconditioning problem, L fJ r = b. This system is conventionally solved 
by a lower triangular backsolve, w = L -lb, followed by a upper triangular back-
solve r = fJ- 1w. In our supersparse strategy, sparsity is controlled by imposing 
a non-zero fill pattern for the vectors w and r during lower and upper backsolves. 
The backsolve fill patterns are most easily specified in terms fill-level distance, i.e. 
graph distance from existing nonzeros of the right-hand side vector in which new 
fill in the resultant vector is allowed to occur. This idea is motivated from the 
element decay phenomena observed for elliptic problems. Table 1 shows the perfor-
mance benefits of using supersparse computations together with backsolve fill-level 
specification for a 2-D test problem consisting of Euler flow past a multi-element 
airfoil geometry partitioned into 4 subdomains with 1600 mesh vertices in each sub-
domain. Computations were performed on the IBM SP2 parallel computer using 
MPI message passing protocol. Various values of backsolve fill-level distance were 
chosen while monitoring the number of global GMRES iterations needed to solve 
the matrix problem and the time taken to form the Schur complement precondi-
tioner. Results for this problem indicate preconditioning performance comparable 
to exact ILU backsolves using backsolve fill-level distances of only 2 or 3 with a 
60-70% reduction in cost. 
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(a) Mach contours (4 subdomains, 20K 
elements). 

(b) Mach contours (16 subdomains, 80K 
elements). 

FIGURE 10. Mach number contours and mesh partition boundaries 
for NACA0012 airfoil geometry. 

6. Numerical Results on the IBM SP2 

In the remaining paragraphs, we assess the performance of the Schur com-
plement preconditioned FGMRES in solving linear matrix problems associated an 
approximate Newton method for the nonlinear discretized compressible Euler equa-
tions. All calculations were performed on an IBM SP2 parallel computer using 
MPI message passing protocol. A scalability experiment was performed on meshes 
containing 4/1, 16/2, and 64/4 subdomains/subinterfaces with each subdomain 
containing 5000 mesh elements. Figures lO(a) and 10(b) show mesh partitionings 
and sample Mach number solution contours for subsonic (Moo = .20, a = 2.0°) 
flow over the airfoil geometry. The flow field was computed using the stabilized 
GLS discretization and approximate Newton method described in Sec. 2. Figure 11 
graphs the convergence of the approximate Newton method for the 16 subdomain 
test problem. Each approximate Newton iterate shown in Fig. 11 requires the 
solution of a linear matrix system which has been solved using the Schur comple-
ment preconditioned FGMRES algorithm. Figure 12 graphs the convergence of the 
FGMRES algorithm for each matrix from the 4 and 16 subdomain test problems. 
These calculations were performed using ILU[2] and m1 = m2 = m3 = 5 iterations 
on subproblems with supersparse distance equal to 5. The 4 subdomain mesh with 
20000 total elements produces matrices that are easily solved in 9-17 global FGM-
RES iterations. Calculations corresponding to the largest CFL numbers are close 
approximations to exact Newton iterates. As is typically observed by these meth-
ods, the final few Newton iterates are solved more easily than matrices produced 
during earlier iterates. The most difficult matrix problem required 17 FGMRES it-
erations and the final Newton iterate required only 12 FGMRES iterations. The 16 
subdomain mesh containing 80000 total elements produces matrices that are solved 
in 12-32 global FGMRES. Due to the nonlinearity in the spatial discretization, sev-
eral approximate Newton iterates were relatively difficult to solve, requiring over 
30 FGMRES iterations. As nonlinear convergence is obtained the matrix problems 
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FIGURE 11. Nonlinear convergence behavior of the approximate 
Newton method for subsonic airfoil flow. 
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FIGURE 12. FGMRES convergence history for each Newton step. 

become less demanding. In this case, the final Newton iterate matrix required 22 
FGMRES iterations. This iteration degradation from the 4 subdomain case can 
be reduced by increasing the subproblem iteration parameters m1, m2, m3 but the 
overall computation time is increased. In the remaining timing graphs, we have 
sampled timings from 15 FGMRES iterations taken from the final Newton iterate 
on each mesh. For example, Fig. 13(a) gives a raw timing breakdown for several of 
the major calculations in the overall solver: calculation of the Schur complement 
matrix, preconditioning FGMRES with the Schur complement algorithm, matrix 
element computation and assembly, and FGMRES solve. Results are plotted on 
each of the meshes containing 4, 16, and 64 subdomains with 5000 elements per 
subdomain. Since the number of elements in each subdomain is held constant, the 
time taken to assemble the matrix is also constant. Observe that in our implemen-
tation the time to form and apply the Schur complement preconditioner currently 
dominates the calculation. Although the growth observed in these timings with 
increasing numbers of subdomains comes from several sources, the dominate effect 
comes from a very simple source: the maximum interface size growth associated 
with subdomains. This has a devastating impact on the parallel performance since 
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FIGURE 13. Raw IBM SP2 timing breakdown and the effect of 
increased number of subdomains on smallest and largest interface 
sizes. 

at the Schur complement synchronization point all processors must wait for subdo-
mains working on the largest interfaces to finish. Figure 13(b) plots this growth in 
maximum interface size as a function of number of subdomains in our scalability 
experiment. Although the number of elements in each subdomain has been held 
constant in this experiment, the largest interface associated with any subdomain 
has more than doubled. This essentially translates into a doubling in time to form 
the Schur complement matrix. This doubling in time is clearly observed in the raw 
timing breakdown in Fig. 13(a). At this point in time, we known of no partitioning 
method that actively addresses controlling the maximum interface size associated 
with subdomains. We suspect that other non-overlapping methods are sensitive to 
this effect as well. 

7. Concluding Remarks 

Experience with our non-overlapping domain-decomposition method with an al-
gebraically generated coarse problem shows that we can successfully trade off some 
of the robustness of the exact Schur complement method for increased efficiency by 
making appropriately designed approximations. In particular, the localized wire-
frame approximation and the supersparse matrix-vector operations together result 
in reduced cost without significantly degrading the overall convergence rate. 

It remains an outstanding problem to partition domains such that the maxi-
mum interface size does grow with increased number of subdomains and mesh size. 
In addition, it may be cost effective to combine this technique with multigrid or 
multiple-grid techniques to improve the robustness of Newton's method. 
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1. Introduction 

In this paper, we first show that the domain decomposition methods that are 
usually efficient for solving elliptic problems typically fail when applied to acoustics 
problems. Next, we present an alternative domain decomposition algorithm that is 
better suited for the exterior Helmholtz problem. We describe it in a formalism that 
can use either one or two Lagrange multiplier fields for solving the corresponding 
interface problem by a Krylov method. In order to improve convergence and ensure 
scalability with respect the number of subdomains, we propose two complementary 
preconditioning techniques. The first preconditioner is based on a spectral analysis 
of the resulting interface operator and targets the high frequency components of the 
error. The second preconditioner is based on a coarsening technique, employs plane 
waves, and addresses the low frequency components of the error. Finally, we show 
numerically that, using both preconditioners, the convergence rate of the proposed 
domain decomposition method is quasi independent of the number of elements in 
the mesh, the number of subdomains, and depends only weakly on the wavenumber, 
which makes this method uniquely suitable for solving large-scale high frequency 
exterior acoustics problems. 

Acoustic wave propagation problems lead to linear systems that become very 
large in the high frequency regime. Indeed, for most discretization methods, the 
mesh size h is typically chosen as one tenth of the wavelength in order to ensure 
a basic approximation of the physical phenomena. For this reason, many iterative 
solvers have been and continue to be developed for the Helmholtz problem. In this 
paper, we consider a domain decomposition based iterative algorithm, because of 
the success encountered by such methods for the solution of elliptic problems, and 
because they can be easily implemented on parallel computers. 
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The problem we are interested in solving arises from the discretization of the 
Helmholtz equation in a bounded domain n with an outgoing boundary condition 
on the outside boundary r = an, and can be written as follows 

PROBLEM 1 (The exterior Helmholtz problem). Let f EL2(n) and r EL2(r). 
Find u E H 1 (n) so that 

(1) 

(2) 
au 
an +au= ron r 

2. Domain decomposition for exterior acoustics problems 

2.1. Classical domain decomposition methods for elliptic problems. 
For elliptic problems, non-overlapping domain decomposition methods are usually 
preferred. In such methods, one splits the initial domain n into a finite set of N 
subdomains ni satisfying 

N 

(3) n = U ni, ni n n1 = 0 Vi 1- J 
i=l 

Let Ni = {j, j I- i, ani n an1 I- 0}, be the set of indices j of the subdomains n1 
that are neighbors of ni. For such problems, most domain decomposition methods 
require solving the restriction to each subdomain of the global equation with a set 
of boundary conditions imposed on the subdomain interfaces. For a suitable choice 
of boundary conditions and constraints on the subdomain interfaces, each local 
problem is a well-posed one, and the local solutions ui in ni are the restrictions to 
each subdomain of the global solution in n. 
In the FETI method (cf. C. Farhat and F.-X. Roux [9, 10]), known also as a 
dual Schur complement method, the following interface conditions are used on 
ri1 =ani n an1 

(4) 

PROBLEM 2 (The Dual Schur problem). Let f E L2(n). Find ui E H 1 (ni) 
satisfying 

(5) 

(6) 

under the constraint 

(7) Ui- Uj = 0 on rij 't:/j E Ni 

On the other hand, the primal Schur complement method ( cf. P. le Tallec [12]) 
uses a Dirichlet boundary condition on the subdomain interfaces, which ensures the 
continuity of the solution through these interfaces with the constraint 

aui auj 
(8) - + - = 0 sur rij Vj E Ni 

anij anji 
For such a method and in each subdomain, on has 
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PROBLEM 3 (Primal Schur problem). Let f E L2(0). Find u; E H 1(0;) satis-
fying 

(9) 

(10) U; = Pij (= Pji) on f;j Vj EN; 

under the given constraint 

au; auj 
(11) - +- = 0 on f;j Vj EN; 

an;j anji 

REMARK 4. The local solutions obtained by any of the above methods satisfy 
the following continuity equations 

(12) U; - Uj = 0 on rij Vj E N; 

au; auj 
(13) - + - = 0 on f;j Vj E N; 

an;1 anji 

These two equalities ensure that the function u which is equal to u; in each subdo-
main 0; is the solution of the global problem in H 1 (0). 

If any of the two domain decomposition methods presented above is used for 
solving the Helmholtz problem, the associated local problems can become ill-posed 
when the wavenumber k of the given global problem corresponds to a resonant 
frequency of the subdomain Laplace operator. It follows that the interface bound-
ary conditions characteristic of domain decomposition methods for strongly elliptic 
problems cannot be used for the Helmholtz equation (see also [1]). 

In [3] and [4], B. Despres presents a domain decomposition method for the 
Helmholtz problem where the local subproblems are well-posed, but where a simple 
(and rather inefficient) relaxation-like iterative method is employed for solving the 
resulting interface problem. In this paper, we formulate the interface problem in 
terms of Lagrange multipliers, and develop a scalable preconditioned Krylov method 
for solving it. 

2.2. A new domain decomposition method for the Helmholtz prob-
lem. One way to generate well-posed local problems consists in moving the spec-
trum of the operator associated to the Helmholtz equation in each subdomain into 
the complex plane. For example, one can replace the standard Dirichlet or Neu-
mann boundary conditions on the subdomain interfaces by the Robin boundary 
conditions 0; and 0 1, Vj EN;, can be written as 

au 
(14) a~ + iku; = >..;1 on f;j Vj E N; 

(15) 

where A;j - >.1; = 0 and n is either n;j or nji· The constraint on the subdomain 
interfaces is determined so that local solutions u; and Uj satisfy the continuity 
relations (12) and (13). Hence, this constraint can be formulated as 

(16) [:~- iku] = 0 on f;j Vj EN; 
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where the brackets [· · · J denote the jump of the enclosed quantity through the 
interface rij between two subdomains. It follows that the problem to be solved in 
each subdomain is 

(17) 

(18) 

(19) 

PROBLEM 5. Let f E L 2 (f2) andrE L2(f). Find Ui E H 1(f2i) satisfying 

aui 'k ' r w· N an + z Ui = Aij on ij v J E i 

aui fs r ao - + O:Ui = On n a Gi 
an 

with the constraint 

(20) [~~ - iku] = 0 on rii Vj E Ni 

Strictly speaking, the above method is correct only for a slice-wise or a checker-
board-like decomposition of n. For arbitrary mesh partitions, the above method is 
not guaranteed to generate well-posed local problems, unless additional precaution 
is taken [7]. Indeed, the variational formulation of problem (5) is 

VviEH1(f2i), r V'uiV'Vi-k2 r Uivi+o:l UiVi ln; ln; rnan; 

(21) 

Substituting in the above equation the normal derivative with the expression de-
rived from formula (18) leads to the following Lax-Milgram lemma bilinear form 

(22) 1 \i'ui\i'Vi-k2 J UiVi+o:l UiVi-ik'L:(-1) 6 ~ij1 UiVi 
n; n; rnan; jEN; r;1 

where 8~ . is equal to 1 if n is the outgoing normal unit vector to ni, and is equal 
'1 

to 0 otherwise. The H 1-Ellipticity of the functional is then not satisfied for some 
partitions of the domain n and the problem becomes locally ill-posed. However, 
as shown in [7] and [5], coloring techniques can be used to extend the domain 
decomposition method proposed above to arbitrary mesh partitions while ensuring 
well-posed local problems. Alternatively, one can address general partitions of n by 
relaxing the equality Aij-Aji = 0 and introducing independent Lagrange multipliers 
Aij and Aji· In that case, in each subdomain ni, n is chosen as the outgoing unit 
normal vector, and the global constraint is modified so that in each subdomain the 
following problem is solved 

PROBLEM 6. Let f E L 2 (f2) and r E L2(f). Find ui E H 1(f2i) so that 

(23) 

(24) 

(25) 
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with the double constraint 
au . 

(26) [ani) + zku] = 0 
au 

and [anji + iku] = 0 on rij 't:/j E Ni 

Note that the above double constraint can be derived from linear combinations 
of the continuity relations (12) and (13). Indeed, one has 

(26a) = (13) + ik(12) 

(26b) = (13)- ik(12) 

Proceeding this way, we note that by inverting (26a) and (26b), the following al-
ternative double constraint is obtained 

au au 
(27) [-;:-- iku] = 0 and [-- iku] = 0 on fij 't:/j E Ni 

anij anji 

Nevertheless, we prefer formula (26) because it leads to a linear system of interface 
equations whose spectrum and conditioning properties are preferable for iterative 
solution methods (see [8]). 

REMARK 7. The domain decomposition method presented here is correctly de-
fined for a strictly positive wavenumber k, but becomes singular when k goes to 0. 
In the latter case, the double constraint becomes 

au au 
(28) [-] = 0 and [-] = 0 on ri1 't:/j E Ni 

anij anji 

and relation (12) coupling the traces of the local solutions on the interfaces is never 
satisfied. It follows that the method presented in this section cannot be used for 
solving the Laplace equation. 

NOTATION 8. In the following, we denote by Qij the operator 

(29) Q aui "k aui . ij : -8 + z ui f-+ -- - zkui 
nij anij 

It is shown in [2] that Qij is a unitary operator. Furthermore, its spectrum has 
an accumulation point at 1. Numerically, the density around this point is inversely 
proportional to the wavenumber k. 

3. Variational formulation of the proposed domain decomposition 
method 

3.1. A Lagrange multiplier formulation. In order to analyze the domain 
decomposition method presented in this paper, we begin by rewriting the Helmholtz 
problem (1) as a hybrid problem with two Lagrange multiplier fields on the subdo-
main interfaces. Following [11] for the Laplace equation, we write the variational 
formulation of our target problem as follows. Let f E L 2 (fl) and r E L 2 (f), find 
u E H 1 (n) so that 

(30) 't:/v E H 1(fl), l V'uV'v- k2 l uv + o: i uv = l fv + [ rv 

Next, we consider a decomposition of n into N subdomains 
N 

(31) n = U ni, ni n n1 = 0 Vi =1- j 
i=l 
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and rewrite the variational formulation (30) as follows. Let f E L2 (D) and r E 
L2(r). Find u E H 1(D) so that 

N 

Vv E H 1(D), ~ foi V'(uloJV'(vioJ- k2 foi (u1oJ(v1oJ +a lmaoi (u1oJ(v1oJ 

N 

(32) = ~ foi UioJ(vloJ + lmaoi (flhJ(vloJ 

where ( Vlfli) is the restriction of v to ni. Instead of looking for a function u defined 
inn, it is easier to look for an N-uple u* = (ul, ... , UN) belonging to a space V* 
spanned by these restrictions. 

(33) V* = {v* = (v1,··· ,vN),::Jv E H1(D),Vi,l::; i::; N,vi = v1oJ 

The space V* can be written in terms of the space X* which is the product of the 
spaces xi, defined by 

N 

(34) X*= II xi 
i=l 

as follows 

(35) V* = {v* = (v1,· · · ,vN) E X*,Vi, 1 :S i :S N,Vj E Ni,vilriJ = vllriJ} 

where vilriJ is the trace on the interface rij of the function Vi· The constraint on 
the subdomain interfaces can be relaxed by introducing a double Lagrange multi-
plier P.·ij, >.1i) in the equation as presented in the previous section. This Lagrange 
multiplier belongs to the space M included in f11:o;i:o;N IljENi H-1 (Cj ). The initial 
problem is thus equivalent to the following constrained problem 

PROBLEM 9. Let j E L2(!1) and r E L2(f), find u E V* so that : 
N 

Vv E V* , L { V'uiV'Vi- k2 { UiVi +a { UiVi 
i=l Joi Jni lrnani 

and, with the notation introduced above, to the hybrid problem 

PROBLEM 10. Let f E L2(0) andrE L2(f), find (u*, )..) EX* x M so that 
N 

Vv* EX*, L { V'uiV'vi- k2 { UiVi +a { UiVi 
i=l Joi Jni lrnani 

N 

Vv EX*, L L l(Aij + Aji- 2ikuilriJ)vilriJ = 0 
i=l jENi r,J 
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N 

L L 1 (>.ij + Aji - 2ikujlrij )vilriJ = 0 
i=l jEN; r;J 

In the sequel, we discretize problem (10) for conforming meshes using the 
method of [10]. 

3.2. Discretization of the governing equations. Discretizing the hybrid 
formulation derived in the previous section leads to 

(39) Aiui = fi + L BL>.ij 
jEN; 

where the matrix Ai results from the discretization of the bilinear form 

(40) 1 VuiVvi-k21 uivi+al uivi+ikL { uilriJviW;J 
!1; !1; rua!1; jEN; lriJ 

and Bij represents the operator 

(41) (BijUi, Aij) = (ui, BL>.ij) = { AijUijr;j 
lrij 

The question that arises first is that of the choice of the space of discretization for 
the constraint variables Aij and Aji· But, as our problem is not exactly a hybrid 
one, there is no way to fulfil the Ladyzhenskaya-Babuska-Brezzi condition uniformly. 
As argued in the next remark, this is not a problem in our case, and following the 
analysis presented in [10], we can choose for the operator Bij the restriction to the 
interface of the operator Rij. Such an approach corresponds to choosing for the 
constraint fields the space of the Dirac masses that are centered on the nodes of 
the subdomain interfaces. Let us recall that this choice ensures the equality of the 
discrete fields on the interface for the Laplace equation. Hence, if one defines Mij 
as the mass matrix on the subdomain interfaces 

(42) (MijRijUi,RjiUj) = (RjiMijRijUi,Uj) = r uiwijulwij 
lrij 

one can discretize the first constraint of problem (10) 

(43) 

as 

(44) 

which can be rewritten as 

(45) 

Taking into account that Rij = [0 I], on can deduce 

(46) 

Applying the same treatment to the second constraint, one finally obtains 
N 

(47) L L Aij + Aji - 2ikMijRijUi = 0 
i=l jEN, 
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N L L Aij + Aji - 2ikMjiRjiUj = 0 
i=l jENi 

49 

REMARK 11. Adding equations (47) and (48), one obtains the following system 
of equations 

(49) 
N L L -2ikMij(RijUi- RjiUj) = 0 

i=l jENi 

and thus 

(50) 

In other words, the discrete fields Ui are continuous across the subdomain inter-
faces. Hence, one can assemble the local equations and show that the local discrete 
solutions in each subset ni are indeed the restrictions of the discrete solutions of 
the global problem since there is no approximation in the way the constraints are 
satisfied. 

Substituting Ui and Uj obtained in equation (39) into equation (47) and equa-
tion (48), leads to the following interface problem 

N 

(51) L L Aij + Aji - 2ikMijRijA;1 RL>.ij = 2ikMijRijAi 1 fi 
i=l jENi 

N 

(52) L L Aij + Aji - 2ikMjiRjiAj1 Rji>.ji = 2ikMjiRjiAj 1 fj 
i=l jENi 

Denoting by).. the double Lagrange multiplier (>.ij, Aji) defined on all the interfaces, 
the previous system can be written as 

(53) D>.=b 

where Dis a dense, complex, regular, unsymmetric and non hermitian matrix. This 
matrix is not explicitely known, and assembling it is computationally inefficient. 
However, given that Dis the sum over the subdomains of local matrices, its product 
by a vector needs only local data (see Section 2.3.2). For these reasons, an iterative 
method is the most suitable method for solving the linear system D).= b. 

3.3. Iterative solution of the the hybrid problem. 
3.3.1. The Generalized Conjugated Residuals algorithm. Among all iterative 

methods, the Generalized Conjugated Residuals algorithm (GCR) is perhaps the 
most efficient for solving the linear system D). = b where D is a complex matrix. 
This algorithm minimizes liD>.- bll 2 on the Krylov spaces Kp+l = {g0 ,Dgo,···, 
DP g0 } with growing dimension p. 
Knowing at iteration p the approximate solution )..P , the residual gP = D)..P- b, 
the normalized descent direction vectors { w0 , · · · , wP} and their product by matrix 
D, {Dw0 , · · · , DwP}, the iteration p + 1 d of the GCR algorithm goes as follows 

• Compute the optimal descent crefficient 

(54) rJ' = - (gP, DwP) 
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• Update the solution and the residual 
(55) ).P+l = )...P + r)PwP 

(56) gP+l = gP + r? DwP 

(57) 

(58) 

(59) 

(60) 

(61) 

• Compute the product of DwP by matrix D 

• Determine the new descent direction by orthogonalizing with respect to the 
D* D inner product the vector DwP and all the previously computed search 
directions 

• Compute DwP+l 

• Normalize wP+ 1 

p 

wP+l = DwP + L 'Y)w1 
j=O 

p 

DwP+1 = D2wP + L 1) Dw1 
j=O 

wP+1 
wP+I = ----;======= J ( DwP+ 1, DwP+ 1) 

DwP+l 
DwP+I = ~~=~~====~ 

V(DwP+1, DwP+ 1 ) 

where (w,v) represents the scalar product of the vectors wand v in L2(r x r), and 
w the complex conjugate of the vector w. Using the properties of orthogonality of 
the different vectors, one can show that this algorithm converges with a number of 
iterations that is smaller or equal to the dimension of matrix D. 

3.3.2. Cost and implementation issues. The main part of the computations is 
associated with the matrix-vector product, for which one has to solve a Helmholtz 
problem with radiation conditions at each iteration, and in each subdomain. The 
remainder of the computation consists of scalar products and linear combinations 
of vectors. 
As stated previously, the product of a vector by matrix D needs only data that is 
local to each processor. This product is performed by first using matrices Ai 1 , Mij 

and Rij which are local to the subdomains, and then assembling the result over all 
the subdomains. 

The fact that A is a symmetric matrix allows us to use a Crout factorization 
so that the products by matrix Ai 1 can be obtained by forward and backward 
substitutions. Since matrix Rij is a restriction matrix, it does not need be stored. 
Furthermore, the rank of matrix Mij is equal to the number of degrees of freedom 
on the interface between two subdomains. The use of a direct local solver, and 
the properties of the operator on the interface ensure that the proposed domain 
decomposition method has good convergence properties and is more robust than 
other iterative methods. Also note that because only local matrices are factored, 
this method is more economical than direct ones. 

From the implementation viewpoint, the assembly part requires exchanging 
messages containing one-dimensional arrays defined on the interfaces such as de-
scent directions, or Lagrange multipliers. Therefore, the amount of data exchanged 
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Neumann B.C. 

Neumann B.C. 

FIGURE 1. Problem definition 

Flealpartofglobalsolulill<l lmag~narypartolglobalsolutoon 

'solimag'-

FIGURE 2. Real and imaginary parts of the exact solution 

is small compared to the amount of computations performed. In other terms, the 
product of a vector by matrix D consists in local forward and backward substitu-
tions followed by data exchanges between processors, and therefore the proposed 
method is easily parallelizable on any multiprocessor. 

4. Numerical scalability analysis 

Here, we perform a set of numerical experiments to assess the convergence of 
the proposed method for an increasing problem size, and/or an increasing number 
of subdomains, and/or an increasing wavenumber. More specifically, we consider 
a two-dimensional rectangular waveguide problem with a uniform source located 
on the west side, and reflecting boundaries at the north and south sides. The 
exact solution of this sharp problem is a plane wave traveling from west to east. 
The domain 0 is discretized by finite elements and partitioned in a number of 
subdomains. Homogeneous Neumann boundary conditions are applied on the north 
and south sides of the domain, a non-homogeneous Dirichlet condition is applied 
on its west side, and an absorbing condition on its east side. 

The geometry of the domain and the real and imaginary parts of the exact 
solution are shown on Fig. 1 and Fig. 2. 

First, we investigate the dependence of the convergence of the proposed method 
on the mesh size (Fig. 3). For this purpose, we fix the wavenumber k and the 
number of subdomains and consider a series of mesh sizes h, h/2, h/3, .... The 
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FIGURE 4. Effect on convergence of the wavenumber 

211 

results reported in Figure 3 show that the convergence of the proposed domain 
decomposition method is only weakly dependent on the mesh size h, which is quite 
impressive given that no preconditioner has yet been explicitly introduced. This 
corroborates the fact that operator Q;1 is unitary. 

The next figure depicts the varation of the convergence of the method with 
respect to the wavenumber for a fixed mesh size and a fixed number of subdomains 
(Figure 4). The results reported in Figure 4 reveal a sublinear dependence on the 
wavenumber k. Practically, this indicates that when the frequency of the problem 
is increased, the convergence of the method deteriorates. 
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In order to study the effect of the number of subdomains, we fix the number 
of degrees of freedom in the local meshes and the wavenumber, and increase the 
number of subdomains. The corresponding results (Figure 5) show a linear depen-
dence with respect to the number of subdomains. The last study (Figure 6) shows 
the effect on convergence of a simultaneous variation of the wavenumber and the 
number of subdomains where kH is kept constant, H being the mean diameter of 
a subdomain. The results clearly show a linear dependence of convergence on kH. 

In summary, the method as presented so far seems to scale with the problem 
size (mesh size), but not with the wavenumber and/or the number of subdomains. 
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FIGURE 7. Geometry of the model problem 

Therefore, our next objective is to develop preconditioning techniques for ensuring 
scalability with respect to the number of subdomains, and improving convergence 
in the high frequency regime. 

5. Preconditioning techniques 

5.1. Definitions. Here, we restrict our analysis to the following canonical 
problem (cf Figure 7). 

LetS be a bounded set of JR2 with a regular surface. Domain n under consid-
eration iss X [0, L]. We use two subdomains nl and n2 defined by 

(62) 
(63) 

s X [O,Ll] 
s X [Ll' Ll + L2] 

with 0 < L1, 0 < L2 and L1 + L2 = L. The sectional variables are denoted by 
x, y, the fiber variable is denoted by z. We will also use (x, y, z) = (Y, z) =X. We 
denote by rJ = s X Ll the interface between nl and n2. 

The interesting point about this problem is that it separates the variables and 
facilitates the explanation of some features of the method. 

Using the previously introduced notation, the matrix D of the condensed prob-
lem can be written as 

(64) 

where Q1 (resp. Q2 ) is a discrete form of the unitary operator introduced in the 
notation (29), associated with subdomain 0 1 (resp. 02). The spectrum of matrix 
D spreads on the unit circle of the complex plane centered in 1 and has two accu-
mulation points : one in 0 and the other in 2 (cf. Fig. 8). 

REMARK 12. If the existence of areas of accumulation of eigenvalues generally 
accelerates the convergence of Krylov-like methods, it is nonetheless clear that the 
accumulation point located in 0 deteriorates the conditioning of matrix D. 

REMARK 13. Increasing the frequency for a given mesh has two effects. First, it 
diminishes the density around the accumulation points and increases the dispersion 
of the spectrum. Second, the numerical accumulation points move away from 0 and 
2. These two properties have contradictory effects on the convergence speed and 
explain the various crossings of the convergence curves. 
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5.2. Spectral analysis. When considering our canonical problem, the solu-
tions of the Helmholtz problem in 01 and 02 may be decomposed as the sums 
of 

(65) 
where ¢.>n are the eigenfunctions of the Laplace operator on S denoted by D.s. 
Hence, we have 

(66) 
Thus, the functions '¢n in each of the two subdomains satisfy the ordinary differ-
ential equation 

(67) 
Two cases must be distinguished 

• k2 > (>.n) 2 : this is the propagative case. We denote k~ = Jk2 - (>.n) 2 and 
we have '¢n(z) = aeik~z + beik~z. 

• k2 > (>.n) 2 : this is the case of a vanishing wave. We denote k~ = 
J-k2 + (>.n)2 and we have '1/Jn(z) = aek~z + bek~z. 

In each case, a and b are determined from the boundary conditions at z = 0 or 
z =L. 

Let us interpret physically the above two cases. The first case corresponds to 
a wave which oscillates slowly on the interface and propagates through the subdo-
mains. The second case corresponds to a wave which oscillates so rapidly on the 
interface that it cannot propagate in the subdomains. In order to speed up conver-
gence, we develop two complementary preconditioners that target the two different 
cases. The high frequency phenomena on the interface - which corresponds to 
vanishing waves in the subdomains and hence local waves around the interfaces 
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- will be filtered by a local preconditioner. We will construct the local precondi-
tioner as an approximate inverse of the hermitian part of D. The low frequency 
phenomena - which corresponds to waves propagating in all the subdomains -
will be filtered by a global preconditioner that will be referred to in the sequel as 
the Coarse Grid preconditioner. This coarse grid preconditioner is a projection on 
the space orthogonal to a set of functions which are defined on the interfaces. Here, 
these functions are chosen as low frequency plane waves defined locally on each 
interface r ij. 

5.3. The local preconditioner. 
5.3.1. The principle. Here, our goal is to replace the solution of the linear 

system D).. = b by the solution of the system MD).. = Mb, where matrix M is an 
approximate inverse of matrix (D + D*)/2. We denote by n the vector normal to 
r I and pointing towards the increasing z. Thus, 

(68) Q1 au1 'k 1 au1 'k 1 -+zu f--+ --zu 
an an 

(69) - au2 + iku2 f--+ - au2 - iku2 
an an 

Let us represent Q1 (resp. Q2) in the basis of the functions ¢n(Y). 

and 

(70) 

If u1lr1 = ¢n(Y), then, in !11, 

Hence, 

1 '1/Jn(z) ,~.. (Y) 
U = '1/Jn(£1) 'f'n ' 

8 1 = '1/J~(Lt) ,~.. (Y) 
nU '1/Jn(Lt) 'f'n · 

cPn(Y) f--+ 
'1/J~'(Lt)- ik'ljJ~(LI) ¢ (Y). 
'1/J~'(LI) + ik'ljJ~(Lt) n 

Similarly, 

(71) 

In the case of Dirichlet boundary conditions on the two faces of the cylinder, one 
has 

• '1/J~(z) = sin(k~z) in the propagative case, 
• '1/J~(z) = sh(k~z) in the vanishing case, 
• '1/J;(z) = sin(k~(z- L)) in the propagative case, 
• '1/J~(z) = sh(k~(z- L)) in the vanishing case. 

Hence, 
'lp' 

• -'-q-(Lt) = k~cotg(k~L1) (prop. case), 
'1/Jn 
'I/J1 I 

• '1/JA (LI) = k~ coth(k~LI) (van. case), 

'I/J2' • --%- (L2 ) = -k~cotg(k~£2) (prop. case), 
'1/Jn 
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7/J2' 
• ---%-(£2) = -k~ coth(k~L2) (van. case). 

7/Jn 
It follows that, in the propagative case, 

(72) Ql <Pn ----t 
k~cotg(k~L1) - ik ¢ 
k~cotg(k~Ll) + ik n 

(73) Q2 <Pn ----t 
k~cotg(k~L 2 ) - ik ¢ 
k~cotg(k~L2) + ik n 
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For the vanishing case, one has to turn the cotangent functions into hyperbolic 
cotangent functions. 

Let us denote by >.; and >..; the eigenvalues of Q1 and Q2 that have appeared 
above. In the <Pn basis, operator D can be written as 

(74) 

and its hermitian part, denoted by H D, is 

(75) 

To filter the vanishing modes, that is, the modes having a spatial frequency on the 
interface that is greater than the wavenumber of the problem, we are going to look 
for an approximate inverse of the hermitian part of matrix D in the limit An > > k. 

In this limit, we have: coth(k~Li) = 1 + 0(1/>..~), Vp. 
Hence, 

(76) 

and, 

(77) ).2 = (>.n)2 - 2ikJ(>.n)2 - k2 - 2k2 
n (>.n)2 

One can deduce 

(78) 

Similarly, 

(79) 

The inverse of H D can be written as 

(80) 

which simplifies to 

(81) [ 
1 + (>.n)2 

(HD)- 1 = (1/4) 1 _ (f:)2 

k2 
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Since the functions ¢n are eigenfunctions of f:l.s with -(>.n) 2 as eigenvalues, 

(82) [ 
1 f:l.s 

(HD)- 1 = (1/4) t 
1+~ 

k2 

where L is a continuous operator from Sobolev space H 8 into H 8 +2 • We will use 
the first part of the formula defining (H D)-1 as a local preconditioner. 

The goal of this local preconditioner is to filter the eigenmodes associated with 
the eigenvalues that are close to zero. But, as a drawback, it also changes the 
behavior of the other modes, and principally the low frequency ones. 
Hence, we will have to correct this drawback by designing a preconditioner that 
is associated with the propagative modes in order to achieve a good convergence. 
This will be done by our coarse grid preconditioner that we present and discuss 
later in this paper. 

5.3.2. The Preconditioned Generalized Conjugated Residual algorithm. In the 
case where a preconditioner M of matrix D is known, on can use a modified Gen-
eralized Conjugated Residual algorithm to solve the linear system D>. = b. In this 
algorithm, the successive descent direction vectors are built in order to create a 
D* D orthogonal basis of the successive Krylov spaces 

Kp+l = {Mgo,MDMgo, .. ·, (MD)PMg0}. 

The algorithm is now presented in details. 
• Initialization 

(83) 

• Computation of the product of vector w0by matrix D then normalization 

(84) Dw0/(Dw0,Dw0)112 

• Iteration p + 1 of Preconditioned generalized conjugated residuals algorithm 
for p 2: 0 

- Determination of the optimal descent crefficient 

(85) rJ' = -(gP, DwP) 

- Update of the solution and its residual 

(86) ,XP+1 = ,XP + rf'wP 

(87) gP+1 = gP + rl' DwP 

(88) 

(89) 

(90) 

- Computation of the product of vector DwP by matrix M 

MDwP 

- Computation of the product of M DwP by matrix D 

DMDwP 

- Determination of the new descent direction by orthogonalizing for 
D* D vector M DwP with respect to the previously computed direc-
tions 

'Yf = -(DMDwP,Dw1) 't:/j = 0, ... ,p 
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p 

(91) wP+I = MDwP + L 1}wJ 
j=O 

- Determination of vector DwP+ 1 

p 

(92) DwP+l = DMDwP + L 1}DwJ 
j=O 

- Normalization of the new descent direction 

(93) 
wP+I 

wP+I = ----;:====== 
J(DwP+ 1 , DwP+I) 

5.3.3. Cost issues. The local preconditioner described above requires only a 
matrix vector multiplication on the subdomain interfaces, and therefore is eco-
nomical and parallelizable. It is reminiscent of the "lunmped" preconditioner for 
elasticity problems [10]. 

5.4. The coarse grid preconditioner. 
5.4.1. The principle. The goal of this method which was first introduced by 

Farhat, Chen, and Mandel in [5] for time-dependent elasticity problems is to build 
an n+ 1 dimensional space W for a space V called Coarse Grid, and then to perform 
the iterations of GCR in a space orthogonal to W. With a good choice of the basis 
functions of the coarse grid, we aim at a better convergence of the algorithm, since 
it starts with the initial knowledge of n + 1 descent directions. From what has been 
shown above, we choose for V, the space spanned by { v0 , · · · , Vm} where the vi 
are low frequency functions on an interface. This space will filter the eigenmodes 
associated with propagative phenomena. 

More details on the theory of the coarse grid preconditioner can be found 
in [6]. In this paper, we implement the coarse grid preconditioner by means of 
reconjugations-within the GCR algorithm. Of course it is not the unique way to do 
this and we could have followed a method using the definition of matrix operators 
as presented in [5] for instance, but the results would not have been changed. 

In order to use the projected GCR algorithm, one has to build a basis W = 
{ wo, · · · , wn} that is D* D orthonormal from basis V.As matrix D is regular, if 
vectors Vi are linearly independent, it will be the same for vectors Wi and therefore 
m = n. We want to construct W so that 

m 

Wi = L hjiVJ and (Dwi, DwJ) = 0 'Vi =I j 
j=O 

In matrix notation we have 
(94) W = V H such that (DW, DW) =I 

This approach produces the same effect as a QR factorization of basis V. Let us 
consider a Cholesky decomposition LL* of matrix (DV)*(DV). Then the equality 
( 94) becomes 

(DVH)*(DVH) = H* LL* H =I 

By identifying factors, we deduce : H = L -*. Hence, the computation of the basis 
W simply amounts to forward substitutions in the system W L * = V. Once all the 
vectors of W are computed, we can apply the Projected GCR algorithm described 
next. 
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5.4.2. The projected GCR algorithm. When aD* D orthonormal basis { w0 , ... , 

wn} is known, it is possible to use a modified GCR, where the modification amounts 
to building the successive descent directions by reconjugating them with vectors 
{ w0 , · · · , wn}. The successive steps of the algorithm are 

(95) 

(96) 

(97) 

(98) 

(99) 

• Initialization 

.\o, go= D.\o- b 

• Re-initialization by reconjugation 

Pj = (l,DwJ) \:lj = 0, .. · ,n 

n 

.\o = ,\o + LPJWj, 
;=0 

n 

go= go+ LP]Dwj 
j=O 

• Computation of the product of vector go by matrix D 

• Computation of the first descent direction 

'/j = -(go, DwJ) \:lj = 0, · · · , n 

n 

(100) wn+l =go + L '/jWj 
j=O 

• Determination of the quantity Dwn+l 

(101) 
n 

Dwn+l = Dgo + L 'IJDwj 
j=O 

• Normalization of the first descent direction 

(102) 
n+l 

wn+l = w 

V(Dwn+l' Dwn+l) 
Dwn+l = 

-V{(~D~w=n=+~l=, D~w=n=+~l) 

• Iteration p + 1 of the projected GCR for p 2:: n + 1 
- Determination of the optimal descent coefficient 

(103) rJ' = -(gP, DwP) 

- Update of the solution and the residual 

(104) ).P+l = ).P + pPwP 

(105) gP+l = gP + pP DwP 

(106) 

(107) 

- Computation of the product of vector DwP by matrix D 

D2 wP 

- Determination of the new descent direction by orthogonalizing for 
D* D vector M DwP with respect to the previously computed direc-
tions 
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p 

wP+1 = DwP + L 'Yfwj 
j=O 

- Determination of vector DwP+ 1 

p 

DwP+1 = D2wP + L "(~Dwj 
j=O 

- Normalization of the descent direction vector 
D p+1 

DwP+1 = w 

J(DwP+1, DwP+1) 
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5.4.3. Cost issues. Here again, the major part of the computation cost re-
sides in the matrix-vector product. The reconjugations are just scalar products 
and linear combinations of vectors. It follows that the computation of basis W = 
{ w0 , · · · , wn}, obtained by D* D orthonormalization of basis V represents an im-
portant amount of computation. It would be as expensive as the computation of 
the n + 1 first directions of GCR, if basis V were not defined locally, interface by 
interface. The choice made for basis V and the fact that the Lagrange multipliers 
are defined on the double of the global interface restrict the computation of the 
product of a vector v; by matrix D to a product by the local matrix A;, which is a 
forward-backward substitution, and to exchanges of data between neighbor subdo-
mains. The cost to build the basis W is associated with that of performing in each 
subdomain 0; as many forward-backward substitutions as the number of interfaces 
of the subdomain, and this for each coarse function defined on an interface. On 
a parallel processor, if the number of coarse grid functions per interface remains 
constant, an increase of the number of subdomains would have no effect on the local 
computational cost of basis W. The cost of the basis functions of the coarse grid 
is thus small compared to the cost of the computation of the n + 1 first directions 
of the GCR algorithm. 

In the following section, we present the convergence curves when the precondi-
tioners proposed here are used. These curves show that the performance of the 
proposed domain decomposition method equipped with the preconditioners de-
scribed here exhibits a low dependency on the wavenumber and on the number 
of subdomains. 

6. Performance of the preconditioned domain decomposition method 

Here, we assess the impact of the preconditioners presented in the previous 
sections on the convergence of the proposed domain decomposition method. For 
this purpose, we employ the same test problem as that introduced in Section 4. 

In a first step we investigate the influence of the number of coarse grid basis 
functions on the number of iterations (Figure 9). As stated before, the coarse grid 
preconditioner aims at filtering the phenomena associated with low frequencies on 
the interfaces. If we choose a number of coarse grid basis functions that is too small 
compared to mmax = krr / L, some low frequency modes will be damped but the 
others will slow down the method (L is the length of the interface). If we increase 
the number of basis functions per interface to exceed mmax, the coarse grid will 
affect the middle and high frequency oscillations on the interfaces. In other words, 
the global preconditioner will interfere with the local one. Hence, it seems more 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



62 

;;; 
:J 
'0 
'iii 
!!! 
0 
Cl 
0 

...J 

;;; 
:J 
'0 
'iii 
~ 
0 
Cl 
0 

...J 

0.1 

0.01 

0.001 

0.0001 

1e-Q5 

1e-06 

ARMEL DE LA BOURDONNAYE ET AL. 

PLANE test- H=1/3, h=H/100, k=100, Prec.= ... 

·· .. 

42 53 71 
Iteration number 

method alone -
e.G.2 
e.G.2 
e.G.2 
e.G.2 
e.G.2 
e.G.2 
e.G. 1 
e.G. 9 

155 172 

FIGURE 9. Effect of the size of the coarse problem 

PLANE test- H=1/3, h=H/100, k=100, Prec.= ... 

0.1 

0.01 

0.001 

0.0001 

1e-Q5 

1e-06 
42 53 71 155 172 

Iteration number 

FIGURE 10. Effect of the local preconditioner 

195 

195 

sensible to use the coarse grid preconditioner only for low frequencies and to use the 
local preconditioner for high frequency phenomena. This strategy is also justified 
by the fact that the local preconditioner increases the granularity of the method 
without adding reconjugations at each iteration. 

In Figure 10, one can see that the local preconditioner accelerates convergence 
once the low frequency modes have been filtered. 

In Section 4, we have exhibited the weak dependency of our method on the 
mesh size. Here, we show in Figure 11 that this dependency is even weaker when 
the two preconditioners are used. 
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Next, we fix the size of the local meshes and the geometry of the global problem 
and focus on the value of parameter mmax, where mmax denotes the largest integer 
satisfying m1r < kH where H is the length of a subdomain interface. In other 
words, all the functions ¢m (Y) with m > mmax correspond to vanishing modes 
that do not propagate on a long range. We consider a given frequency and a 
given number of subdomains N. If N is increased, the mean diameter H of the 
subdomains is reduced, and so is mmax· The total number of basis functions of the 
coarse grid space remains unchanged, but, locally the number of basis functions per 
subdomain decreases; hence, the computational cost is reduced. Figure 12 shows 
that the coarse grid preconditioner achieves a weak dependence of the method on 
the the number of subdomains. 

Next, we stress that the number of coarse grid functions must vary with the 
wavenumber k. Indeed, when the frequency is increased, one has to proportionally 
increase the number mmax in order to filter all the propagative modes. Figure 13 
shows that, with an appropriate variation of the number of these functions per 
interface, it is possible to increase the frequency with only a small variation in the 
convergence histories. If the wavelength diminishes proportionally to the size of 
the subdomain, i.e. so that the product kH remains constant, one can see that the 
number mmax remains constant. In other terms, in that case one does not have to 
increase the number of coarse grid functions for each subdomain interface boundary 
(see Figure 14). This property is important for realistic exterior acoustics problems. 

In summary, the results reported herein show that the performance of the 
proposed domain decomposition method equipped with the proposed local and 
global preconditioners is weakly dependent on the mesh size, the subdomain size, 
and the frequency of the problem, which makes this method uniquely efficient at 
solving high frequency exterior acoustics problems. 
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7. Conclusions 

In this paper, we have presented a Lagrange multiplier based domain decom-
position method for solving iteratively large-scale systems of equations arising from 
the finite element discretization of high-frequency exterior Helmholtz problems. 
The proposed method relies on three key ideas: (1) the elimination of local res-
onance via the stabilization of each subdomain operator by a complex interface 
mass matrix associated with intersubdomain radiation conditions, (2) the use of 
a carefully constructed local preconditioner for filtering high frequency errors and 
accelerating convergence in the presence of fine meshes, and (3) the use of a global 
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preconditioner constructed using a coarsening theory for filtering low frequency er-
rors and accelerating convergence in the presence of fine mesh partitions. A unique 
characteristic of the proposed method is that, even in the absence of both precondi-
tioners, its number of iterations grows at most poly logarithmically with the number 
of elements per substructure, and grows sublinearly with the wave number. Fur-
thermore, when equipped with both the local and global preconditioners derived in 
this paper, the performance of the proposed method becomes almost insensitive to 
the frequency range and number of subdomains, which makes this method uniquely 
efficient at solving high frequency exterior acoustics problems [5]. 
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An Agglomeration Multigrid Method for Unstructured Grids 

Tony F. Chan, Jinchao Xu, and Ludmil Zikatanov 

1. Introduction 

A new agglomeration multigrid method is proposed in this paper for general 
unstructured grids. By a proper local agglomeration of finite elements, a nested 
sequence of finite dimensional subspaces are obtained by taking appropriate linear 
combinations of the basis functions from previous level of space. Our algorithm 
seems to be able to solve, for example, the Poisson equation discretized on any 
shape-regular finite element grids with nearly optimal complexity. 

In this paper, we discuss a multilevel method applied to problems on general 
unstructured grids. We will describe an approach for designing a multilevel method 
for the solution of large systems of linear algebraic equations, arising from finite 
element discretizations on unstructured grids. Our interest will be focused on the 
performance of an agglomeration multigrid method for unstructured grids. 

One approach of constructing coarse spaces is based on generating node-nested 
coarse grids, which are created by selecting subsets of a vertex set, retriangulating 
the subset, and using piecewise linear interpolation between the grids (see [8, 5]). 
This still provides an automatic way of generating coarse grids and faster implemen-
tations of the interpolation in O(n) time. The drawback is that in three dimensions, 
retetrahedralization can be problematic. 

Another effective coarsening strategy has been proposed by Bank and Xu [1]. 
It uses the geometrical coordinates of the fine grid and the derefinement algorithm 
is based on the specified patterns of fine grid elements. The interpolation between 
grids is done by interpolating each fine grid node using only 2 coarse grid nodes. 
As a consequence of that the fill-in in the coarse grid matrices is reasonably small. 
The hierarchy of spaces is defined by interpolating the basis. 

Recently a new approach, known as auxiliary space method, was proposed by 
Xu [16]. In this method only one non-nested (auxiliary) grid is created and then all 
consecutive grids are nested. This can be done by using as auxiliary grid a uniform 
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one and interpolating the values from the original grid there. For a uniform grid 
then, there is a natural hierarchy of coarse grids and spaces. Such a procedure leads 
to optimal multigrid methods in some applications. 

One promising new coarsening techniques is based on the agglomeration tech-
nique (see Koobus, Lallemand and Dervieux [11]). Instead of constructing a 
proper coarse grid, neighboring fine grid elements are agglomerated together to 
form macroelements. Since these agglomerated regions are not standard finite ele-
ments, appropriate basis functions and interpolation operators must be constructed 
on them. An algebraic construction of agglomerated coarse grid spaces has been 
investigated by Vanek, Mandel, and Brezina [6] and Vanek, Kfizkova [7]. Their 
approach uses a simple initial interpolation matrix, which might not be stable, and 
then this matrix is smoothed and stabilized by some basic relaxation schemes, e.g. 
Jacobi method. 

The pure algebraic definition of the coarse spaces has the advantage that there 
is no need to use any geometrical information of the grid or of the shape of the grid 
and the kind of finite elements used. We refer to a paper by Ruge and Stuben [13] 
on algebraic multigrid. Recent developments in this direction have been made by 
Braess [2] and Reusken [12]. The main issue in using pure "black-box" algebraic 
derefinement is that the coarse grid operators usually become denser and it is not 
clear how to control their sparsity except in some special cases. 

Another approach in the definition of coarse spaces, known as composite finite 
element method was recently investigated by Hackbusch and Sauter in [10]. This 
method gives coarse space constructions which result in only few degrees of freedom 
on the coarse grid, and yet can be applied to problems with complicated geometries. 

In this paper, we will consider a new and rather simple technique for defining 
nested coarse spaces and the corresponding interpolation operators. Our earlier 
experience shows that the definition of the sparsity pattern of the transfer opera-
tors and the definition of these operators themselves is the most crucial point in 
designing multigrid algorithms for elliptic problems. In the present paper we pro-
pose a technique based on the graph-theoretical approach. Our goal is to construct 
a "coarse grid" using only the combinatorial (not the geometrical properties) of 
the graph of the underlying fine grid. This coarse grid is formed by groups of el-
ements called agglomerated macroelements. Using this approach a macroelement 
grid can be constructed for any unstructured finite element triangulation. We can 
implement our algorithm with or without any use of the nodal coordinates. Based 
on this macroelement partition, we propose an interpolation technique which uses 
only arithmetic average based on clearly determined coarse grid nodes. This leads 
to savings in storage and CPU time, when such scheme is implemented. In fact, 
to store the interpolation matrix we only need to store integers. Although rather 
simple, such type of interpolation leads to a multigrid algorithm with nearly opti-
mal performance. Moreover the algorithm naturally recovers the structure of the 
natural coarse grids if the fine grid is obtained by structured refinement. Although 
we present only 2D algorithms we believe that it can be extended for 3D problems 
as well. 

The rest of the paper is organized as follows. In section 2 we state the differen-
tial problem and briefly comment on the finite element discretization. In section 3 
we give the definition of the standard V-cycle preconditioner. In section 4 we de-
scribe in detail the two level coarsening algorithm. In section 4.3 the interpolation 
between grids is defined. The multilevel implementation of the algorithm is given 
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in Section 4.4. The stability and approximation properties are investigated in Sec-
tion 5 under rather mild assumptions on the geometry of the coarse grids. In 
Section 6 results of several numerical experiments are presented. 

2. A model problem and discretization 

Let n c IR? be a polygonal domain with boundary r = r D u r N' where r D is 
a closed subset of r with positive measure. We consider the following variational 
formulation of elliptic PDE: Find U E Hb(n) such that 

(1) a(U,v) = F(v) for all v E Hb(n), 

where 

(2) a(U,v) = f0 a(x)V'U · V'vdx, F(v) = J0 F(x)vdx. 

Here Hb(O) as usual denotes the Sobolev space which contains functions which 
vanish on rn with square integrable first derivatives. It is well-known that (1) 
is uniquely solvable if a(x) is a strictly positive scalar function and F is square 
integrable. 

We consider a finite element space of continuous piecewise linear functions 
Mh C Hb(O) defined on a triangulation Th of n. Then the corresponding finite 
element discretization of (2) is: Find uh E Mh such that 

(3) 

The discretization results in a linear system of equations: 

(4) Au=f, 

where A is a symmetric and positive definite matrix, f is the right hand side and 
the nodal values of the discrete solution uh will be obtained in the vector u after 
solving the system ( 4). 

3. Multigrid method 

In this section, we introduce the notation related to the multigrid method, and 
we define the (1-1) V-cycle preconditioner. 

Let us consider the following simple iteration scheme: 

(5) 

where BJ is the V-cycle preconditioner BJ to be defined. We assume that we 
have given a nested sequence of subspaces Mo C ... C MJ-1 C MJ = Mh, with 
dim(Mk) = nk. We assume that the matrices Ak, k = 0, ... J, are stiffness matrices 
associated with Mk. We also assume that the interpolation operators IL1 and the 
smoothing operators sk are given. 

In our case BJ will correspond to (1 - 1) V-cycle preconditioner. For given 
g E Mk we define Bkg as follows: 

ALGORITHM 1. [(1-1) V-cycle J 
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0. If k == 0 then B 0g = A01g 
1. Pre-smoothing: x 1 = S[ g 
2. Coarse grid correction: 

1. qo = utl)T (g- Akxl ); 
2. q1 = Bk-lQ0 ; 

3. x2 = xl + ILlql; 
3. Post-smoothing: Bkg = x 2 + Sk(g- Akx2 ). 

The practical definition of such a preconditioner in the case of unstructured 
grids will be our main goal in the next sections. We will define proper interpolation 
(prolongation) operators IL 1, fork= 1, ... , J and the subspace Mk-l by interpo-
lating the nodal basis in Mk. In order to have convergence of the iteration (5) inde-
pendent of the mesh parameters, the subspaces have to satisfy certain stability and 
approximation properties, namely, that there exists a operator lh : H 1 (0) ......., Mk 
such that: 

(6) 
(7) 

lllhvll1.!1 < Cllvi!I,o, 
llv- lhvllo,o < Chlv!I,o, Vv E H 1(0). 

We will comment on these properties of the agglomerated spaces in Section 5. Once 
the subspaces are defined, the V-cycle algorithm can be implemented in a straight-
forward fashion using as coarse grid matrices, given by Ak-1 = (JL 1f AkiL1 . 

General discussions concerning the convergence of this type of method and 
its implementation can be found in the standard references, e.g. Bramble [3], 
Hackbusch [9], Xu [15]. 

4. Agglomerated macroelements 

The main approach we will take in the construction of IL1 will be first to define 
a coarse grid formed by macroelements (groups of triangles) and then interpolate 
locally within each macroelement. In this section, we will present an algorithm for 
the definition of the coarse grid consisting of macroelements. We first identify the 
set of coarse grid nodes. The interpolation from coarse grid to the fine grid will use 
the values at these nodes. As a next step, for a given node on the fine grid we have 
to define its ancestors on the coarse grid (i.e. the coarse grid nodes which will be 
used in the interpolation). These ancestors are determined by partitioning the fine 
grid into agglomerated macroelements (such macroelements can be seen on Fig. 1) 
which in some sense are analogue of the finite elements, because they have vertices 
which are precisely the coarse grid nodes, and their edges are formed by edges of 
the underlying fine grid. 

4.1. Some basic graph theory. In this subsection we introduce some basic 
notation and definitions. Given a finite element triangulation Th of 0, we consider 
the corresponding graph, denoted by G = ( V, E), where V is the set of vertices (grid 
nodes) and E is the set of edges (boundaries of the triangles). In this definition, the 
concept of vertex and edge happen to be the same for the underlying triangulation 
and for the graph corresponding to the stiffness matrix. Associated with the graph 
G, we will form our coarse grid on the so called maximal independent set (MIS, for 
short) which is a set of vertices having the following two properties: any two vertices 
in this set are independent in the sense that they are not connected by an edge, 
and the set is maximal in the sense that an addition of any vertex to the set will 
invalidate the aforementioned independent property. The graph distance between 
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FIGURE 1. An example of macroelements 

FIGURE 2. A triangulation and its dual mesh. 

two vertices v, w E Vis defined to be the length of the shortest path between these 
two vertices. A matching in G is any collection of edges such that no two edges in 
this collection share a vertex. 

The construction of the macroelements will be based on the dual mesh (graph) 
of G defined as follows. Given a triangulation n and associated graph G, the dual 
graph G' = (V', E') of G is: 

• Each element T E Th is a vertex in G'. 
• Two vertices in G' are connected by an edge if and only if they share an 

edge in G, i.e. (T1 , T2) E E' if and only if T1 n T2 E E (see Fig. 2). 

4.2. Two level coarsening algorithm. In this section we describe in detail 
the heuristic algorithm for forming a coarse grid macroelements from a given finite 
element triangulation. 

As a first step we define the set of coarse nodes to be a MIS in G. An MIS is 
obtained by a simple "greedy" (locally optimal) algorithm given as follows. 
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.... 
FIGURE 3. Connected components in G*. 

ALGORITHM 2 (MIS). 
1. Pick an initial set of vertices Vo (for example all boundary vertices). 
2. Repeat: 

(a) Apply a "greedy" algorithm to find MIS in V0 . 

(b) Mark all nodes at distance 1 from Vo (here distance is the graph 
distance). 

(c) Take as V0 all vertices which are at distance 2 from V0 and have not 
been explored (marked). 

3. until Vo = 0. 
4. Complete MIS by applying one step of "greedy" algorithm on V. 

To define the macroelements, we use the fact that separating two triangles on 
the fine grid and putting them in different groups is equivalent to removing an edge 
in the dual graph G'. 

We now describe how to form the initial partition of G into groups of elements. 
For any coarse grid node k (i.e. k E MIS) we pick the edges in G having this 

node as an end. To this set of edges Ek C E corresponds a set E£ C E', namely E£ 
contains exactly all edges between all T E Th which have this particular coarse node 
as a vertex. As a first step we remove E£ from E'. Applying this procedure for all 
coarse grid nodes results in a subgraph of G', G* = (V*, E*) where V* = V' and 
E* = E'\ Uk E£. The connected components in G* will form the initial partition 
of n into groups of elements (see Fig. 3). 

We note that there might be some isolated vertices in G* and also some of the 
connected components might be considerably large. We first deal with the large 
groups (such a group can be seen on Fig. 3 in the right bottom corner of the domain) 
and we break them into smaller pieces. We consider a group of elements M C Th 
that corresponds to one connected component in G* and denote the set of edges in 
M by EM. We intend to break this group in pieces if there is an "interior" edge 
e E EM such that en aM= 0. This breakup is done as follows (our considerations 
here are restricted only on M C Th): 
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• From the subgraph formed by all edges e c EM such that en 8M = 0, we 
form a matching. On the model grid (see Fig. 3) there is only one such edge 
in the whole domain. 

• Remove the edges in the dual corresponding to the edges in the matching. 
In Fig. 3 this edge in the dual is drawn with thick line (near the right bottom 
corner of the domain). The pieces obtained by removing this edge are clearly 
seen on Fig. 1). 

The situation with the isolated vertices in G* is simpler. We propose two 
different ways of dealing with them as follows: 

1. Since each isolated triangle (vertex in G*) has as one vertex being a coarse 
grid point, the edge opposite to this vertex does not have a coarse grid 
node as an end, because our set of coarse grid nodes is a MIS. We group 
together two neighbors sharing this edge to form a macroelement. If such 
edge happens to be a boundary edge, we leave a single triangle to be a 
macroelement. 

2. We group together all isolated neighbors. If such a group does not have 
more than 4 coarse grid vertices then we consider it as a new agglomerated 
macroelement. If it has more than 4 coarse grid vertices we proceed as in the 
previous step coupling triangles in this group two by two. In partitioning 
our model grid we have used precisely this way of grouping isolated triangles 
(see Fig 3, Fig. 1). 

It is obvious that all triangles from the triangulation are either in a connected 
component in G* or are isolated vertices in G*. Thus we have explored all the 
triangles and every T E Th is in some macroelement (see Fig. 1). 

To summarize we give the following short description of the algorithm for ag-
glomerating elements into macroelements: 

ALGORITHM 3 (Coarse grid macroelements). 
1. Identify coarse grid nodes by finding an MIS. 
2. For any coarse node, remove all dual edges surrounding it. 
3. Find connected components in the remaining dual graph. These connected 

components form most of the agglomerated regions. 
4. Breakup "large" macroelements into smaller pieces. 
5. Group the remaining triangles into contiguous groups as additional macroele-

ments. 
6. The remaining connected components in the dual are called "agglomerated 

elements". 

REMARK 4. Note that this algorithm will give a unique partition in agglomer-
ated macroelements up to the choice of MIS and the edges in the matchings (if we 
need further breakup of large connected components in G*). 

We would like to elaborate a little more on the input data needed for the 
algorithm to work. The input we used was: 

1. The grid (i.e. list of elements and correspondence "vertex-element"). From 
this correspondence we can easily define G in the usual way: two vertices 
are connected by an edge if and only if they share element. 

2. The auxiliary graph G' whose vertices are the elements and the correspon-
dence between edges in G and edges in G'. 
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Note that the algorithm we have described do not need the correspondence between 
edges in G and G' to be (1- 1) (as it is between the dual and primal graph). The 
only fact we used was: for a given edge in G the set of edges in G' which have to 
be removed is uniquely determined. This observation is important and will be used 
in the multilevel implementation of the algorithm. 

4.3. The definition of coarse subspaces. In the present section we will 
describe a simple interpolation technique using the agglomerated macroelements. 
We also give a description how a multilevel variant of our derefinement algorithm 
can be implemented. With a grid agglomeration obtained as above, we need to 
define a coarse finite element space associated with the macroelements. This is 
equivalent to defining the interpolation between M J and M J _ 1. The interpolation 
is defined in the following way: 

• Coarse nodes: 
- For the coarse nodes we simply define the interpolation to be the 

identity. 
• Interior nodes: 

- For the nodes interior to the macroelements we use the arithmetic 
average of the values at coarse grid nodes defining the macroelement. 
This situation can be seen in Fig. 4. 

• Edge nodes: 
- If the fine grid node lies on a macroelement edge, then its value is 

defined to be the average of the 2 coarse grid nodes defining the macro-
edge (in Fig. 4 such a node is j 1). 

- If the fine grid node lies on more than one macro-edge, then its value 
is defined to be the simple arithmetic average of all the values corre-
sponding to the different edges (in Fig. 4 such a node is j 2 ). 

As an example we give the interpolated values at fine grid nodes for the grids 
in Fig. 4): 

Ij_ 1vh(xjJ 

Ij_ 1vh(xh) 

Ij_ 1vh(xj) 

vh (xk 1 )+vh (xk 2 ) 
2 

Vh (xk 1 )+vh (xk 2 )+vh(xk.3) 
3 , 

Vh (xk 1 )+vh (xk 2 )+vh (xk 3 )+vh(xk4 )+vh(xk5 ) 
5 

This simple interpolation has the advantage that the matrix corresponding to it 
can be stored in the computer memory using only integers. The matrix vector 
multiplication is easier to perform and this basis preserves the constant function. 

4.4. Multilevel implementation. A straightforward multilevel implemen-
tation of the coarsening algorithm, can be done by simply retriangulating the set of 
coarse grid points and apply the derefinement algorithm to the obtained triangula-
tion. In this section we will propose another version, which has the advantage that 
it operates only on the graph and does not use nodal coordinates and real numbers 
arithmetic. 

To apply the algorithm recursively, we need to define the same input data, but 
using the coarse grid. We first define the elements (triangles, or triples of vertices) 
on the coarse grid in the following way: 
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k k2 2 

FIGURE 4. Example of interpolation. Thick lines mark the 
macroelement boundaries. 

FIGURE 5. The coarse grid elements 

• Consider every macroelement as a polygon with m vertices ( k1 , k2 , ... , km) 
in counter-clockwise ordering ( m is the number of coarse grid vertices form-
ing the macroelement). We triangulate it with m-2 triangles in the following 
way: 

1. If m :::; 3 stop. 
2. Form the triangles (k1,k2,k3) and (k1,k3,km)· 
3. Remove k1 and k2 from the polygon, set k1 ,____ km and ki-l ,____ ki for 

i = 3, ... m- 1, m ,____ m- 2. Go to 1. 
• If a fine grid node lies on more than one macro-edge we form a m-gon with 

vertices the coarse grid points surrounding it (see Fig. 4, such a node is j 2). 

We triangulate this m-gon in the same way as we did in the previous step. 
Such a m-gon is shown in Fig. 5 on the right. This triangle corresponds to 
node ]2 in Fig. 4. 
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FIGURE 6. Coarse grid graph 

The coarse grid configurations corresponding to Fig. 4 are given in Fig. 5. 
Thus we define the graph Gc = (Vc, Ec) corresponding to the coarse grid to be the 
following: 

• Vc: Vertices are the coarse grid nodes 
• Ec: Two vertices are connected by an edge if and only if they are in one and 

the same triangle. 
• v;: Vertices are the triangles we have formed. 
• E~: Two triangles are connected by an edge if they share an edge in Gc. 

The issue we have to address here is that in this way we might not get a valid 
finite element triangulation. It might happened that for some edge in Gc, there are 
more than 2 triangles adjacent to it. But as we pointed out before we only need 
an auxiliary graph G~ and a correspondence between Ec and E~ which we have 
defined. In Fig. 6 the graph Gc for the model finite element grid is plotted. As it 
can be seen, we obtained a valid triangulation and in practice this is often the case. 

A simple application of the algorithm yields: 
If the fine grid is obtained by a successive halving refinement and if 
the MIS on each level coincide the original coarse grid set, then the 
macro-elements will coincide exactly with the underlined (nested) 
coarse grids. 

REMARK 5. Note that although the multilevel sequence of grids is non-nested 
the corresponding finite dimensional spaces are nested, because the basis in Mk-1 is 
always defined as a linear combination of the fine grid basis via the interpolation. It 
is also clear from the definition that the arithmetic average interpolation preserves 
the constant function in each macroelement on all levels. 

5. On the convergence 

In this section, we briefly discuss the convergence of the aforementioned multi-
grid method. We shall prove a result concerning the stability and approximation 
properties of the agglomerated coarse spaces. As a result we can conclude that our 
multigrid algorithm converges uniformly if the number of levels is fixed. We are yet 
to extend our result to truly multilevel case. 
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Given a triangulation Th and the corresponding linear finite element space 
Mh c H 1(0), let MH C Mh be obtained by the agglomeration algorithm described 
in the previous section. Let QH: H 1(0)---> MH be the L2-projection. The assump-
tion we make is for every macroelement G H there exists an auxiliary big simplex 
K H of diameter H, containing G H together with all its neighboring elements from 
the fine grid. We also assume that Hjh ~ c, for some constant c. 

We claim that for every v E H 1 (0) the following stability and approximation 
properties hold: 

(8) 
(9) 

IIQHvlh,n < Cllvlh,n, 
llv- QHvllo,!l < CHivh,n. 

We shall give detailed proof of our claim. Our proof is based on an averaged 
nodal value interpolation similar to the one described in Scott and Zhang [14]. 
Given any "coarse node" Xk, let Fk be an n- 1 dimensional face from Th that 
contains Xk· Let 7/Jk(x) be the linear function on Fk such that 

< v, '¢k >o,Fk= v(xk) \fv E P1(Fk)· 

Now define IIH : H1 (0) ---> MH by 

(IIHv) (xk) =< v, 7/Jk >o,Fk 

for each coarse node Xk, and the value of IIHv on all other fine grid nodes are 
determined by the prolongation operator. We claim that for any v E H 1 (0) 

(10) IIIIHvlh,n < Cllvlll,!l, 
(11) llv- IIHvllo,!l < CHivll,!l· 

We shall first prove (11). By the extension theorem, we may assume that 
v E H 1(ffin) satisfying 

Let now G H be a macroelement. By construction we can find an auxiliary big 
simplex KH (with diameter bounded by cH) that contains GH together with all its 
neighboring elements from the fine grid. Now let us introduce the affine mapping 
KH ---> k, where k is the standard reference element. Correspondingly we will 
have GH---> G, v---> v, and IIHv---> ftv. 

We now consider ft. It is easy to see that by trace theorem we have 

llv- ftvllo,c ~ Cllvll 1,k, Vv E H1(K) 

and by construction ft is invariant on constant functions, namely ftc = c, for any 
c E ffi 1 . Therefore 

llv- ftvll · O,G inf llv+c-ft(v+c)lloa 
cEIIV ' 

By scaling back to K H we get 

llv- IIHvllo,GH ~ CHivll,KH' 
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Summing over all macroelements we have 

llv- IIHvll6 n < I: llv- IIHvll6.cH 
cHen 

< CH2 I: lvli,KH 
KH-:JGH 

< CH2 Ivli,IRn ~ CH2Ivli,n· 
This proves ( 11) 

We shall now prove (10). The proof uses the standard scaling argument and 
invariance of fi on Po(K). We have 

By scaling back to KH we get the desired estimate (10). 
Consequently 

and 

IQHvlu~ < IQHv- IIHvh.n + IIIHvii,n 
< C(h- 1IIQHv- IIHvllo,n + llvlll,n) ~ Clvll,fl· 

By the convergence theory in Bramble, Pasciak, Wang, Xu [4] we use the esti-
mates (8) and (9) to conclude that: the agglomeration multigrid algorithm converges 
uniformly with respect to h if the number of levels is fixed. 

(12) 

6. Numerical examples 

We consider the Laplace equation: 

{ 
-6.u = 1 

u(x,y) ='0, 

(x, y) E S1 c IR?, 

(x,y) E 8S1. 

In these examples we use the standard V -cycle preconditioner and the outer 
acceleration is done by the conjugate gradient method. In the V-cycle we use 1-pre 
and 1-post smoothing steps. The smoothing operator is forward Gauf3-Seidel. The 
PCG iterations are terminated when the relative residual is less than 10-6 . We 
also present the examples using the variable V -cycle , doubling the smoothing steps 
on each level. We are interested in checking numerically the convergence of PCG 
preconditioned with V -cycle based on the simple interpolation we derived. 

In Figures 7-8, we plot the macroelements for different unstructured grids and 
different number of levels to illustrate the coarsening algorithm. These fine grids 
are obtained by Delaunay triangulation of randomly placed point sets. They are 
not obtained by any refinement procedure. Figure 9 shows the convergence histories 
for a varying number of unknowns on two types of grids. One of these (one-element 
airfoil) has one internal boundary, the other one has four internal boundaries. 
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FIGURE 7. Macroelements for one element airfoil: level= 5 Nh = 
12665; level= 4 N1 = 3404; level= 3 Nk = 928; level= 2 N't = 
257; level= 1 N'k = 74; level= 0 N'fi = 24. 

FIGURE 8. Macroelements for four element airfoil: level= 5 Nh = 
12850; level= 4 N1 = 3444; level= 3 Nk = 949; level= 2 N't = 
270; level= 1 N'k = 80; level= 0 N'fi = 26. 

As interpolation, we use the one described in Section 4.3. The numerical ex-
periments suggest that for isotropic problems (such as Laplace equation), the con-
vergence of the variable V -cycle seems to be uniform with respect to the mesh size 
h. 
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Solution of Coercive and Semicoercive Contact Problems by 
FETI Domain Decomposition 

Zdenek Dostal, Ana Friedlander, and Sandra A. Santos 

1. Introduction 

A new Neumann-Neumann type domain decomposition algorithm for the so-
lution of contact problems of elasticity and similar problems is described. The 
discretized variational inequality that models the equilibrium of a system of elastic 
bodies in contact is first turned by duality to a strictly convex quadratic program-
ming problem with either box constraints or box and equality constraints. This step 
may be considered a variant of the FETI domain decomposition method where the 
subdomains are identified with the bodies of the system. The resulting quadratic 
programming problem is then solved by algorithms proposed recently by the au-
thors. Important new features of these algorithms are efficient adaptive precision 
control on the solution of the auxiliary problems and effective application of pro-
jections, so that the identification of a priori unknown contact interfaces is very 
fast. 

We start our exposition by reviewing a variational inequality in displacements 
that describes the conditions of equilibrium of a system of elastic bodies in contact 
without friction. The inequality enhances the natural decomposition of the spatial 
domain of the problem into sub domains that correspond to the bodies of the system, 
and we also indicate how to refine this decomposition. After discretization, we get 
a possibly indefinite quadratic programming problem with a block diagonal matrix. 

A brief inspection of the discrete problem shows that its structure is not suitable 
for computations. The main drawbacks are the presence of general constraints that 
prevent effective application of projections, and a semidefinite or ill conditioned 
matrix of the quadratic form that may cause extremely expensive solutions of the 
auxiliary problems. 

A key observation is that both difficulties may be essentially reduced by the 
application of duality theory. The matrix of the dual quadratic form turns out to be 
regular, moreover its spectrum is much more favorably distributed for application 
of the conjugate gradient based methods than the spectrum of the matrix of the 
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quadratic form arising from the discretization. These conclusions follow from the 
close relation of the procedure to the FETI method proposed by Farhat and Roux 
[20, 18] for the solution of linear elliptic problems. Furthermore, the inequality 
constraints of the dual problem are just non-negativity constraints, so that our 
recent results on application of projections and adaptive precision control may be 
used for the solution of these problems. 

The structure of the constraints of the dual problem depends on the coercivity 
of the contact problem under consideration. If the contact problem is coercive, i.e. 
if prescribed equality constraints on the displacement of each body prevent its rigid 
body motion, then the dual problem has only simple non-negativity constraints. 
We describe an efficient algorithm for the solution of these problems that uses the 
conjugate gradient method with projections and inexact solution of the auxiliary 
subproblems that has been proposed independently by Friedlander and Martinez [3, 
21, 22, 23, 24, 25, 26] and Dostal [11]. The algorithm has been proved to converge 
to the solution and conditions that guarantee the finite termination property have 
been established. The algorithm may be implemented with projections so that it 
can drop or add many couples of nodes on the contact interface whenever the active 
set is changed. Thus the contact interface may be identified very fast even with a 
poor initial guess. 

Next we consider the solution of semicoercive problems, i.e. problems with 
'floating' bodies. Application of duality reduces these problems to the solution of 
quadratic programming problems with simple bounds and equality constraints. In 
this case, the feasible set is too complex to enable effective evaluations of projec-
tions, but we use a variant of the augmented Lagrangian algorithm proposed for 
the solution of more general non-linear problems by Conn, Gould and Toint [5, 6]. 
The algorithm generates in the outer loop the Lagrange multipliers for equality 
constraints while auxiliary problems with simple inequality constraints are solved 
in the inner loop. The precision of the solution of the auxiliary problems is con-
trolled by the norm of the violation of the equality constraints, and an estimate 
for the error has been obtained that does not have any term that accounts for the 
precision of the solution of the auxiliary problems with simple bounds. Results on 
global convergence and boundedness of the penalty parameter are also reported. 
Moreover, we show that the penalty term in the augmented Lagrangians affects the 
convergence of the conjugate gradient solution of the auxiliary problems only very 
mildly. The paper is completed by numerical experiments. 

To simplify our exposition, we have restricted our attention to the frictionless 
contact problems. However, the algorithm may be extended to the solution of 
contact problems with Coulomb friction [16]. 

2. Conditions of equilibrium of elastic bodies 

Consider a system of s homogeneous isotropic elastic bodies, each of which 
occupies in a reference configuration a domain f2P in JRd, d = 2, 3 with sufficiently 
smooth boundary rP as in Figure 1. We assume that the bodies do not interpene-
trate each other so that the intersection of any two different domains is empty. Sup-
pose that each rp consists of three disjoint parts rfr, r~ and r~, rp = rtur~ur~, 
and that the displacements UP : rt ----) JRd and forces FP : r~ ----) JRd are given. 
The part r~ denotes the part of rP that may get into contact with some other body. 
In particular, we shall denote by r~q the part of rP that can be, in the solution, in 
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FIGURE 2. Linearized non-interpenetration 

contact with the body nq. Finally, let Cfj kf : flP --) JRd and gP : flP --) JRd denote 
the entries of the elasticity tensor and a vector of body forces, respectively. 

For any sufficiently smooth displacements u : !11 X ... X ns --) JRd, the total 
potential energy is defined by 
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where 

(2) 

(3) 

We suppose that the elasticity tensor satisfies natural physical restrictions so that 

(4) aP(uP, vP) = a(vP, uP) and a( uP, uP) 2: 0. 

To describe the linearized non-interpenetration conditions, let us define for 
each p < q a one-to-one continuous mapping QPq : r~q ---+ r~ that assigns to 
each x E r~q some point of r~ that is near to x as in Figure 2. The linearized 
non-interpenetration condition at X E f~q then reads 

(5) (uP(x)- uq(Qpq(x)))nP S (QPq(x)- x)nP,X E f~q' p < q. 

Similar conditions may be written for description of non-interpenetration with 
rigid support. 

Now let us introduce the Sobolev space 

(6) V = H1(0 1)d x ... x H 1(0s)d, 

and let K = Keq n Kineq denote the set of all kinematically admissible displace-
ments, where · 

(7) 
and 

(8) 

Keq = { v E v : vP = u on rfr} 

Kineq = { v E V: (vP(x)- vq(Opq(x)))nP::; (QPq(x)- x)nP, 
X E f~q, p < q } . 

The displacement u E K of the system of bodies in equilibrium satisfies 

(9) J(u) SJ(v) for any v E K. 

Conditions that guarantee the existence and uniqueness may be found e.g. in 
[4, 28]. 

More general boundary conditions that those described by prescribed forces 
or displacements may be considered, e.g. prescribed normal displacements and 
zero forces in the tangential plane. Moreover, we can also decompose each body 
into subdomains as in Figure 3 to obtain optional secondary decomposition. The 
Sobolev space V would then be defined on the product of all subdomains and the 
definition of the set K would enhance also the interface equality constraints that 
guarantee continuity of the displacements across new auxiliary interfaces r~ij in 
each block O,P. 

3. Discretized contact problem on interface 

If there is no secondary decomposition, then the finite element discretization 
of n = 0 1 u ... u ns with suitable numbering of the nodes results in the quadratic 
programming (QP) problem 

(10) 1 
2ur Ku- JT u---+ min subject to Bu::; c 

with a symmetric positive definite or positive semidefinite block-diagonal matrix 
K = diag(K1, ... , Ks) of order n, an m x n full rank matrix B, f E mn, and 
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c E JRm. The matrix B and the vector c describe the linearized incremental non-
interpenetration conditions. The rows bi of B are formed by zeros and appropriately 
placed coordinates of outer unit normals, so that the change of normal distance due 
to the displacement u is given by uTbi, and the entry ci of c describes the normal 
distance of the i-th couple of corresponding nodes on the contact interface in the 
reference configuration. The vector f describes the nodal forces arising from the 
volume forces and/or some other imposed tractions. Typically n is large and m 
is much smaller than n. The diagonal blocks Kp that correspond to subdomains 
OP are positive definite or semidefinite sparse matrices. Moreover, we shall assume 
that the nodes of the discretization are numbered in such a way that the matrices 
Ki are banded matrices that can be effectively decomposed, possibly after some 
regularization, by means of the Cholesky factorization. 

If there is a secondary decomposition, then the continuity of the displacements 
across the auxiliary interface requires u T hi = 0, where hi are vectors of order 
n with zero entries except 1 and -1 in appropriate positions. If H is a matrix 
formed by the rows hi, then the discretization of problem (10) with the secondary 
decomposition results in the QP problem 

(11) ~uT Ku- JT u---. min subject to Bu::; c and Hu = 0. 

With a suitable enumeration of the nodes, each Ki turns out to be block diagonal 
with banded diagonal blocks. 

Even though (11) is a standard convex quadratic programming problem, its 
formulation is not suitable for numerical solution. The reasons are that K might 
be singular and the feasible set is in general so complex that projections cannot be 
computed to obtain fast identification of the active set at the solution. 

The complications mentioned above may be essentially reduced by applying 
the duality theory of convex programming (e.g. Dostal [10, 9]). If there is no 
secondary decomposition, we get 

(12) B(-\) ---+min subject to ,\ 2: 0 and RT (f- BT ,\) = 0 

where 

(13) 
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R denotes a matrix whose columns span the null space of K, and K+ denotes a 
generalized inverse of K that satisfies KK+ K = K. Let us recall that 

K+ = diag(Kt, ... , K:) 

and that Ki; = K; 1 whenever Kp is non-singular. If Kp is singular then it is easy 
to check that there is a permutation matrix Pp and a non-singular matrix Fp such 
that 

(14) 

and 

(15) + _ ( pp-l 0 ) pT 
KP - Pp O O P. 

Once the solution A of (12) is known, the vector u that solves (10) can be 
evaluated. In particular, if K is positive definite then 

(16) 

If K is singular and R is a full rank matrix then 

(17) 

with 

(18) 

and (B, c) formed by the rows of (B, c) that correspond to the nonzero entries of A. 
If there is a secondary decomposition, then there are additional Lagrange mul-

tipliers for equalities. Thus, the only new feature when compared with the problem 
without the secondary decomposition is the presence of free Lagrange multipliers 
in the dual formulation in this case. 

The matrix BK+ BT is invertible when no rigid body displacement can be writ-
ten as a linear combination of the columns of BT. Moreover, the matrix BK+ BT 
is closely related to the matrix resulting from the application of the FETI method 
of Farhat and Roux [20], so that its spectrum is relatively favorably distributed 
for the application of the conjugate gradient method (Farhat, Mandel and Roux 
[17, 19]). 

4. Solution of coercive problems 

An important point in the development of an efficient algorithm for the solution 
of (12) is the observation that QP problems with simple bounds are much simpler 
than more general QP problems. Here we shall briefly review our results on the 
solution of QP problems with simple bounds. 

To simplify our notations, let us denote 

b 
D 
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and let us first assume that K is non-singular, so that problem (12)-(13) reads 

(19) O(x)---+ min subject to x:::: 0 

where 

(20) 

Let us denote by A(x) and F(x) the active and free sets of indices of x, respec-
tively, i.e. 

(21) A(x) = {i: Xi= 0} and F(x) = {i: xi f. 0}. 
The unbalanced contact gradient gc and the inner gradient g1 of O(x) are defined 
by 

(22) 
(23) 

g{ = gi fori E F(x) and g{ = 0 fori E A(x) 

gf = 0 fori E F(x) and gf = gi fori E A(x) 

where g = g(x) = V'O(x), gi = gi(x) and g; = min{O,gi}. Hence the Kuhn-
Tucker conditions for the solution of (19) are satisfied when the projected gradient 
gP = g1 + gc vanishes. 

An efficient algorithm for the solution of convex QP problems with simple 
bounds has been proposed independently by Friedlander and Martinez [21] and 
Dostal [11]. The algorithm may be considered a modification of the Polyak algo-
rithm that controls the precision of the solution of auxiliary problems by the norm 
of gc in each inner iterate yi. 

If for r > 0 the inequality 

llgc(yi)ll :S flll(Yi)ll 
holds then we call yi proportional. The algorithm explores the face 

W1 = {y : Yi = 0 for i E I} 
with a given active set I as long as the iterates are proportional. If yi is not 
proportional, we generate yi+1 by means of the descent direction di = -gc (yi) 
in a step that we call proportioning, and then we continue exploring the new face 
defined by I = A(yi+l ). The class of algorithms driven by proportioning may be 
defined as follows. 

ALGORITHM 1. (General Proportioning Scheme - GPS) 
Let y0 :::: 0 and r > 0 be given. Fori > 0, choose yi+ 1 by the following rules: 
(i} If yi is not proportional, define yi+l by proportioning. 
(ii) If yi is proportional, choose yi+ 1 :::: 0 so that 

O(yi+l) :S O(yi) 

and yi+1 satisfies at least one of the conditions: A(yi) C A(yi+1 ), yi+1 is not 
proportional, or yi+ 1 minimizes()(~) subject to~ E W1,I = A(yi). 

The set relation c is used in the strict sense so that it is satisfied if the set on 
the left is a proper subset of the set on the right. Basic theoretical results have 
been proved in [3, 11, 21, 22]. 

THEOREM 2. Let xk denote an infinite sequence generated by Algorithm GPS 
with given x 0 and r > 0. Let O(x) be a strictly convex quadratic function. Then 
the following statements are true: 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



SOLUTION OF CONTACT PROBLEMS 89 

(i) xk converges to the solution x of {19}. 
(ii) If the problem ( 19) is not degenerate, then there is k such that x = xk. 
(iii) If r ;::: ~~:(A) 1 1 2 , where ~~:(A) is the spectral condition number of A, then there 
is k such that x = xk. 

Step (ii) of Algorithm GPS may be implemented by means of the conju-
gate gradient method. The most simple implementation of this step starts from 
y0 = xk and generates the conjugate gradient iterations y1, y2 , . . • for min { O(y) : 
y E W 1 , I = A(y0 )} until yi is found that is not feasible or not proportional or 
minimizes O(x) subject toy;::: 0. If yi is feasible, then we put xk+1 = yi, otherwise 
yi = yi-l_aipi is not feasible and we can find iii so that xk+1 = yi -iiipi is feasible 
and A(xk) g; A(xk+1 ). We shall call the resulting algorithm feasible proportioning 
[11]. 

An obvious drawback of feasible proportioning is that the algorithm is usually 
unable to add more than one index to the active set in one iteration. A simple but 
efficient alternative is to replace the feasibility condition by O(Pyi+1 ) ::::; O(Pyi), 
where Py denotes the projection on the set n = {y : y ;::: 0}. If the conjugate 
gradient iterations are interrupted when condition O(Pyi+l) > O(Pyi) is satisfied, 
then a new iteration is defined by xk+ 1 = Pyi. Resulting modification of the feasible 
proportioning algorithm is called monotone proportioning [11]. More details on 
implementation of the algorithm may be found in [15]. 

5. Solution of semicoercive problems 

Now we shall assume that the matrix K is only positive semidefinite, so that 
problem (12)-(13) with the notations of the previous section reads 

(24) O(x)---+ min subject to x;::: 0 and Dx =d. 

The algorithm that we propose here may be considered a variant of the algo-
rithm proposed by Conn, Gould and Toint(1991) for identification of stationary 
points of more general problems. 

ALGORITHM 3. (Simple bound and equality constraints) 
Step 0. { Initialization of parameters} Set 0 < a < 1 [a = .1] for equal-

ity precision update, 1 < (3 [(3 = 100] for penalty update, p0 > 0 [p0 = 100] 
for initial penalty parameter, TJo > 0 [TJo = .001] for initial equality precision, 
M > 0 [M = Po/100] for balancing ratio, J-L0 [J.L0 = 0] and k = 0. 

Step 1. Find xk so that 
llgP(xk,J-Lk,pk)ii::; MIIDxk- dll. 

Step 2. If llgP(xk,J-Lk,pk)ll and IIDxk- dll are sufficiently small 
then xk is the solution. 

Step 3. J-Lk+l = J-Lk + pk(Dxk- d). 

Step 4. If IIDxk- dll ::; 'f/k then Pk+l = Pk> 'f/k+l = aryk 
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Step 4b. else Pk+l = f3pk, T/k+l = T/k 
end if. 

Step 5. Increase k and return to Step 1. 

In this algorithm, we now denote by g the gradient of the augmented Lagrangian 
1 

L(x, /1, p) = O(x) + ILT Dx + 2PIIDx- dll 2 

so that 

g(x, /1, p) =Ax- b + DT (/1 + pD(x- d)) 

An implementation of Step 1 is carried out by minimization of the augmented 
Lagrangian L subject to x 2: 0 by means of the algorithm of the previous section. 
The unique solution x = x(/1, p) of this auxiliary problem satisfies the Kuhn-Tucker 
conditions 

(25) 
Typical values of the parameters are given in brackets. 

The essential feature of this algorithm is that it deals completely separately 
with each type of constraint and that it accepts inexact solutions of the auxiliary 
box constrained problems in Step 1. For parallel implementation, A should be kept 
as the product BK+ B since A is just used in the matrix-vector products. The 
action of K+ may be evaluated by means of a triangular decomposition. 

The algorithm has been proved ([13]) to converge for any set of parameters 
that satisfy the prescribed relations. Moreover, it has been proved that the asymp-
totic rate of convergence is the same as for the algorithm with exact solution of 
auxiliary quadratic programming problems (i.e. M = 0) and the penalty parameter 
is uniformly bounded. 

The use of the augmented Lagrangian method turned out to be very efficient 
in spite of the fact that it obviously reintroduces ill conditioning into the auxiliary 
problems. The explanation is given by the following theorem and by analysis of the 
conjugate gradient method by Axelsson and Lindskog [1, 2], who showed that the 
rate of convergence is much faster than it could be expected from the conditioning 
of the problem provided there is a gap in the spectrum. 

THEOREM 4. Let A E mnxn be a symmetric positive definite matrix, D E 

mmxn a full rank matrix, m < n and p > 0. For any matrix M of order n, let 
81 ( M) :::; ... :::; bn ( M) denote the eigenvalues of M. Then 

(26) bn-m(A + pDT D) < 8n(A) 
T T (27) 8n-m+l(A + pD D) 2: p8n·-m+l(D D) > 0. 

6. Numerical experiments 

In this section, we illustrate the practical behavior of our algorithm. First, a 
model problem used to validate the algorithm is presented. Next, two problems 
arising in mechanical and mining engineering, respectively, are commented. All 
the experiments were run in a PC-486 type computer, DOS operating system, 
Microsoft Fortran 77 and double precision. The auxiliary problems were solved by 
QUACAN routine developed in the Institute of Mathematics, Statistics and Scientific 
Computation of UNICAMP. 
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PROBLEM 1. This is a model problem resulting from the finite difference dis-
cretization of the following continuous problem: 

Minimi" q(u~,u,) ~ t (l, 1Vu;l2d0 -l, Pu,df!) 

subject to u1(0,y) = 0 and u1(1,y) :S u2(1,y) for y E [0, 1], 

where 01 = (0,1) X (0,1), 02 = (1,2) X (0,1), P(x,y) = -1 for (x,y) E (0,1) X 
[0.75, 1), P(x, y) = 0 for (x, y) E (0, 1) x (0, 0.75), P(x, y) = -1 for (x, y) E (1, 2) x 
(0, 0.25) and P(x, y) = 0 for (x, y) E (1, 2) x (0.25, 1). The discretization scheme 
consists in a regular grid of 21 x 21 nodes for each unitary interval. We took the 
identically zero initial approximation. This problem is such that the matrix of the 
quadratic function is singular due to the lack of Dirichlet data on the boundary of 
0 2. In order to reduce the residual to 10-5 , three simple bounded (SB) problems 
had to be solved. The total number of iteration used by QUACAN was 23, taking 34 
matrix-vector products. More details on this problem may be found in [10]. 

PROBLEM 2. The objective of this problem is to identify the contact interface 
and evaluate the contact stresses of a system of elastic bodies in contact. Some rigid 
motion is admitted for these bodies. This type of problems is treated in [14]. The 
model problem considered to test our algorithm consists of two identical cylinders 
that lie one above the other on a rigid support. A vertical traction is applied at 
the top 1/12 of the circumference of the upper cylinder. Assuming the plane stress, 
the problem was reduced to 2D and discretized by the boundary element method 
so that the dimension of the discretized problem was 288 with 14 couples of nodes 
on the contact interfaces. This problem was first considered admitting vertical 
rigid motion of the upper cylinder only. A second formulation admitted rigid body 
motion of both cylinders. The Lagrange multipliers of the solution are the contact 
nodal forces. To solve the problem with relative precision equal to 10-4 , three (SB) 
problems were solved with p = 106 , M = 104 and r = 0.1. The total number of 
QUACAN iterations was 42. 

PROBLEM 3. Finally, we consider a problem of equilibrium of a system of elas-
tic blocks. This problem arises in mining engineering. An example of the solution 
of such problems under the assumption of plane strain may be found in [7]. The 
difficulties related to the analysis of equilibrium of block structures comprise iden-
tification of unknown contact interface, necessity to deal with floating blocks that 
do not have enough boundary conditions and often large matrices that arise from 
the finite element discretization of 3D problems. To test the performance of our 
algorithm we solved a 3D problem proposed by Hittinger in [27]. The 2D version 
of this problem was solved in [27] and [8]. A description of the problem and the 
variants solved with our algorithm are in [12]. Main characteristics of the two block 
variant were 4663 nodal variables and 221 dual variables (unknown contact nodal 
forces), while the three block variant comprised 6419 nodal variables and 382 dual 
variables. The bandwidth was 165 in both variants. The solution to relative preci-
sion 10-4 was obtained with three outer iterations, that is, just three (SB) problems 
were necessary. The number of inner QUACAN conjugate gradient iterations for two 
and three block problems was 105 and 276, respectively. 
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7. Comments and conclusions 

We have described a new algorithm for the solution of coercive and semicoercive 
contact problems of elasticity without friction based on variational formulation 
reduced to the boundary. The method directly obtains the tractions on the contact 
interface. The stress and strain distribution may then be obtained by the solution 
of standard linear problems for each body separately. 

The algorithm combines a variant of the domain decomposition method of the 
Neumann-Neumann type based on the duality theory of quadratic programming 
with the new algorithms for the solution of the quadratic programming problems 
with simple bounds. For the solution of semicoercive problems, these methods 
are exploited in the augmented Lagrangian algorithm. A new feature of these 
algorithms is the adaptive control of precision of the solution of auxiliary problems 
with effective usage of the projections and penalty technique. 

The implementation of the algorithm deals separately with each body, so that 
the algorithm is suitable for parallel implementation. First numerical experiments 
indicate that the algorithms presented are efficient. We believe that the perfor-
mance of the algorithms may be considerably improved by the 'coarse grid' precon-
ditioner in combination with the standard regular preconditioners as presented at 
this conference by F.-X. Roux et al. [29]. 
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An Iterative Substructuring Method for Elliptic Mortar 
Finite Element Problems with Discontinuous Coefficients 

Maksymilian Dryja 

1. Introduction 

In this paper, we discuss a domain decomposition method for solving linear 
systems of algebraic equations arising from the discretization of elliptic problem in 
the 3-D by the mortar element method, see [4, 5] and the literature given theirin. 
The elliptic problem is second-order with piecewise constant coefficients and the 
Dirichlet boundary condition. Using the framework of the mortar method, the 
problem is approximated by a finite element method with piecewise linear functions 
on nonmatching meshes. 

Our domain decomposition method is an iterative substructuring one with a 
new coarse space. It is described as an additive Schwarz method (ASM) using the 
general framework of ASMs; see [11, 10]. The method is applied to the Schur 
complement of our discrete problem, i.e. we assume that interior variables of all 
subregions are first eliminated using a direct method. 

In this paper, the method is considered for the mortar elements in the geometri-
cally conforming case, i.e. the original region n, which for simplicity of presentation 
is a polygonal region, is partitioned into polygonal subregions (substructures) ni 
that form a coarse finite element triangulation. 

The described ASM uses a coarse space spanned by special functions associated 
with the substructures ni. The remaining spaces are local and are associated with 
the mortar faces of the substructures and the nodal points of the wire basket of the 
substructures. The problems in these subspaces are independent so the method is 
well suited for parallel computations. The described method is almost optimal and 
its rate of convergence is independent of the jumps of coefficients. 

The described method is a generalization of the method presented in [8] to 
second order elliptic problems with discontinuous coefficients. Other iterative sub-
structuring methods for the mortar finite elements have been described and ana-
lyzed in several papers, see [1, 2, 6, 12, 13] and the literature given theirin. Most 
of them are devoted to elliptic problems with regular coefficients and the 2-D case. 
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The outline of the paper is as follows: In Section 2, the discrete problem ob-
tained from the mortar element technique in the geometrically conforming case is 
described. In Section 3, the method is described in terms of an ASM and Theorem 
1 is formulated as the main result of the paper. A proof of this theorem is given in 
Section 5 after that certain auxiliary results, which are needed for that proof, are 
given in Section 4. 

2. Mortar discrete problem 

We solve the following differential problem: Find u* E HJ (n) such that 

(1) a(u*,v) = f(v), v E HJ(n), 

where 
N 

a(u, v) = :~:::>i(\.7U, \.7V)£2(ni)' f(v) = (!, v)L2(n), 
i=l 

0 = U~ 1 Oi and Pi is a positive constant. 
Here n is a polygonal region in the 3-D and the ni are polygonal subre-

gions of diameter Hi. They form a coarse triangulation with a mesh parameter 
H = maxi Hi. In each ni triangulation is introduced with triangular elements e;il 
and a parameter hi = maxj h~j) where h~j) is a diameter of e~j). The resulting 
triangulation of n can be nonmatching. We assume that the coarse triangulation 
and the hi-triangulation in each ni are shape-regular in the sense of [7]. Let Xi(ni) 
be the finite element space of piecewise linear continuous functions defined on the 
triangulation of ni and vanishing on ani nan, and let 

xh(n) = X1(n1) x ... x xN(nN). 

To define the mortar finite element method, we introduce some notation and 
spaces. Let 

r = (uiani)\an 
and let Fij and Eij denote the faces and edges of ni. The union of Eij forms the 
wire basket Wi of ni. We now select open faces "Ym of r, called mortars (masters), 
such that 

f' = Um 'Ym and "Ym n "Yn = 0 if m =/= n. 

We denote the face of ni by "Ym(i)· Let "Ym(i) = Fij be a face common toni 
and nj· Fij as a face of n1 is denoted by Dm(j) and it is called nonmortar (slave). 
The rule for selecting "Ym( i) = Fij as mortar is that Pi ~ PJ. Let Whi ( Fij) be 
the restriction of Xi(ni) to Fij· Note that on Fij = "Ym(i) = Dm(j) we have two 
triangulation and two different face spaces Wh• bm( i)) and Whj ( 8m(Jl). 

Let Mhj (8m(j)) denote a subspace of Whj (8m(j)) defined as follows: The values 
at interior nodes of Dm(j) are arbitrary, while those at nodes on aom(j) are a convex 
combination values at interior neighboring nodes: 

nk nk 

v(xk) = Laiv(xi(k))'Pi(k), Lai = 1. 
i=l i=l 

Here n:i ~ 0, Xk E aom(j) and the sum is taken over interior nodal points Xi(k) 
of Dm(j) such that an interval (xk, Xi(k)) is an edge of the triangulation and their 
number is equal to nk; 'Pi(k) is a nodal basis function associated with xi(k)' for 
details see [4]. 
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We say that ui(m) and Uj(m), the restrictions of ui E Xi(ni) and u1 E X 1(n1) 
to 6m, a face common toni and n1, satisfy the mortar condition if 

(2) 

This condition can be rewritten as follows: Let IIm ( ui( m), v 1 ( m)) denote a projection 
from L2(6m) on Whj (6m) defined by 

(3) r IIm(Ui(m),Vj(m))wds = r Ui(m)wds, wE MhJ(6m) 1om 1om 
and 

(4) 

Thus Uj(m) = IIm(Ui(m)l Vj(m)) if Vj(m) = Uj(m) on 86m. 
By Vh we denote a space of v E Xh which satisfy the mortar condition for each 

Dm c r. The discrete problem for (1) in Vh is defined as follows: Find uf, E Vh 
such that 

(5) 

where 
N N 

a(uh, vh) = 'l:::ai(uih, vih) = Z::>i(\7Uih, \7Vih)£2(0i) 
i=l i=l 

and Vh = { Vih }~1 E vh. vh is a Hilbert space with an inner product defined by 
a( u, v). This problem has an unique solution and an estimate of the error is known, 
see [4]. 

We now give a matrix form of (5). Let 

vh = span{ <h} 

where { <l>k} are mortar basis functions associated with interior nodal points of the 
substructures ni and the mortars 'Ym(i)l and with nodal points of a'Ym(i) and aom(i)l 
except those on an. These sets of nodal points are denoted by adding the index h. 
The functions <l>k are defined as follows. For Xk E nih, <l>k(x) = 4?k(x), the standard 
nodal basis function associated with Xk· For Xk E 'Ym(i)hl <l>k = 4'k on 'Ym(i) c ani 
and IIm(4?k, 0) on Dm(j) = 'Ym(i) c an1, see (3) and (4), and <l>k = 0 at the remaining 
nodal points. If Xk is a nodal point common to two or more boundaries of mortars 
'Ym(i)' then <l>k(x) = 4'k on these mortars and extended on the nonmortars Dm(j) 
by IIm ( 4' k, 0), and set to zero at the remaining nodal points. Let x k be a common 
nodal point to two or more boundaries of nonmortars Dm(j), then <l>k = IIm(0,4?k) 
on these nonmortars and zero at the remaining nodal points. In the case when 
Xk is a common nodal point to boundaries of mortars and nonmortars faces, <l>k is 
defined on these faces as above. Note that there are no basis functions associated 
with interior nodal points of the nonmortar faces. 

Using these basis functions, the problem (5) can be rewritten as 

(6) Aui'. = f 

where u;. is a vector of nodal values of uf.. The matrix is symmetric and positive 
definite, and its condition number is similar to that of a conforming finite element 
method provided that the hi are all of the same order. 
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3. The additive Schwarz method 

In this section, we describe an iterative substructuring method in terms of an 
additive Schwarz method for solving (5). It will be done for the Schur complement 
system. For that we first eliminate all interior unknowns of ni using for Ui E xi ( ni) 
the decomposition Ui = Pui + Hui. Here and below, we drop the index h for 
functions. Hui is discrete harmonic in ni in the sense of (\7Ui, \7Vi)L2(fl;) with 
Hui = Ui on ani. We obtain 

(7) s(u*, v) = f(v), v E Vh 

where from now on vh denote the space of piecewise discrete harmonic functions 
and 

s(u,v) = a(u,v), u,v E Vh. 

An additive Schwarz method for (7) is designed and analyzed using the general 
ASM framework, see [11], [10]. Thus, the method is designed in terms of a decom-
position of vh' certain bilinear forms given on these subspaces, and the projections 
onto these subspaces in the sense of these bilinear forms. 

The decomposition of Vh is taken as 

N 

(8) Vh(n) = V0(n) + L v~Fl(n) + L L v~wil(n). 

The space V~F)(n) is a subspace of Vh associated with the master face '"Ym· Any 
function of v~F) differs from zero only on '"Ym and Dm. wih is the set of nodal 
points of wi and v~W;) is an one-dimensional space associated with Xk E wih and 
spanned by cJ> k. 

The coarse space V0 is spanned by discrete harmonic functions \]! i defined as 
follows. Let the set of substructures ni be partitioned into two sets NI and N B. 

The boundary of a substructure in N B intersects an in at least one point, while 
those of the interior set N 1 , do not. For simplicity of presentation, we assume that 
ani n an for i E N B are faces. The general case when ani n an for i E N B are 
also edges and vertices, can be analyzed as in [10]. The function wi is associated 
with ni for i E NI and it is defined by its values on boundaries of substructures 
as follows: \]!i = 1 on im(i) c ani, the mortar faces of ni, and \]!i = Tim(1, 0) on 
Dm(j) = '"Ym(i)• the face common toni and n1; see (3) and (4). On the nonmortar 
faces bm(i) c ani, wi = Tim(O, 1). It is zero on the remaining mortar and nonmortar 
faces. We set 

(9) 

Let us now introduce bilinear forms defined on the introduced spaces. b<;:) 
associated with v~F) X v2') ---; R is of the form 

(10) 

where Um(i) is the discrete harmonic function in ni with data Um(i) on the mortar 
face '"Ym(i) of ni, which is common to nj, and zero on the remaining faces of ni. 

We set biW,) : vk(W,) X v~W;) ---; R equal to a(u, v). 
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(11) 

Here Dm(i) = 'Ym(j) is the face common to Oi and Oj, a-J = 0 if Dm(i) = 'Ym(j) c ani 
and j ENs, otherwise O:j = 1, 

(12) u = L UiWi, v = L i\Wi 
iENI iEN1 

and Ui is the discrete average value of Ui over 80ih, i.e. 

(13) ui = ( L ui(x))/mi, 
xEBn;h 

and mi is the number of nodal points of anih. 

Let us now introduce operators T/:), TkW;) and T0 by the bilinear forms b?:), 

b~W;) and bo, respectively, in the standard way. For example, T/:) : Vh -+ V~) is 
the solution of 

(14) 
Let 

N 

T=To+ L T/:) + L L TkW;). 

The problem ( 5) is replaced by 

(15) Tu* =g 

with the appropriate right-hand side. 

THEOREM 1. For all u E Vh 
H 

(16) C0 (1 +log h )-2a(u, u) 5_ a(Tu, u) 5_ C1a(u, u) 

where Ci are positive constants independent of H =maxi Hi, h =mini hi and the 
jumps of Pi· 

4. Auxiliary results 

In this section, we formulate some auxiliary results which we need to prove 
Theorem 1. 

(17) 

Let for u E vh' U() E Vo be defined as 

uo = L uiwi 
iENI 

where the ui are defined in (13). 

LEMMA 2. For uo E Vo defined in (17) 

(18) a(uo,uo) 5_ Cbo(uo,uo) 

where b0 (., . ) is given in ( 11) and C is a positive constant independent of the Hi, 
hi and the jumps of Pi. 
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PROOF. Note that uo on 80;, i E N1, is of the form 

u0 = u;W; + L UjWj 
j 

99 

where the sum is taken over the nonmortars Dm(i) = 'Ym(j) of 0; and 'Ym(j) is the 
face common to 0; and n j. In this formula \II j = 0 if j E N B. Let us first discuss 
the case when all j E N1 in (19). Note that W; + Lj \IIj = 1 on 80;. Using this, 
we have 

It can be shown that 

(20) 

For that note that Wj = IIm(1, 0) on Dm(i) and use the properties of lim; for details 
see the proof of Lemma 4.5 in [8]. Thus 

(21) 

ForiE N1 with j ENs, we have 

where Oj = 0 if Dm(i) = 'Ym(j) C 80J and j ENs, otherwise aj = 1. ForiE Ns 

which proves (18). D 

LEMMA 3. Let "'m(i) = Drn(j) be the face common to 0; and nj' and let Ui(m) 

and uj(rn) be the restrictions of u; E X;(O;) and Uj E Xj(Oj) to "'m(i) and Drn(j)' 

respectively. Let ui(m) and uj(rn) satisfy the mortar condition (2) on Dm(j). If ui(rn) 

and UJ(m) Vanish on 8"/m(i) and 8Dm(j), respectively, then 

where C is independent of h; and hJ. 

This lemma follows from Lemma 1 in [3]. A short proof for our case is given 
in Lemma 4.2 of [8]. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



100 MAKSYMILIAN DRYJA 

LEMMA 4. Let <I>k be a function defined in Section 2 and associated with a nodal 
point Xk E W; can;. Then 

where C is independent of h; and p;, and lm(i) = Dm(j). 

The proof of this lemma differs slightly from that of Lemma 4.3 in [8], therefore 
it is omitted here. 

5. Proof of Theorem 1 

Using the general theorem of ASMs, we need to check three key assumptions; 
see [11] and [10]. 

Assumption (iii} For each x E n the number of substructures with common x 
is fixed, therefore p(c:) ::::; C. 

Assumption (ii) Of course w = 1 for b~Wi)(u,u), u E V~w,). The estimate 

a(u,u)::::; wbo(u,u), u E Vo 
follows from Lemma 2 with w =C. 

We now show that for u E vJ.F)' see (10), 

(22) a(u,u)::::; Cb~l(u,u). 

Let li(m) = 8j(m) be the mortar and nonmortar sides ofn; and nj, respectively. 
For u E vJ,_F)' we have 

a(u,u) = a;(u;,u;) + aj(uj,Uj)::::; C(p;jju;ll 2 1 + Pjilujll 2 1 ). 
H~obi(m)) Ha2o(t5j(m)) 

Using now Lemma 3 and the fact that p; ~ pj since lm(i) is the mortar, we get 
(22), i.e. w = C. 

Assumption (i} We show that for u E Vh, there exists a decomposition 
N 

(23) u=uo+ L u~) + L L u~w,), 

where uo E Vo, u~) E VJ.Fl and u~W,) E V~W,), such that 
N 

bo(uo,uo) + L b~l(u~l,u~l) + L L b~W,)(u~w,),u~W,)) 
-y,Cf' 

(24) 
H 

::::; C(1 +log h )2a(u, u). 

Let u0 be defined by ( 17), and let w; be the restriction of w = u - uo to 0;. It 
is decomposed on ani as 

(25) w; = L w~F,j) + w~w,), w;w,) = L w;(xk)<I>k 

where wiF,j) is the restriction of wi - wiw,) to Fij, the face of ni, and zero on 
ani\Fij· 

To define ut,:l, let F;j = lm(il = Dm(j) be a face common ton; and nj. We set 

U~) = { wiF;j) on ani and WJF;j) On anj} 
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and set it to zero at the remaining nodal points of r. The function u~W;) is defined 
as 

(26) 
It is easy to see that these functions satisfy (23). 

To prove (24), we first show that 
H 

(27) b0 (u0 , u0 ) ~ C(l +log h )a(u, u). 

Note that, see (11), for c5m(i) C t50i, i E N1 with j E N1 when c5m(i) = Fij is a face 
common toni and nj, 

HiPi(ilj- ui) 2 ~ CHi- 1{Pilluilli2(8!!;) + Pjllujlli2(B!!j)}. 

Using the fact that the average values of Uj and Ui over c5m(i) = "fm(j) = Fij are 
equal to each other, and using the Poincare inequality, we get 

HiPi(uj- ui) 2 ~ C{piluil~l(!!;) + Pjlujl~l(!!j)}. 
For i E N1 with j E N B we have similar estimates: 

HiPi(ajilj- ui) 2 ~ C{piluil~l(!!;) + Pjlujl~l(!!j)}. 
Here we have used the Friedrichs inequality in nj. Thus 

(28) L L HiPi(ajilj- ui) 2 ~ Ca(u, u). 
iENr lim(i)C8!1; 

In the similar way it is shown that for i E N B 

HiPiiiJ ~ C{piluil~l(!!;) + Pjlujl~l(!!J)}. 
Summing this with respect to i E N B and adding the resulting inequality to (28), 
we get (27). 

Let us now consider the estimate for ulf:l E vffl when 'Ym(i) = t5m(j) = Fij, 
the face common toni and nj. We have, see (10), 

b!f:l(u!f:l, u!f:l) ~ Cpillw;F;J) 11 2 _!_ • 

HJ'abm(i)) 

Note that on Fij = 'Ym(i) 

wiF,J) = h,(Bp,Jui)- h,(Bp,Juo) 

where BF,J = 1 at interior nodal points of the hi-triangulation of Fij and zero on 
8Fij, and h; is the interpolant. Using Lemma 4.5 from [9], we have 

llh, (BFiJ ui)ll 2 ~ ~ C(1 +log Hh, ) 2 lluill~l(fl,)· 
H00 (F;j) , 

To estimate the second term, note that uo = iii 'l1 i = iii on Pij since it is the mortar. 
Using Lemma 4.4 from [9], we get 

llh(BF,juo)ll 2 _!_ = (ui) 2 llh;BFijll 2 _!_ ~ 
Ha2o(F;J) Ha2o(F;J) 

~ CHi- 1(1 +log ~i) lluilli2(8!1;)· 

Thus 

llwiF;J) 11 2 ~ ~ C{(1 +log~' ) 2 lluill~l(!!;) + Hi- 1 (1 +log ~i )lluilli2(8!1;)}. 
Hoohm(i)) ' ' 
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Using now a simple trace theorem and the Poincare inequality, we have 

II (F;j)ll2 C(1 1 Hi)21 12 wi ! :S + og h- Ui Hl(n,)· 
Hoohm(i)) t 

Multiplying this by Pi and summing with respect to "fm, we get 
H 

(29) L br:l(ur:l,ur:l) ::=; C(1+logh)2a(u,u). 
/'mer 

We now prove that 
N 

(30) L L b~w,)(u~W;),u~W;)):SC(1+log~) 2 a(u,u). 
·i=l XkEWih 

We first note that by (26) and Lemma 4 

b(W;)( (W;) (W;)) c 2( ) ("" "") c h ( 1 Hi) 2( ) k uk , uk :S wi Xk a -¥k, '¥k :S Pi i 1 + og hi wi Xk . 

Summing over the Xk E wih, we get 

"""' b(w,)( (W,) (w,)) C ( 1 Hi ){II 11 2 ~ k uk , uk :S Pi 1 + og h- ui £2(W;) 
xkEvV,h ' 

(31) +hi L u6(xk)}. 
XkEWih 

Using a well known Sobolev-type inequality, see for example Lemma 4.3 in [9], we 
have 

(32) 

To estimate the second term, we note that, see (17), 

(33) hi L u6(xk) :S CHi(ui) 2 :S Clluill~fl(n,)· 
XkEW;h 

Here we have also used a simple trace theorem. Substituting (32) and (33) into 
(31), and using the Poincare inequality, we get 

"""' b(W;)( (W;) (W;)) C( 1 Hi )2 I 12 ~ k uk ,uk ::; 1 + og hi Pi ui Hl(n,)· 
XkEW;h 

Summing now with respect to i, we get (30). 
To get (24), we add the inequalities (27), (29) and (30). The proof of Theorem 

1 is complete. 
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Domain Decomposition Methods for Flow 
in Heterogeneous Porous Media 

Magne S. Espedal, Karl J. Hersvik, and Brit G. Ersland 

1. Introduction 

A reservoir may consist of several different types of sediments, which in general 
have different porosity, ¢, absolute permeability, K , relative permeabilities, kri , 
and capillary pressure Pc. In this paper we will study two phase, immiscible flow, in 
models consisting of one or two different types of sediment. Each of the sediments 
may be heterogeneous. The phases are water ( w) and oil ( o), but the results may 
easily be extended to groundwater problems where the phases may be water and 
air or a non aqueous phase. 

Such models represent a very complex and computational large problem and 
domain decomposition methods are a very important part of a solution procedure. 
It gives a good tool for local mesh refinement in regions with large gradients such 
as fluid fronts, interfaces between different sediments or at faults. If the models 
are heterogeneous, parameters in the models may be scale dependent, which means 
that mesh coarsening may be possible in regions with small gradients. 

Let S = Sw denote the water saturation. Then the incompressible displacement 
of oil by water in the porous media can be described by the following set of partial 
differential equations, given in dimensionless form: 

(1) 

(2) 

(3) 

V · u = Ql (x, t), 

u = -K(x)M(S, x)Vp, 

as 
¢(x) at + V · (f(S)u)- cV · (D(S, x)VS) = q2 (x, t). 

Here, u is the total Darcy velocity, which is the sum of the Darcy velocities of the 
oil and water phases: 

U = U 0 +Uw 
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.................. 

Production 

r 
(a) (b) 

FIGURE 1. (a) Computational domain showing two different 
regions with different physical properties connected through an 
interior boundary r. (b) Capillary diffusion, as functions of 
saturation shown for permeabilities 1, 5 and 10. 

Furthermore, pis the total fluid pressure given by p = ~(Pw + p0 ), qi(x ,t),i = 
1, 2 denotes contribution from the injection and production wells in addition to 
capillary pressure terms, which are treated explicitly in (1). K(x) is the absolute 
permeability, M(S, x) denotes the nonzero total mobility of the phases and ¢(x) is 
the porosity. A reasonable choice for the porosity is ¢ = 0.2. The parameter f: is a 
small (10- 1 - w-4 ) dimensionless scaling factor for the diffusion. 

Equation (3) is the fractional flow formulation of the mass balance equation 
for water. The fractional flow function f ( S) is typically a S shaped function of 
saturation. , The capillary diffusion function D(S, x ) is a bell shaped function of 
saturation, S, and has an almost linearly dependence of the permeability K(x). 
Further, D(O, x) = D(l, x) = 0. In Figure 1, a capillary diffusion function is shown 
for different permeabilities. 

For a complete survey and justification of the model we refer to [5]. We 
have neglected gravity forces, but t he methods described can also be applied for 
models where gravity effects are included [17]. The following analytical form for 
the capillary pressure is chosen[35]: 

(4) p, (S x) = 0 9"--o 9K - o.ll - S c , . 'f' IS, 

We note that the capillary pressure depend on the permeability of the rock. 
The phase pressures and the capillary pressure are continuous over a boundary 

r, separating two sediments. Furthermore, the flux must be continuous [12, 14, 4, 
23] which gives the following internal boundary conditions: 

(5) 

(6) 
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+ + + + - + - + 
+ + - - - + + -

FIGURE 2. From left to right ro, r a, r ;3, r ')'· The + and - sign 
represent the functional value + 1 and -1. r 0 is the scaling function. 

(7) 
(f(sr-)u- EDr-(sr- ,x)vsr-) · nr = (f(sr+)u- cDr+(sr+,x)Vsr+). nr. 

Here (-)r- and (f+ denote the left and right hand side value at the interior 
boundary r' and nr is normal to the boundary. 

Since the capillary pressure depends on both the saturation and the 
permeability, the continuity of the capillary pressure leads to discontinues 
saturation over the interior boundary. Also, the flux conservation (7) create large 
gradients in the saturation over an interior boundary separating two different 
sediments. This adds extra complexity to our problem especially when a saturation 
front passes an interface. 

2. Representation of the Permeability 

The permeability K may have several orders of variation and the geometrical 
distribution can be very different in the sediments. Further, fractures and faults 
add to the complexity. Therefore, we need a good method for the representation of 
K. Hierarchical basis may be such a tool [27, 18]. 

The simplicity of the Haar system makes it an attractive choice for such a 
representation. Further it gives a permeability representation which is consistent 
with a domain decomposition solution procedure. We will restrict ourselves to two 
space dimensions and consider the unit square as our computational domain n. 
The Haar basis of scale 0 and 1, for two space dimension, is given by the set of 
functions in Figure 2. 

On each mesh of 2 x 2 cells, any cell wise constant function can be given a 
representation as linear combinations of ro, r a• r ;3 and r I'• where the coefficient 
of r 0 has a nonzero coefficient only for mesh of scale 0, which is the whole 
computational domain n. A 2-scale Haar multi resolution analysis, built on the 
scaling function r 0 [6, 9], will be used to represent the permeability. 

Let the absolute permeability K be a cell-wise constant function on n with 
2N + 1 cells in each direction. 

Then K can then be expanded in terms of the Haar basis: 
N 2N 2N 

(8) K = Koro + L L L L Kijklrijkl 
i=1 j=O k=O l=a,;3,')' 

where the index i gives the scale and j and k give the translations of the two 
dimensional wavelet rijkl· 
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We should note that this representation is easily extended to three space 
dimensions. If the permeability is given by a tensor, the wavelet representation 
should be used for each of the components. Also, other types of wavelet may be 
used. Especially if an overlapping domain decomposition method is used, a less 
localised wavelet representation should be useful. 

3. Solution procedure 

The governing equations (1), (2) and (3) are coupled. A sequential, time 
marching strategy is used to decouple the equations. This strategy reflects the 
different natures of the elliptic pressure equation given by (1) and (2), and the 
convection dominated parabolic saturation equation (3). The general solution 
strategy is published earlier [15, 10, 25, 8, 21], so we only give the main steps in 
the procedure. 

(9) 

(10) 

3.1. Sequential Solution Procedure: 

• Step 1: 
For t E [tn, tn+l], solve the pressure and velocity equations (1, 2). The 
velocity is a smoother function in space and time than the saturation. 
Therefore we linearize the pressure and velocity equations by using the 
saturation from the previous time step, S = S(tn) . The pressure equation 
is solved in a weak form, using a standard Galerkin method with bilinear 
elements [2, 31]. 

Then the velocity is derived from the Darcy equation (2), using local 
flux conservation over the elements [31]. This gives the same accuracy for 
the velocity field as for the pressure. The mixed finite element method would 
be an alternative solution procedure. In many cases, it is not necessary to 
solve the pressure for each timestep. 

• Step 2: 
A good handling of the convective part of the saturation equations, is essen-
tial for a fast and accurate solution for S. We will use an operator splitting 
technique where an approximate saturation S is calculated from a hyper-
bolic equation: 
For t E [tn, tn+l], with u given from Step 1, solve: 

ds as - -
dT :=¢at + V. (f(S)u) = 0 

where J is a modified fractional flow function [15, 8, 21]. 
• Step 3: 

The solution S provide a good approximation of the time derivative and the 
nonlinear coefficients in (3). 
For t E [tn, tn+lJ, and So = S, solve: 

asi 
{h + V · (b(Si_l)Siu- D(Si-d · VSi) = q2(x, t) 

for i = 1, 2, 3 .... until convergence, where b(S)S = f(S)- J(S). Equation 
(10) is solved in a weak form [15, 8], using optimal test functions [3]. 
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• Step 4: 
Depending on the strength of the coupling between the velocity and the 
saturation equation, the procedure may be iterated. 

3.2. Domain decomposition. The pressure (1), (2) and saturation equation 
(10) represent large elliptic problems. The equations are solved by using a 
preconditioned iterative procedure, based on domain decomposition [32]. The 
procedure allows for adaptive local grid refinement, which gives a better resolution 
at wells and in regions with large permeability variations such as interfaces between 
two types of sediments. The procedure also allows for adaptive local refinement 
at moving saturation fronts. Assuming a coarse mesh Oc on the computational 
domain n, we get the following algorithm [29, 8, 34, 33]: 

1. Solve the splitted hyperbolic saturation equation (9) on the coarse grid 0 0 , 
by integrating backwards along the characteristics. 

2. Identify coarse element that contain large gradients in saturation and 
activate refined overlapping/non overlapping sub grids Ok to each of these. 

3. Solve equation (9) on the refined sub grids nk, by integrating backwards 
along the characteristics. 

4. Using domain decomposition methods, solve the complete saturation 
equation with the refined coarse elements. The characteristic solution S 
is used as the first iteration of the boundary conditions for the sub domains 
nk . 

As is well known, algorithms based on domain decompositions have good parallel 
properties [32]. 

We will present result for 2D models, but the procedure has been implemented 
and tested for 3D models [16]. 

4. Coarse Mesh Models 

With the solution procedure described in Section 3, pressure, velocity and 
saturation will be given on a coarse mesh in some regions a and on a refined mesh 
in the remaining part of 0. This means that the model equations have to be 
given for different scales. Several upscaling techniques are given in the literature 
[22, 1, 11, 26, 18, 7, 30, 24]. In this paper, we will limit the analysis to the 
upscaling of the pressure equation. The upscaling of the saturation equation is less 
studied in the literature [1, 24]. 

The goal of all upscaling techniques is to move information from a fine grid to a 
coarser grid without loosing significant information along the way. A quantitative 
criteria is the conservation of dissipation: 

(11) e = KV'p · V'p 

A related and intuitively more correct criteria, is the conservation of the mean fluid 
velocity (v), given by: 

(12) 
(v) = -KeJJV'(p) 
V' · (v) = 0 

where Kef f is an effective permeability. 
In our approach it is natural to use conservation of the mean velocity as the 

upscaling criteria, although the method also conserves dissipation fairly well [18]. 
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4.1. Wavelet upscaling. A Multi Resolution Analysis (MRA), [9], defined 
on L2(R) x L2(R) consists of a nested sequence of closed subspaces of L2 , xL2 such 
that: 

(13) 
(14) 
(15) 
(16) 
(17) 

· · · c Vt c Vo c V-1 c · · · 
ujEZ v; = L2(R) x L2(R) 

njEZ Vj = {0} 
VJ+1 = v; u w1 

f(x) E Vj {::::::} f(2x) E VJ+l 

Here, w1 is the orthogonal complement of Vj in Vj+l. The permeability given 
by (8) satisfies such a hierarchical representation. Let j = 0 and j = J be 
respectively the coarsest and finest scale to appear inK. Upscaling in this context 
is to move information form scale j = J to a coarser scale j = M, M:::; J. 

In signal analysis, "highcut" filters are commonly used to clean a signal from 
its high frequency part which is considered to be negligible noise. We will apply to 
same reasoning on K. Such an upscaling will keep all large scale information, while 
variation on scales below our course grid will be neglected in regions where the flow 
has a slow variation. Moderate fine scale changes in the permeability, give rise to 
heterogeneous fingers [24] and have little influence on the global transport. But 
this upscaling technique is only valid in the case that the coefficients on the scales 
J, J- 1, ... , Mare small compared to the coefficients on a lower scale. This would 
not be the case for narrow high permeability zones. However, in regions with high 
permeability channels, the solutions will contain large gradients, which mean that 
we should use a refined grid to resolve the dynamics. A coarse grid solution based 
on upscaling, will loose too much information in such regions. 

4.2. Highcut upscaling. We will give an example of the highcut upscaling 
techniques on an anisotropic permeability field. Such a field is chosen because it 
is difficult to handle using simple mean value techniques. The coefficients which 
determine the permeability field at each scale are read from a file, but if we want to 
work with measured permeability fields, a subroutine can determine the coefficients 
on each scale recursively using standard two scale relations from the wavelet theory, 
[9]. 

The permeability field is generated by introducing large coefficients on a 
relatively low level. The goal is to model a case where we may have several regimes of 
permeability which on their own may be isotropic, but when put together constitute 
a very complex reservoir. 

Figure 3 shows the permeability field for a highcut upscaling as 3-D histograms. 
We can clearly see the complexity and anisotropy of the permeability field. 
Upscaling to scale 3 gives a massive loss of information, because the scale 4 
coefficient are fairly large. 

Table 1 displays the coefficients used. The aspect ratio between the highest 
and lowest permeability is about 10 in this case [18]. The highest scale is 7 which 
gives 27 x 27 cells, and the permeability value on scale 0 is 1.0. Kc., Kf3 and K"Y 
are the coefficients of r a' r {3 and r "Y respectively ( 2). 
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Scale 7 Scale 6 

Scale 5 Scale 4 

FIGURE 3. The figure shows the permeability field for a highcut 
upscaling in a 3-D histograms. Scale 7 ---) 128 x 128 cells, scale 6 
---) 64 x 64 cells, scale 5 ---) 32 x 32 cells and scale 4 ---) 16 x 16 cells. 

TABLE 1. The table show the value of the coefficients on each level. 

Level Ko. K/3 K, 
1 0.3 0.1 0.2 
2 0.0 1.0 0.9 
3 1.0 0.9 0.8 
4 -0.4 0.3 0.2 
5 0.5 0.2 0.3 
6 0.1 -0.2 -0.3 
7 0.2 0.1 0.0 

5. Model error 

As clearly shown in Figure 3, upscaling of permeability introduces modeling 
error. In order to develop a domain decomposition based simulator, the model has 
to be given on different scales. Therefore, we need an a posteriori error estimate 
of the modeling error introduced by the upscaling if we want to control the total 
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error in the computation. Such an error estimate can give the base for an adaptive 
local refinement procedure for the simulation of heterogeneous porous media. 

Defining the bilinear form: 

A: H 1 (0) x HJ(o) f-) R 

(18) A(p, ¢) = L '\lp · K'V¢dx 

Then, the fine scale weak form of the pressure equation (1, 2) is given by: 
Find p E H 1 (0), such that 

(19) 

Denoting the upscaled permeability tensor by K 0 , we get the equivalent upscaled 
model: 

Find p0 E H 1(0), such that 

(20) 

The modeling error introduced by replacing the fine scale permeability tensor 
with an upscaled permeability tensor may be given by: 

(21) emodel = llv-v0 ll 
where II · II is a norm defined on L2 (0) x L2(0). If we define a norm as given in 
[26], we can avoid the appearence of the fine scale solution on the right hand side 
in the error estimate : 

Let wE L2 (0) x L2 (0), then the fine scale-norm II · IIK-1 is given by: 

(22) llwll~-1 = 1 (w, K~ 1 w)dx 
n 

Where (·, ·) is the Euclidean inner product on R2 . This is an L2 norm with the 
weight function K~ 1 . If we choose K as the weight function we get the energy 
norm, which is consistent with (22): 

(23) 2 1 llwiiK = A(w,w) = '\lw · K'\lwdx 
n 

These norms will also appear in a mixed finite element formulation. 
The following can be proved [18, 26]: 

5.1. A posteriori error estimate. Let K and K 0 be symmetrical and 
positive definite tensors. Assume that K 0 is the result of an upscaling technique 
applied to K, such that: 

(24) { [K0 '\lp0 (K0 ), '\lp0 (K0 )]dx :S: { [K'\lp, '\lp]dx ln ln 
and 

(25) 

Let p0 and p be solutions of respectively eq.(20) and eq. (19), and let v and v0 

be the velocities given by v = -K'\lp and v0 = -K0 \7p0 . We have the following 
error estimate: 
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Scale 0 Scale 1 Scale 2 Scale 3 

± -+ 
FIGURE 4. The figure shows a nested sequence of subdomains, 
ni c n. 

and 

(27) 

where (Io) 2 =I-K-1 K 0 

The assumption (24) states that the dissipation in the problem is constant or 
decreasing during upscaling. Conservation of dissipation is one of the criteria used 
for judging the quality of an upscaling procedure see Section 4. The permeability 
representation given in Section 2 is consistent with the assumptions given in the 
theorem. 

The aposteriori estimate of the modeling error is built on the results in [26]. 
It is proved [26] that the upscaling based on this norm gives very good results 
and as noted, the estimate does not involve the fine scale solution. The error es-
timate gives the basis for an adaptive upscaling technique. Together with domain 
decomposition, it gives a strong modeling procedure. The following algorithm is 
consistent with the hierarchical permeability representation given in Section 2: 

Algorithm for an Adaptive Domain Decomposition Solution 
Solve on scale 0. (Global coarse grid solve) This gives P~ and v~ 

While( error;::: tal and scale :::; maxscale) 
Solve on all active local domains using the MRA representation. 
(After this step our data structure contains only inactive domains.) 
for(i = 1; i:::; number_of_domains_on_this_scale; i + +) 

if( locaL error ;::: toO 
Generate four new active subdomains of this local domain. 

end if 
if( locaL error ;::: local_error_prev) 

locaLerror _prev = locaLerror 
end if 

end for 
error = locaLerror _prev 

end while( . . . ) 

The separation of the domains into two classes, active and non-active, ensures 
that we do not waste time recomputing on domains which are not split up as we 
move up in the hierarchy. Thus the iteration will just involve these four sub domains 
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Pro~ 

/ 
Injection 

(a) (b) 

FIGURE 5. Experimental setting (a) and initial saturation profile (b). 

if only one domain is refined. On the other hand if two neighboring domains are 
refined, the iteration process will involve eight domains. Figure 4 shows a situation 
where all scales from scale 1 to scale 3 are present in the solution. 

6. Numerical experiments 

In this section we will present numerical experiments to demonstrate the effect 
of the error estimate and the "high-cut" upscaling technique. The computations 
will be based on the permeability data given by Figure 3. All experiments are based 
on the "quarter of a fivespot" problem. Our computational domain will be the unit 
square. Figure 5 shows a typical configuration along with the initial saturation 
profile. 

6.1. Reference Solution. The main objective of the experiment is to better 
understand the behavior of the error estimate in theorem (5.1) together with domain 
decomposition methods, based on local solvers [18]. We define the effectivity 
indices, 7JK, [28], measuring the quality of the error prediction as: 

(28) ll1°v 0 ll~-1 
1JK = llv0 - vll~-1 

To create a reference solution, we apply a global solver and identical grid on all 
scales. This grid has 128 x 128 cells and corresponds to scale 7. This means that on 
scale 7 each cell is assigned a permeability value and we use scale 7 as our reference 
scale. Figure 6 show the velocity and saturation fields for scale 7 and 4. The results 
are based on the permeability field given by Figure 3. The most apparent feature 
is the complexity in the fields. Both absolute value and direction changes radically 
over short distances. The saturation are shown at t = 0.14. We see that the main 
flowpattern are the same for the models, but as expected, some of the small scale 
variation is lost on scale 4 [24]. 
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X-Axis X-Axis 

(a) Velocity field for Scale 7 (b) Velocity field for Scale 4 

saturation at time=0.14 saturation at time=0.14 
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(c) Saturation field for Scale 7 (d) Saturation field for Scale 4 

FIGURE 6. The figure shows the velocity and saturation fields 
for a highcut upscaling with global solvers. Figure (a) and (c) 
represent the reference solution. Scale 7 ---+ 128 x 128 cells and 
scale 4 ---+ 16 x 16 cells. 
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TABLE 2. The effectivity indices for 7]K for scale 4- 6 

Scale 7]K 

6 1.45 
5 1.48 
4 1.54 

X-Axis X-Axis 

(a) 77K = 1.35, 24 x 24 sub domains (b) 1]K = 1.75, 9 x 9 sub domains 

FIGURE 7. The figure shows the velocity field for a highcut 
upscaling technique coupled with localized solvers through the 
adaptive upscaling algorithm. The results should be compared 
with the reference solution (Scale 7) given in Figure 6 

Table 2 shows the effectivity indices for each scale, which shows that 7]K vary 
as expected. 

It can be shown that dissipation is fairly well conserved in this case [18]. 
6.2. Local solvers. In this section we will test the local adaptive upscaling 

algorithm (5.1) together with local solvers [18]. To capture the global 
communication in the problem we had to apply coarse grid solvers at each scale. 
This was apparent only when the velocity field showed radical changes in both 
absolute value and direction. For permeability fields where these changes were less 
rapid a coarse grid solver was no longer necessary [18]. The domain decomposition 
has been based on the multiplicative Schwarz algorithm. Figure 7 shows the velocity 
field for an upscaling with the adaptive algorithm (5.1). The plot shows the velocity 
field corresponding for two values of the error estimate. Note that even when the 
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producer 

Injector 

FIGURE 8. The computational domain 0. 

quality of the error estimation is poor, 'T/K = 1. 75, most of the global transport is 
still captured using only 9 x 9 local domains. The results in Figure 7 should be 
compared to the reference velocity field given in Figure 6. As the quality of the error 
estimation improves the solution is almost identical to the reference solutions [18] 
and even for 'f/K = 1.35, 24 x 24 sub domains, the velocity field is very accurate. The 
iteration error was chosen very small such that the iteration error did not influence 
on the estimate of the modeling error. The two solutions will, however, never be 
identical due to large areas where the mean velocities are small such that the mesh 
is not refined. The differences are not visible on the plots and have only a negligible 
effect on the global flow. 

In most cases, the local coarsening of meshes by upscaling, will reduce the 
computational cost substantially. With the adapive technique proposed, the 
modeling error can still be kept under control. 

7. Two sediment model 

The solution procedure described in Section 3 can be extended to models 
consisting of several types of sediments. We will limit the presentation to a two 
sediment model. 

We consider a rectangular domain 0 which has an interior boundary r , at 
x = 0.5, separating the two sediments. We assume that both 01 and 02 are 
homogeneous. All the parameters like absolute and relative permeability and 
capillary pressure, may be discontinues across such interfaces [36, 19, 12, 13, 14, 
20]. We will assume that only the absolute permeability is discontinues across r, 
which means that also the capillary pressure ( 4) is discontinues. In order to satisfy 
the interface relations (5) and (7), the saturation S also has to be discontinues 
across r. 

This discontinuity is handled by introducing discontineous trial functions 
[12, 14] in the weak formulation of the saturation equation (10). The jump 
discontinuity in the trialfunctions [12, 14] are determined from the interface 
relations (5) and (7). A problem with an injector well in lower left corner and 
a production well in upper right corner, as shown in Figure 8 is studied. The 
numerical results obtained with the adaptive local grid refinement at the front 
and a fixed local refinement at the interior boundary in [12, 34, 13] are compared 
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TABLE 3. Time and well data for the test cases. 

Parameter value Decription 
dt 0.001 time step 
t [0,48] time intervall 
inj_ rate 0.2 injection rate 
prod_ rate -0.2 production rate 

TABLE 4. The permeability fields defining test cases a and b. 

case: K(fh) K(02) 
a 1.0 0.1 
b 0.1 1.0 

with equivalent results computed on a uniform global mesh. The local refinement is 
obtained by domain decomposition methods described in Section 3. The agreement 
between the two approaches is very good. 

We choose the same type of initial condition for the saturation as given in 
Figure 5. This represents an established front, located away from the injection 
well. 

Saturation solutions will be shown at four time levels, t = 0.24 , and t = 0.48 . 
Input data are given in Table 3 and Table 4, while the injection and production 
rates are given in Table 3 together with the time parameters. 

Figure 9 gives computed saturations for the test cases a and b in Table 4. In 
Figure 9 (a) and (c) (Testcase a) water is injected in a high permeability sediment 
and oil is produced in a low permeable sediment. In Figure 9 (b) and (d) (Testcase 
b) water is injected in a low permeable sediment, and oil is produced in a high 
permeable sediment. 

The total Darcy velocity and the capillary diffusion depend on the permeability 
field K. The effects of different permeabilities and capillary forces in the two regions 
0 1 and 0 2 combined with the effect of the boundary conditions (5), (7), are clearly 
seen in Figure 9 (a) - (d) . The saturation jump at the internal boundary is positive 
for testcase a and negative for testcase b [12, 14]. 

We observe that the saturation front is more smeared in the high permeable 
region than in the low permeable region, consistent with the magnitude of the 
diffusion term as given in Figure 1. 

As noted, the results shown are computed both with uniform grids and with 
local refinement based on domain decomposition [12]. The grid is adaptively refined 
at the saturation fronts [8, 12] and at the internal boundary r. Except for small 
interpolation effects at the boundary between the coarse and the refined meshes, 
the results are similar. 

The results are extended to models where both absolute and relative 
permeability and capillary pressure are given by different functional form in the 
two sediments [12, 14]. Work is under way to extend the models to heterogeneous 
multisediment models and models with fractures. The local refinement of meshes 
at interfaces and saturation fronts or the local coarsening of meshes by upscaling, 
will reduce the computational cost substantially. 
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saturation at time=0.24 saturation at time=0.24 

X-Axis X-Axis 

(a) t = 0.24 (b) t = 0.24 

saturation at time=0.48 saturation at time=0.48 

····· ....... ... 

X-Axis X-Axis 

(c) t = 0.48 (d) t = 0.48 

FIGURE 9. Saturation profile for five spot problem at time levels 
t = 0.24, and t = 0.48. K(fh) = 1 and K(02) = 0.1 in Figure 
(a) and (c). K(OI) = 0.1 and K(02) = 1 in Figure (b) and (d). 

8. Conclusion 

In this work we have focused on solution techniques for two phase porous 
media flow, where the models may be heterogeneous or consist of different types 
of sediments. An adaptive upscaling technique is given. This gives a flexible and 
powerful procedure for local grid refinement based on domain decomposition. Work 
is under way to extend the methods to more complex models like flow in fractured 
rock. 
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1. Introduction 

The main goal of this article, which generalizes [4] considerably, is to discuss the 
numerical simulation of particulate flow for mixtures of incompressible viscous fluids 
and rigid particles. Such flow occurs in liquid/solid fluidized beds, sedimentation, 
and other applications in Science and Engineering. Assuming that the number of 
particles is sufficiently large, those simulations are useful to adjust parameters in 
the homogenized models approximating the above two-phase flow. 

From a computational point of view, the methodology to be discussed in this 
article combines distributed Lagrange multipliers based fictitious domain methods, 
which allow the use of fixed structured finite element grids for the fluid flow com-
putations, with time discretizations by operator splitting ala Marchuk- Yanenko to 
decouple the various computational difficulties associated to the simulation; these 
difficulties include collisions between particles, which are treated by penalty type 
methods. After validating the numerical methodology discussed here by compar-
ison with some well documented two particle - fluid flow interactions, we shall 
present the results of two and three dimensional particulate flow simulations, with 
the number of particles in the range 102 - 103 ; these results include the simulation 
of a Rayleigh- Taylor instability occurring when a sufficiently large number of parti-
cles, initially at rest, are positioned regularly over a fluid of smaller density, in the 
presence of gravity. 

The methods described in this article will be discussed with more details (of 
computational and physical natures) in [6]. Actually, ref. [6] will contain, also, 
many references to the work of several investigators, showing that the most pop-
ular methodology to simulate particulate flow has been so far the one based on 
ALE (Arbitrary Lagrange-Euler) techniques; these methods are clearly more com-
plicated to implement than those described in this article (particularly on parallel 
platforms). 
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r 

n 

FIGURE 1. The rigid body B and the flow region D\B 

2. A model problem 

For simplicity, we shall consider first the motion of a unique rigid body B, 
surrounded by a Newtonian incompressible viscous fluid. From a geometrical point 
of view, the situation is the one depicted in Figure 1. 

The rigid body B(t)(= B) is contained in a region n c JRd(d = 2,3, in prac-
tice). The fluid flow is modelled by the following Navier-Stokes equations (with 
obvious and/or classical notation): 

(1) 

(2) 
(3) 
(4) 

[au J -PJ at + (u · V)u = P!g + V7 · u in D\B(t), 

V7 · u = 0 in D\B(t), 

u(x, 0) = uo(x), x E D\B(O), with V7 · uo = 0, 
u =go on r. 

We remind that for Newtonian fluids the stress tensor u is defined by 

(5) 

Assuming that a no-slip condition holds on 8B(t), the rigid body motion of B(t), 
combined with the incompressibility condition (2), implies that f1 go · ndf = 0. 

For further simplicity, we shall assume that n C JR2, but there is no basic 
difficulty to generalize the following considerations to three-dimensional particulate 
flow. Denoting by V (resp., w) the velocity of the center of mass G (resp., the 
angular velocity) of the rigid body B, we have for the motion of B the following 
Newton's equations: 

(6) 
(7) 
(8) 

MV=F+Mg, 
Iw=T, 

G=V, 
with the force F and torque T, resulting from the fluid-particle interaction, given 
by 

(9) 

(10) 
_, 

T = f88 (Gx xun) · e3d"(, 
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where, in (10), e3 = {0, 0, 1} if we assume that n is contained in the plane x1 Ox2 . 

The no-slip boundary condition mentioned above implies that on 8B we have 

(11) u(x, t) = V(t) + w(t) x Gx, 'Vx E 8B(t), 

with w = {0, 0, w }. Of course, I is the moment of inertia of B, with respect to G. 

3. A global variational formulation 

We introduce first the following functional spaces 

V90 (t) {vlv E H 1 (D\B(t))2 , v = go(t) on r}, 

Vo(t) {vlv E H 1(D\B(t))2 , v = 0 on r, v = Y + 8x Gx 
on 8B, Y E JR?, 0 E JR}, 

{qlq E L2(rl\B(t)), { _qdx = 0} 
ln\B(t) 

with 8 = {0, 0, 0}. By application of the virtual power principle (ref. [7]) we are 
led to look for: 

u(t) E V90 (t),P E L6(D\B(t)), V(t) E JR2,w(t) E lR such that 

PJ { _aau · vdx + PJ { _(u · V')u · vdx- { _pV' · vdx 
ln\B(t) t ln\B(t) ln\B(t) 

(12) +2v1 { _D(u): D(v)dx + M(V- g)· Y + IwO 
ln\B(t) 

= PJ { _g · vdx, 'Vv E Vo(t), V{Y, 0} E JR3 , 
ln\B(t) 

(13) { _qV' · u(t)dx = 0, 'Vq E L2(D\B(t)), 
ln\B(t) 

(14) u=g0 onr, 
-> 

(15) u = V + wx Gx on 8B(t), 

(16) u(xo) = uo(x), \:lx E rl\B(O), with V' · uo = 0, 
(17) V(O) = Vo, w(O) = wo. 

In (12), dx = dx 1dx2, and the rate-of-strain tensor D(v) is given by 
1 (18) D(v) = 2(V'v + V'vt), 

and we have, for G(t)(= G) in (15), 

(19) G(t) =Go+ fat V(s)ds. 

4. A fictitious domain formulation 

The fictitious domain method discussed below, offers an alternative to the ALE 
methods investigated in [9], [14], [13]. The basic idea is quite simple and can be 
summarized as follows: 

(i) Fill each particle with the surrounding fluid. 
(ii) Impose a rigid body motion to the fluid inside each particle. 
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(iii) Relax the rigid body motion inside each particle by using a distributed La-
grange multiplier defined over the space region occupied by the particles. 

In the following, we shall assume that B is made of an homogeneous material of 
density Ps· Starting from the global variational formulation (12)-(17) and following 
steps (i) to (iii) leads to the following generalized variational problem, where A(t) 
is the distributed Lagrange multiplier forcing at time t rigid body motion for the 
fluid "filling" body B: 

(20) 

(21) 

(22) 
(23) 
(24) 
(25) 

Find U(t) E W 9o(t) = {vlv E H 1(0) 2 , v = go(t) on r}, 
P(t) E L6(0) = {qlq E L2 (0), fn qdx = 0}, 

A(t) E A(t) = L 2 (B(t)) 2 orA(t) = H 1 (B(t)) 2 , so that 

PJ L ~~ · vdx + PJ L (U · V')U · vdx- L PV' · vdx 

+2vf L D(U) : D(v)dx + (1 - PJ I Ps)M(V- g) · Y 

+(1- PJ I Ps)IwO- <A, v- Y- Ox Gx> B(t)= PJ L g · vdx, 

Vv E HJ(0)2 , V{Y,O} E JR3 , 

L qV' · Vdx = 0, Vq E L2 (0), 

<J,.t,V-V-wxGx>B(t)=O, VJ,.tEA(t), 
u =go on r, 

V(x, 0) = Uo(x), X E 0, with V'. Uo = 0 and Uolf!\B(O) = Uo, 

V(O) = Vo, w(O) = wo, G(O) =Go. 

If (20)-(25) hold, it can be easily shown that U(t)lf!\B(t) = u(t), P(t)lo\B(t) = p(t), 
where {u(t),p(t)} completed by {V(t),w(t)} is a solution of the global variational 
problem (12)-(17). The above formulation deserves several remarks; we shall limit 
ourselves to 

REMARK 1. From a mathematical point of view, the good choice for A(t) is 
H 1(B(t)) 2 with<·,· >B(t) defined by either 

(26) 

or 

(27) 

< J..t, V >B(t)= { (J..t · V + d2V'J,.t: V'v)dx, 
JB(t) 

< J..t, v >B(t)= { (J..t · v + d2D(J..t): D(v))dx, 
JB(t) 

where, in (26) and (27), d2 is a scaling factor, with d a characteristic length, an 
obvious choice ford being the diameter of B. An obvious advantage of< ·, · > B(t) 
defined by (27) is that the differential part of it vanishes if vis a rigid body motion 
velocity field. 

The choice A(t) = L2 (B(t)) 2 is not suitable for the continuous problem, since, 
in general, u and P do not have enough regularity for A to be in L2 (B(t)) 2 • On 
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?'17 r-->r:;:. 

1/i/ vv /"" 
// vv // /I/ 1/V /\ 
// /I/ // // vv ~/ 
// V/ // // VV/ 

// // V/ /I/ V/ 
/I/ // V/'/ 1/l// 
//' // V/' // / 1/ 
IV // V/' /'/ // VI 
/VI/ 1/V /'/ /VI 
IV V/ /I/ 1/1/ // VI 
\V V/ /V 1/1/ 1//V 

"-V 1/1/ v 

FIGURE 2. Refinement of a triangle of T:R (left) and a triangula-
tion of a disk (right). 

the other hand, < ·, · > B(t) defined by 

(28) < J.t, v > B(t)= inJ.t · vdx 

125 

makes sense for the finite dimensional approximations of problem (20)-(25), in order 
to force rigid body motion inside B. 

REMARK 2. In the case of Dirichlet boundary conditions on r, and taking the 
incompressibility condition V' · U = 0 into account, we can easily show that 

(29) 2vf in D(U) : D(v)dx = v1 in V'U : \i'vdx, Vv E W0 , 

which, from a computational point of view, leads to a substantial simplification in 
(20)-(25). 

REMARK 3. The distributed Lagrange multiplier approach can be applied to 
the cases where the particles have different densities and/or shapes. We are cur-
rently investigating the extension of this approach to visco-elastic fluid flow. 

REMARK 4. The distributed Lagrange multiplier approach discussed here takes 
full advantage of the particle rigidity. For deformable particles, we can not apply 
the above method, directly at least. 

Further remarks and comments can be found in [6]. 

5. Finite element approximation of problem (20)-(25) 

5.1. Generalities. Concerning the space approximation of problem (20)-(25) 
the main computational issues are: 

(i) The approximation of U and P which are functions defined over n. 
(ii) The approximation of the multiplier .X, which is defined over the moving 

domain B(t). 
(iii) The approximation of the bilinear functional 

{p,, V} ----+< J.t, V > B(t) · 

The most delicate issue is (iii). 
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5.2. On the pressure and velocity spaces. In the following, we shall de-
note by h the pair {ho, hB}, where ho and hB are space discretization steps associ-
ated to finite element approximations defined over 0 and B, respectively. Assuming 
that O(c JR2 ) is polygonal (as in Figure 1), we introduce a finite element trian-
gulation T;_~ of 0, so that UTE ToT = 0, and then a twice finer triangulation T.h0 

2h 

obtained by joining the mid-points of the edges of the triangles of T;~Z, as shown in 
Figure 2, above. 

The pressure spaces L2 (0) and L5(0) are approximated by 

(30) L~ = {qhiQh E C0(0), Qhlr E P1, VT E 7;_~}, 

(31) L6h = {qhiQh E L~, l Qhdx = 0}, 

respectively, with P1 the space of the polynomials of two variables of degree ~ 1. 
Similarly, we approximate the velocity spaces W90 and W0 ( = HJ (0) 2) by 

(32) Wgoh = {vhlvh E C0 (0)2 , vhiT E P'f, VT E 7[.0 , vhiT = goh}, 
(33) Woh = {vhlvh E C0 (0)2 , vhiT E P'f, VT E 7[.0 , vhiT = 0}, 

respectively; in (32), goh is an approximation of go so that fr goh · ndr = 0. 
The above pressure and velocity finite element spaces - and their 3-D gener-

alizations - are classical ones, concerning the approximation of the Navier-Stokes 
equations for incompressible viscous fluids (see, e.g., [3] and the references therein 
for details.) 

5.3. Approximation of the multiplier space A(t). At timet, we approx-
imate the multiplier space A(t) by 

(34) Ah(t) = {ILhiiLh E C 0 (i~h(t)) 2 ,1LhiT E Pf, VT E 7f.B(t)}, 

where, in (34), Bh(t) is a polygonal approximation of B(t) and T,.B(t) is a trian-
gulation of Bh(t). If B(t) is a disk, we take advantage of its rotation-invariance 
by taking for T,.B(t) the triangulation obtained by translating ThB(o) by the vector 
G 0 G(t~(7f. 8 (o) can be viewed as a triangulation of reference); such a triangulation 
ThB(t) is shown in Figure 2. 

If B(t) is not a disk, we shall take for ThB(t) a triangulation rigidly attached to 
B(t). 

5.4. Approximation of the bilinear functional < ·, · >B(t)· Compat-
ibility conditions between ho and hB. Suppose that the bilinear functional 
< ·, · > B(t) is defined by 

< p, v >B(t)= r (ap. v + b'Vp: Vv)dx, 
JB(t) 

with a > 0 and b 2: 0. In order to avoid solving complicated mesh intersection prob-
lems between 7,.0 and T:(t) we approximate<·,· >B(t) (and, in fact<·,· >Bh(t)) 
by 

(35) {ph, Vh}--; r [aph · (7rhVh) + b'\Jph: '\J(7rhVh)]dx, J Bh(t) 
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where, in (35), 1fh is the piecewise linear interpolation operator which to vh asso-
ciates the unique element of Ah(t) obtained by interpolating linearly vh on the 
triangles of T,B(t), from the values it takes at the vertices of the above triangulation. 

As can be expected with mixed variational formulations, some compatibility 
conditions have to be satisfied between the spaces used to approximate {U, P} and 
A (see, e.g., [2], [15] for generalities on the approximation of mixed variational 
problems and several applications). Concerning the particular problem discussed 
here, namely (20)-(25), let us say that: 

(i) condition hB << ho is good to force accurately rigid body motion on B(t). 
(ii) condition ho << hB is good for stability. 

Our numerical experiments show that ho ~ h B seems to be the right compro-
mise. 

REMARK 5. We can also use collocation methods to force rigid body motion 
on B(t). This approach (inspired from [1]) has been tested and the corresponding 
results are reported in [6]. 

5.5. Finite Element approximation of problem {20}-(25). It follows 
from previous Sections that a quite natural finite element approximation for the 
mixed variational problem (20)-(25) is the one defined by 

Find {Vh,Ph} E W9oh(t) x L5(0), {V(t),w(t)} E JR3 , Ah(t) E Ah(t) so that 

PJ In a~h · vdx + PJ In (Vh · \l)Vh · vdx -In Ph \7· vdx 

r dV dw 
(36) +vt Jo \JU h : \lvdx + (1 - ptf Ps)M dt · Y + (1 - PJ / p8 )I dt() 

- < Ah, 1fh v-Y- Ox Gx> Bh(t)= PJ In g · vdx 

+(1- Pt!Ps)Mg · Y, Vv E Woh, V{Y,()} E JR3 , a.e., t > 0, 

(37) L q\7· Vhdx = 0, Vq E L~, 

(38) < J.L,1fhVh- V- wx Gx>Bh(t)= 0, '<IJ.L E Ah(t), 

(39) Uh(O) = Voh(Voh ~ Uo), with L q\7· Vohdx = 0, Vq E L~, 
(40) V(O) = Vo, w(O) = wo, G(O) =Go, 

with G(t) =Go+ J~ V(s)ds. 

6. Time discretization by operator-splitting 

6.1. Generalities. Most modern Navier-Stokes solvers are based on Operator-
Splitting schemes, in order to force \7· u = 0 via a Stokes solver (like in, e.g., [3]) or 
a L2-projection method, (like in, e.g., [16]). This approach applies also to the par-
ticulate flow problems discussed here. Indeed, these problems contain three basic 
computational difficulties, namely: 

(i) The incompressibility condition \7· U = 0 and the related unknown pressure 
P. 

(ii) Advection and diffusion operators. 
(iii) The rigid body motion of B(t) and the related Lagrange multiplier .X(t). 
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To each of the above difficulties is associated a specific operator; the operators 
associated to (i) and (iii) are essentially projection operators. From an abstract 
point of view, the problems to be solved (continuous or discrete) have the following 
structure: 

( 41) 

To solve (41) we suggest a fractional-step ala Marchuk- Yanenko (see [11] and the 
references therein); these schemes are first order accurate only, but very stable 
and easy to implement; actually they can be made second order accurate by sym-
metrization. Applying the Marchuk-Yanenko scheme to the initial value problem, 
we obtain (with Llt(> 0) a time discretization step): 

(42) 0_ r.p - I.{Jo, 

and for n ~ 0, we compute r.pn+l from r.pn via 

. n+j/3 n+(j-l)/3 
(43) r.p -~ +Aj(r.pn+j/3,(n+1)Llt)=fj+l, 

for J = 1, 2, 3, with 2:~= 1 fj+l = r+l. 

6.2. Application of the Marchuk-Yanenko scheme to particulate flow. 
With a,(3 so that a+ (3 = 1, 0:::; a,(3:::; 1, we time-discretize (36)-(40) as follows 
(the notation is self-explanatory): 

(44) 

for n ~ 0, assuming that vn' yn' wn' en are known, solve 

(45) { r vn+I/3 - vn r 
Pi Jn Llt · vdx- Jn pn+l/3V · vdx = 0, Vv E Woh, 

1 qn. vn+l/3dx = 0 Vq E L2. {Un+l/3 pn+l/3} E wn+I x L2 
v ' . h' ' 9oh Oh · n 

Next, compute vn+213, yn+2/3, en+213 via the solution of 

1 un+2/3- un+l/3 1 
PI · vdx + avi vvn+213 · Vvdx+ 

Jf Llt n 
(46) Pi Jn (Un+l/3. V)un+2/3. vdx =Pi l g. vdx, 

Vv E Woh; Vn+l/3 E W_:ot 1 , 

and 

(47) yn+2/3 = yn + gLlt, en+2/3 =en+ (Vn + yn+2/3)Llt/2. 
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and 

(49) 

Solving problem (45) is equivalent to computing the L2 (0)-projection of vn 
on the space W~t 1 • This can be done easily using an Uzawajconjugate gradient 
algorithm, preconditioned by the discrete analogue of -\72 for the homogeneous 
Neumann boundary condition; such an algorithm is described in [16]. Problem 
( 46) is a discrete advection-diffusion problem; it can be solved by the methods 
discussed in [3]. 

Finally, problem (48) has the following- classical- saddle-point structure 

(50) {
Ax+By = b, 

Btx = c, 

with A a symmetric and positive definite matrix. Problem (48) can also be solved 
by an Uzawajconjugate gradient algorithm; such an algorithm is described in [4] 
and [6]. 

7. Remarks on the computational treatment of particle collisions 

In the above sections, we have consider the particular case of a single particle 
moving in a region 0 filled with a Newtonian incompressible viscous fluid; we have 
implicitly discarded possible boundary /particle collisions. The above methodology 
can be generalized fairly easily to many particles cases, with, however, a computa-
tional difficulty: one has to prevent particle interpenetration or particle/boundary 
penetration. To achieve those goals we have included in the Newton's equations 
(6)-(8) modeling particle motions a short range repulsing force. If we consider the 
particular case of circular particles (in 2-D) or spherical particles in (3-D), and if 
Pi and Pj are such two particles, with radiuses Ri and Rj and centers of mass Gi 

-+ 

and G i, we shall require the repulsion force Fij between Pi and Pi to satisfy the 
following properties: 

(i) To be parallel to Gic;. 
( ii) To verify 

with dij = jGiGjj, c a scaling factor and c a "small" positive number. 
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FIGURE 3. Repulsion force behavior 

(iii) I F;j I has to behave as in Figure 3 for 

R; + Rj :S: d;j :::; R; + R1 + p. 

Parameter p is the range of the repulsion force; for the simulations discussed in the 
following Section we have taken p ~ hn. 

Boundary/particle collisions can be treated in a similar way (see [6] for details). 

REMARK 6. The above collision model is fairly simple and is inspired from 
penalty techniques classically used for the computational treatment of some contact 
problems in Mechanics (see, e.g., [10], [5] for details and applications). Despite its 
simplicity, this model produces good results, the main reason for that being, in our 
opinion, that if the fluid is sufficiently viscous and if the fluid and particle densities 
are close, the collisions - if they occur - are non violent ones, implying that the 
particles which are going to collide move at almost the same velocity just before 
collision. For more sophisticated models allowing more violent collisions see, e.g., 
[12] and the references therein. 

8. Numerical experiments 

8.1. 2 particles case. In order to validate the methodology described in the 
previous sections, we are going to consider a well-documented case, namely the 
simulation of the motion of 2 circular particles sedimenting in a two-dimensional 
channel. We shall apply algorithm ( 44)-( 49) with different mesh sizes and time 
steps. The computational domain is a finite portion of a channel, which is moving 
along with the particles. Its x and y dimensions are 2 and 5, respectively. The 
diameter d of the particles is 0.25. The fluid and particle densities are Pi = 1.0 and 
Ps = 1.01, respectively, and the fluid viscosity is VJ = 0.01. The initial positions 
of the two circular particles are at the centerline of the channel with distance 0.5 
apart. Initial velocity and angular speed of particles are zero. We suppose that at 
t = 0 the flow is at rest. 

For numerical simulations, we have chosen two time steps, 6t = 0.0005 and 
0.00025, and two mesh sizes for the velocity field, hv = 1/192 and 1/256. The mesh 
size for pressure is always hp = 2hv. The force range, p, in which the short range 
repulsion force is active is 1.5hv. For the (stiffness) parameter, E, mentioned in 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



FICTITIOUS DOMAIN METHOD FOR PARTICULATE FLOW 131 

FIGURE 4. Particle position at t = 0.15, 0.2, 0.3 (from left to right). 

previous Section, we have taken Ep = w-5 for particle-particle repulsion force and 
Ew = Ep/2 for particle-wall repulsion force. 

In Figure 4, we can see the fundamental features of two fluidizing particles, i.e., 
drafting, kissing and tumbling obtained with mesh size hv = 1/256 and time step 
!::::.t = 0.0005. In Figures 5-7, the center of the particles, translation velocity of the 
center of the particles, and the angular speed of the particles are shown for the cases 
where the time step is the same, !::::.t = 0.0005, and the mesh sizes are hv = 1/192 
and 1/256. The maximal Reynolds numbers in the numerical simulations is about 
450. The time at which the two particles are the closest is t = 0.1665 in the 
above two cases. Actually we have a very good agreement between these two 
simulations until kissing. After kissing, despite the stability breaking which is 
clearly the manifestation of some instability phenomenon, the simulated particle 
motions are still very close taking into consideration the difficulty of the problem. 

Also in Figures 8-10, similar history graphs are shown which are obtained 
from the same mesh size, hv = 1/192, and two time steps, !::::.t = 0.0005 and 
0.00025. When the time step is !::::.t = 0.00025, the maximal Reynolds number 
in the numerical simulation is about 465 and the time of the smallest distance 
occurrence is at t = 0.17125. We can also find a very good agreement between 
these two cases until the kissing occurrence. 

These results compare qualitatively well with those of Hu, Joseph, and Cro-
chet in [8], which were obtained with different physical parameters and a different 
numerical methodology. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



132 ROLAND GLOWINSKI ET AL. 

2 -------------

FIGURE 5. History of the x-coordinate (left) and they-coordinate 
(right) of the centers of 2 circular particles obtained from different 
mesh sizes, hv = 1/192 (thick lines) and hv = 1/256 (thin lines). 

_ ........ ~ 

FIGURE 6. History of the x-component (left) and they-component 
(right) of the translation velocity of 2 circular particles obtained 
from different mesh sizes, hv = 1/192 (thick lines) and hv = 1/256 
(thin lines). 

FIGURE 7. History of the angular speed of 2 circular particles ob-
tained from different mesh sizes, hv = 1/192 (thick lines) and 
hv = 1/256 (thin lines). 
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2 ---------------

'---.,...,----;;--,----;;..,.---.._,...,-......,.0.25 -10 

FIGURE 8. History of the x-coordinate (left) and the y-coordinate 
(right) of the centers of 2 circular particles obtained from different 
time steps, 6t = 0.0005 (thick lines) and 6t = 0.00025 (thin lines). 

FIGURE 9. History of the x-component (left) and they-component 
of the (right) translation velocity of 2 circular particles obtained 
from different time steps, 6t = 0.0005 (thick lines) and 6t = 
0.00025 (thin lines). 

FIGURE 10. History of the angular speed of 2 circular particles 
obtained from different time steps, b:.t = 0.0005 (thick lines) and 
b:.t = 0.00025 (thin lines). 

133 
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FIGURE 11. Sedimentation of 1008 circular particles: t = 0, 1, and 
2 (left to right). 

FIGURE 12. Sedimentation of 1008 circular particles: t = 3, 4, and 
5 (left to right). 

8.2. A 1008 particles case. The second test problem that we consider con-
cerns the simulation of the motion of 1008 sedimenting cylinders in the closed chan-
nel, n = (0, 2) X (0, 4). The diameter d of the cylinders is 0.0625 and the position 
of the cylinders at time t = 0 is shown in Figure 11. The solid fraction in this test 
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FIGURE 13. Sedimentation of 1008 circular particles: t = 10, 20, 
and 48 (left to right). 
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case is 38.66%. Initial velocity and angular speed of cylinders are V~i = 0, w~,i = 0 
fori= 1, ... , 1008. The density of the fluid is Pt = 1.0 and the density of cylinders 
is Ps = 1.01. The viscosity of the fluid is Vf = 0.01. The initial condition for the 
fluid flow is u = 0 and g0 (t) = 0, \ft ~ 0. The time step is 6t = 0.001. The mesh 
size for the velocity field is hv = 1/256 (there are 525835 nodes). The mesh size for 
pressure is hp = 1/128 (131841 nodes). For this many particles case, a fine mesh is 
required. The parameters for the repulsion force are p = hv, fp = 3.26 x 10-5 , and 
fw = fp/2. We have chosen a:= 1 and f3 = 0 in the Marchuk-Yanenko scheme. The 
number of iterations for the divergence free projection problem varies from 12 to 
14, the number of iterations for the linearized advection-diffusion problem is 5, and 
the one for the rigid body motion projection is about 7. Those number of iterations 
are almost independent of the mesh size and of the number of particles. With the 
finite dimensional spaces defined in Section 5, the evolution of the 1008 cylinders 
sedimenting in the closed channel is shown in Figures 11-13. The maximal particle 
Reynolds number in the entire evolution is 17.44. The slightly wavy shape of the 
interface observed at t=1 in Figure 11 is a typical onset of a Rayleigh-Taylor insta-
bility. When tis between 1 and 2, two small eddies are forming close to the left wall 
and the right wall and some particles are pulling down fast by these two eddies. 
Then other two stronger eddies are forming at the lower center of the channel for 
t between 2 and 4; they push some particles almost to the top wall of the channel. 
At the end all particles are settled at the bottom of the channel. 

8.3. A three dimensional case. The third test problem that we consider 
here concerns the simulation of the motion of two sedimenting balls in a rectangular 
cylinder. The initial computational domain is 0 = (0, 1) X (0, 1) X ( -1, 1.5), then it 
moves with the center of the lower ball. The diameter d of two balls is 0.25 and the 
position of balls at time t = 0 is shown in Figure 14. Initial velocity and angular 
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FIGURE 14. Sedimentation of two spherical particles: t = 0.00, 
0.35, and 0.40 (left to right) 

FIGURE 15. Sedimentation of two spherical particles: t = 0.50, 
and 0. 70 (left to right) 

speed of balls are zero. The density of the fluid is PJ = 1.0 and the density of balls 
is Ps = 1.14. The viscosity of the fluid is IIJ = 0.01. The initial condition for the 
fluid flow is u = 0 The mesh size for the velocity field is hv = 1/40. The mesh size 
for pressure is hp = 1/20. The time step is !:::.t = 0.001. For the repulsion force 
parameters, we have now taken, p = hv, f.p = 8.73 X w-3 and f.w = f.p/2. The 
maximal particle Reynolds number in the entire evolution is 198.8. In Figures 14 
and 15, we can see the fundamental features of fluidizing two balls, i.e., drafting, 
kissing and tumbling. 

9. Acknowledgments 

We acknowledge the helpful comments and suggestions of E. J. Dean, V. Gi-
rault, J. He, Y. Kuznetsov, B. Maury, and G. Rodin and also the support of NEC 
concerning the use of an SX-3 supercomputer. We acknowledge the support of 
the NSF under HPCC Grand Challenge Grant ECS-9527123, NSF (Grants DMS 
8822522, DMS 9112847, DMS 9217374), DRET (Grant 89424), DARPA (Contracts 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



FICTITIOUS DOMAIN METHOD FOR PARTICULATE FLOW 137 

AFOSR F49620-89-C-0125, AFOSR-90-0334), the Texas Board of Higher Educa-
tion (Grants 003652156ARP and 003652146ATP) and the University of Houston 
(PEER grant 1-27682). 

References 
1. F. Bertrand, P.A. Tanguy, and F. Thibault, A three-dimensional fictitious domain method 

for incompressible fluid flow problems, Int. J. Num. Meth. Fluids 25 (1997), 615-631. 
2. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, New York, 

N.Y., 1991. 
3. R. Glowinski, Numerical methods for nonlinear variational problems, Springer-Verlag, New 

York, N.Y., 1984. 
4. R. Glowinski, T.l. Hesla, D.D. Joseph, T.W. Pan, and J. Periaux, Distributed Lagronge 

multiplier methods for particulate flows, Computational Science for the 21st Century (M.O. 
Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Periaux, and M.F. Wheeler, eds.), J. Wiley, 
Chichester, 1997, pp. 270-279. 

5. R. Glowinski and P. LeTallec, Augmented Lagrongian and operotor-splitting methods in non-
linear mechanics, SIAM, Philadelphia, PA, 1989. 

6. R. Glowinski, T.W. Pan, T.l. Hesla, D.D. Joseph, and J. Periaux, A distributed Lagronge 
multiplier/fictitious domain method for particulate flows, submitted to International J. of 
Multiphase Flow. 

7. T. I. Hesla, The dynamical simulation of two-dimensional fluid/particle systems, unpublished 
notes, 1991. 

8. H. H. Hu, D. D. Joseph, and M. J. Crochet, Direct simulation of fluid particle motions, Theor. 
Comp. Fluid Dyn. 3 (1992), 285-306. 

9. H.H. Hu, Direct simulation of flows of solid-liquid mixtures, Internat. J. Multiphase Flow 22 
(1996), 335-352. 

10. N. Kikuchi and T.J. Oden, Contact problems in elasticity, SIAM, Philadelphia, PA, 1988. 
11. G. I. Marchuk, Splitting and alternate direction methods, Handbook of Numerical Analysis 

(P.G. Ciarlet and J.L. Lions, eds.), vol. 1, North-Holland, Amsterdam, 1990, pp. 197-462. 
12. B. Maury, A many-body lubrication model, C.R. Acad. Sci., Paris, Serie I (to appear). 
13. B. Maury and R. Glowinski, Fluid particle flow: a symmetric formulation, C.R. Acad. Sci., 

Paris, Serie It. 324 (1997), 1079-1084. 
14. 0. Pironneau, J. Liou, and T. Tezduyar, Charocteristic-Galerkin and Galerkin least squares 

space-time formulations for advection-diffusion equations with time-dependent domains, 
Comp. Meth. Appl. Mech. Eng. 16 (1992), 117-141. 

15. J.E. Roberts and J.M. Thomas, Mixed and hybrid methods, Handbook of Numerical Analysis 
(P.G. Ciarlet and J.L. Lions, eds.), vol. 2, North-Holland, Amsterdam, 1991, pp. 521-639. 

16. S. Turek, A comparative study of time-stepping techniques for the incompressible navier-
stokes equations: from fully implicit non-linear schemes to semi-implicit projection methods, 
Int. J. Num. Meth. Fluids 22 (1996), 987-1011. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77204, USA 
E-mail address: roland<Gmath.uh.edu 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77204, USA 
E-mail address: pan<Gmath. uh. edu 

DEPARTMENT OF AEROSPACE ENGINEERING & MECHANICS, UNIVERSITY OF MINNESOTA, MIN-
NEAPOLIS, MN 55455, USA 

E-mail address: hesla<Gaem. umn. edu 

DEPARTMENT OF AEROSPACE ENGINEERING & MECHANICS, UNIVERSITY OF MINNESOTA, MIN-
NEAPOLIS, MN 55455, USA 

E-mail address: joseph<Gaem. umn. edu 

DASSAULT AVIATION, 92314 SAINT-CLOUD, FRANCE 
E-mail address: periaux<Gmenusin. inria. fr 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Contemporary Mathe,matin; 
Volume 218, 1998 
B 0-8218-0988-1-03007-7 

Domain Decomposition Algorithms for 
Saddle Point Problems 

Luca F. Pavarino 

1. Introduction 

In this paper, we introduce some domain decomposition methods for saddle 
point problems with or without a penalty term, such as the Stokes system and the 
mixed formulation of linear elasticity. We also consider more general nonsymmetric 
problems, such as the Oseen system, which are no longer saddle point problems but 
can be studied in the same abstract framework which we adopt. 

Several approaches have been proposed in the past for the iterative solution of 
saddle point problems. We recall here: 
- Uzawa's algorithm and its variants (Arrow, Hurwicz, and Uzawa [1], Elman and 
Golub [24], Bramble, Pasciak, and Vassilev [10], Maday, Meiron, Patera, and 
R0nquist [38]); 
- multigrid methods (Verfiirth [54], Wittum [55], Braess and Blamer [7], Brenner 
[11]); 
- preconditioned conjugate gradient methods for a positive definite equivalent prob-
lem (Bramble and Pasciak [8]); 
- block-diagonal preconditioners (Rusten and Winther [50], Silvester and Wathen 
[51], Klawonn [31]); 
- block-triangular preconditioners (Elman and Silvester [25], Elman [23], Klawonn 
[32], Klawonn and Starke [34], Pavarino [43]). 

Some of these approaches allow the use of domain decomposition techniques on 
particular subproblems, such as the inexact blocks in a block preconditioner. In this 
paper, we propose some alternative approaches based on the application of domain 
decomposition techniques to the whole saddle point problem, discretized with either 
h-version finite elements or spectral elements. We will consider both a) overlapping 
Schwarz methods and b) iterative substructuring methods. We refer to Smith, 
Bj0rstad, and Gropp [52] or Chan and Mathew [18] for a general introduction to 
domain decomposition methods. 
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a) Early work by Lions [37] and Fortin and Aboulaich [29] extended the origi-
nal overlapping Schwarz method to Stokes problems, but these methods were based 
on a positive definite problem obtained by working in the subspace of divergence-
free functions and they did not have a coarse solver, which is essential for obtaining 
scalability. Later, the overlapping Schwarz method was also extended to the mixed 
formulations of scalar-second order elliptic problems (see Mathew [40, 41], Ewing 
and Wang [27], Rusten, Vassilevski, and Winther [49]) and to indefinite, nonsym-
metric, scalar-second order elliptic problems (see Cai and Widlund [13, 14]). In 
Section 6, we present a different overlapping Schwarz method based on the solu-
tion of local saddle point problems on overlapping subdomains and the solution 
of a coarse saddle point problem. The iteration is accelerated by a Krylov space 
method, such as GMRES or QMR. The resulting method is the analog for sad-
dle point problems of the method proposed and analyzed by Dryja and Widlund 
[20, 21] for symmetric positive definite elliptic problems. As in the positive defi-
nite case, our method is parallelizable, scalable, and has a simple coarse problem. 
This work on overlapping methods is joint with Axel Klawonn of the Westfa1ische 
Wilhelms-U niversitat M iinster, Germany. 

b) Nonoverlapping domain decomposition preconditioners for Stokes problems 
have been considered by Bramble and Pasciak [9], Quarteroni [47] and for spec-
tral element discretizations by Fischer and Ronquist [28], Ronquist [48], Le Tallec 
and Patra [36], and Casarin [17]. In Section 7, we present a class of iterative 
substructuring methods in which the saddle point Schur complement, obtained af-
ter the elimination of the internal velocities and pressures in each subdomain, is 
solved with a block preconditioner. The velocity block can be constructed using 
wire basket or Neumann-Neumann techniques. In the Stokes case, this construc-
tion is directly based on the original scalar algorithms, while in the elasticity case 
it requires an extension of the scalar techniques. The iteration is accelerated by a 
Krylov space method, such as GMRES or PCR. The resulting algorithms are par-
allelizable and scalable, but the structure of the coarse problem is more complex 
than in overlapping methods. This work on nonoverlapping methods is joint with 
Olof B. Widlund of the Courant Institute, New York University, USA. 

2. Model saddle point problems 

The Stokes system. Let n c Rd, d = 2, 3 be a polyhedral domain and L5(n) 
be the subset of L2 (n) consisting of functions with zero mean value. Given f E 
(H-1(n))d and, for simplicity, homogeneous Dirichlet boundary conditions, the 
Stokes problem consists in finding the velocity u E V = (HJ(n))d and the pressure 
p E U = L5(n) of an incompressible fluid with viscosity J.L by solving: 

{ 

J.L L V'u: V'vdx- L divvpdx = L f · vdx Vv E V, 

(1) -L divuqdx = 0 Vq E U. 

Linear elasticity in mixed form. The following mixed formulation of the system of 
linear elasticity describes the displacement u and the variable p = - ,\divu of an 
almost incompressible material with Lame constants ,\ and J.l· The material is fixed 
along fo c an, subject to a surface force of density g along rl = an\ fo and 
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subject to an external force f: 

{ 
2J.L In E(u) : E(v) dx 

(2) 

-In divu q dx 

In divv p dx < F,v > Vv E V, 

Here V = {v E H 1(0)d : vlro = 0}, Eij(u) = ~(~ + ~) are the compo-
nents of the linearized strain tensor E(u), and < F, v > = fn I:;=1fivi dx + 
fr 1 I:;=l givi ds. It is well known that this mixed formulation is a good remedy for 
the locking and ill-conditioning problems that arise in the pure displacement for-
mulation when the material becomes almost incompressible; see Babuska and Suri 
[2]. The incompressibility of the material can be characterized by A approaching 
infinity or, equivalently, by the Poisson ratio 11 = 2 (A~JL) approaching 1/2. 

The Oseen system (linearized Navier-Stokes). An example of nonsymmetric 
problem is given by the Oseen system. Linearizing the Navier-Stokes equations 
by a fixed-point or Picard iteration, we have to solve in each step the following 
Oseen problem: given a divergence-free vector field w, find the velocity u E V = 
(HJ(O))d and the pressure p E U = £5(0) of an incompressible fluid with viscosity 
J.L satisfying 
(3) 

{ 
J.Li V'u:V'vdx + i[(w · V')u]·vdx- In divvpdx 

-In divuqdx = 0 

if·vdx VvEV, 

\fq E U. 

Here the right-hand side f is as in the Stokes problem and the convection term is 
3 

given by the skew-symmetric bilinear form 1 [(w· V')u]·vdx = 1 L Wj ~;· vidx. 
!l 0 iJ=l J 

3. An abstract framework for saddle point problems and 
generalizations 

In general, given two Hilbert spaces V and U, the algorithms described in this 
paper apply to the following generalization of abstract saddle point problems with 
a penalty term. An analysis and a more complete treatment can be found in Brezzi 
and Fortin [12]. 

(4) 

Find (u,p) E V xU such that 

{ 
a(u, v) + 

b(u, q) -

b(v,p) < F,v > Vv E V, 

< G,q > \fq E U tE[O,l], 
where FE V' and G E U'. When a(·,·) and c(·, ·) are symmetric, (4) is a saddle 
point problem, but we keep the same terminology also in the more general nonsym-
metric case. In order to have a well-posed problem, we assume that the following 
properties are satisfied. Let B : V ---+ U' and its transpose BT : U ---+ V' be the 
linear operators defined by 

(Bv, q)u'xU = (v, BT q)vxv' = b(v, q) Vv E V, \fq E U. 
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i) a(., . ) : V x V --. R is a continuous, positive semidefinite bilinear form, invertible 
on the kernel KerB of B, i.e. 

{ 
infuEKerB SUPvEKerB ~~~~~~~~~~v ~ ao, 

:lao > 0 such that 
. f a(u, v) > 
m vEKerB SUPuEKerB llullvllvllv - ao; 

ii) b( ·, ·) : V x U --. R is a continuous bilinear form satisfying the inf-sup condition 

b(v, q) 
:lf3o > 0 such that sup -

11
-

11
- ~ !3ollqllu;KerBTi 

vEV V V 

iii) c(·, ·): U xU--. R is a symmetric, continuous, U-elliptic bilinear form. 
More general conditions could be assumed; see Brezzi and Fortin [12] and Braess 
[6]. 

For simplicity, we adopt in the following the Stokes terminology, i.e. we call 
the variables in V velocities and the variables in U pressures. 

4. Mixed finite element methods: P1(h)- P1(2h) and Q1(h)- Po(h) 
stabilized 

The continuous problem (4) is discretized by introducing finite element spaces 
yh c V and Uh cU. For simplicity, we consider uniform meshes, but more general 
nonuniform meshes may be used. We consider two choices of finite element spaces, 
in order to illustrate our algorithms for both stable and stabilized discretizations, 
with continuous and discontinuous pressures respectively. 

a) P1(h)- P1(2h) (also known as P2- iso- Pl). Let 72h be a triangular 
finite element mesh of 0 of characteristic mesh size 2h and let Th be a refinement 
of r 2h. We introduce finite element spaces consisting of continuous piecewise linear 
velocities on Th and continuous piecewise linear pressures on T2h : 

yh {v E (C(O))d n V: vir E P1, T E 7h}, 

Uh {q E C(O) nU: qlr E P1,T E 72h}· 

This is a stable mixed finite element method, i.e. it satisfies a uniform inf-sup 
condition (see Brezzi and Fortin [12]). 

b) Q1 (h)- Po(h) stabilized. Here the velocities are continuous piecewise trilin-
ear (bilinear in 2D) functions on a quadrilateral mesh of size h and the pressures 
are piecewise constant (discontinuous) functions on the same mesh : 

yh = {v E (C(O))d n V: vir E Q1, T E 7h}, 

Uh = {q E U: qlr E Po, T E 7h}· 

This couple of finite element spaces does not satisfy the inf-sup condition, but 
can be stabilized as shown in Kechkar and Silvester [30] by relaxing the discrete 
incompressibility condition. In the Stokes case in two dimensions, this stabilization 
is achieved by defining a nonoverlapping macroelement partitioning Mh such that 
each macroelement M E Mh is a connected set of adjoining elements from Th· 
Denoting by r M the set of interelement edges in the interior of M and by e E r M 

one of these interior edges, the original bilinear form c(p, q) = 0 is replaced by 

(5) ch(P, q) = f3 L L he 1 [p]e[Q]eds. 
MEMh eErM e 
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Here [pje is the jump operator across e E r M, he is the length of e, and (3 is a 
stabilization parameter; see [30] for more details and an analysis. 

By discretizing the saddle point problem ( 4) with these mixed finite elements, 
we obtain the following discrete saddle point problem: 

(6) [ Ah Bh ] 
Khx = Bh -t2Ch x = fh . 

The matrix Kh is symmetric and indefinite whenever Ah is symmetric, as in the 
Stokes and elasticity cases. The penalty parameter t2 is zero in the Stokes, Oseen 
and incompressible elasticity cases when discretized with stable elements, such as 
P1 (h) - P1 (2h); it is nonzero in the case of almost incompressible elasticity or when 
stabilized elements, such as Q1 (h) - Po (h) stabilized, are used. 

5. Mixed spectral element methods: Qn- Qn-2 and Qn- Pn-1 

The continuous problem (4) can also be discretized by conforming spectral ele-
ments. Let Dref be the reference cube ( -1, 1)3 , let Qn(Dred be the set of polynomi-
als on Dref of degree n in each variable, and let Pn(Drer) be the set of polynomials 
on Dref of total degree n. We assume that the domain n can be decomposed into N 
nonoverlapping finite elements ni, each of which is an affine image of the reference 
cube. Thus, ni = c/>i(Dref ), where cf>i is an affine mapping. 

a) Qn -Qn-2· This method was proposed by Maday, Patera, and R0nquist [39] 
for the Stokes system. Vis discretized, component by component, by continuous, 
piecewise polynomials of degree n: 

yn = {v E V: Vkln, ocf>i E Qn(Drer), i = 1,· .. ,N, k = 1,2,3}. 

The pressure space is discretized by piecewise polynomials of degree n - 2: 

Un = {q E U: qlo, o cf>i E Qn-2(0rer), i = 1, · · · , N}. 
We note that the elements of un are discontinuous across the boundaries of the 
elements ni. These mixed spectral elements are implemented using Gauss-Lobatto-
Legendre (GLL) quadrature, which also allows the construction of a very convenient 
tensor-product basis for vn. Denote by {~i,~j,~k}?,j,k=O the set of GLL points of 
[-1, 1] 3 , and by ai the quadrature weight associated with ~i . Let li(x) be the 
Lagrange interpolating polynomial of degree n which vanishes at all the GLL nodes 
except ~i, where it equals one. Each element of Qn(Dref) is expanded in the GLL 
basis 

n n n 
u(x,y,z) = LLLu(~i,~j,~k)li(x)lj(y)lk(z), 

i=O j=O k=O 

and each £ 2 -inner product of two scalar components u and vis replaced by 
N n 

(7) (u, v)n,!l = L L (u o cf>s)(~i,~j, ~k)(v o cf>s)(~i,~j,~k)IJslaiC1jC1k, 
s=1 i,j,k=O 

where IJsl is the determinant of the Jacobian of c/>8 • Similarly, a very convenient ba-
sis for un consists of the tensor-product Lagrangian nodal basis functions associated 
with the internal GLL nodes. Another basis associated with the Gauss-Legendre 
(GL) nodes has been studied in [28] and [38]. We refer to Bernardi and Maday 
[3, 4] for more details and the analysis of the resulting discrete problem. 
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The Qn- Qn-2 method satisfies the nonuniform inf-sup condition 

(8) (divv,q) > Cn-(d;llllqll wq E un, 
sup II II - £2 v vEVn V fll 

where d = 2, 3 and the constant C is independent of n and q; see Maday, Patera, 
and R0nquist [39] and Stenberg and Suri [53]. However, numerical experiments, 
reported in Maday, Meiron, Patera, and R0nquist, see [38] and [39], have also 
shown that for practical values of n, e.g., n :::; 16, the inf-sup constant f3n of the 
Qn - Qn-2 method decays much slower than what would be expected from the 
theoretical bound. 

b) Qn- Pn_1. This method uses the same velocity space yn described before, 
together with an alternative pressure space given by piecewise polynomials of total 
degree n- 1: 

{q E U: qloi o rPi E Pn-1(0ref), i = 1, · · · ,N}. 
This choice has been studied by Stenberg and Suri [53] and more recently by 
Bernardi and Maday [5], who proved a uniform inf-sup condition for it. Its practical 
application is limited by the lack of a standard tensorial basis for Pn-1; however, 
other bases, common in the p-version finite element literature, can be used. 

Other interesting choices for un have been studied in Canuto [15] and Canuto 
and Van Kemenade [16] in connection with stabilization techniques for spectral 
elements using bubble functions. 

Applying GLL quadrature to the abstract problem (4), we obtain again a dis-
crete saddle point problem of the form 

(9) [ An 
KnX = Bn 

As before, Kn is a symmetric indefinite matrix in the Stokes and elasticity case, 
while it is a nonsymmetric matrix in the Oseen case. 

6. Overlapping Schwarz Methods 

We present here the basic idea of the method for the additive variant of the 
preconditioner and P1 (h)- P1 ( 2h) finite elements on uniform meshes (see Section 4). 
More general multiplicative or hybrid variants, unstructured meshes and spectral 
element discretizations can be considered as well. See Klawonn and Pavarino [33] 
for a more complete treatment. 

Let TH be a coarse finite element triangulation of the domain n into N sub-
domains ni of characteristic diameter H. A fine triangulation Th is obtained as a 
refinement of TH and H / h will denote the number of nodes on each subdomain side. 
In order to have an overlapping partition of n, each subdomain ni is extended to 
a larger subdomain n~, consisting of all elements of 7h within a distance 8 from ni. 

Our overlapping additive Schwarz preconditioner K 0 ~ 5 for Kh is based on the 
solutions of local saddle point problems on the subdomains n~ and on the solution 
of a coarse saddle point problem on the coarse mesh TH. In matrix form: 

N 

(10) K 0 ~ 5 = R'{;K01Ro + LRTKi- 1Ri, 
i=l 

where R'{; K 01 Ro represents the coarse problem and R?'Ki-l Ri represents the i-th 
local problem. This preconditioner is associated with the following decomposition 
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FIGURE 1' Local spaces associated with an interior subdomain n~' 
P1 (h)- P1 (2h) (left) and Q1 (h)- Po(h) stabilized (right): velocity 
degrees of freedom are denoted by bullets ( •), pressure degrees 
of freedom are denoted by circles ( o). Subdomain size H / h = 8, 
overlap 8 = 2h . 

of the discrete space yh X Uh into a coarse space V~ XU~ and local spaces V? X Uih, 
associated with the subdomains n~: 

N 

yh x uh = v3 x u~ + L v? x uih. 
i=l 

a) Coarse problem. For P 1 (h) - P1 (2h) elements, the coarse space is defined as 

The associated coarse stiffness matrix is K 0 = KH; 2 , obtained using Pl(H/2)-
P1 (H) mixed elements and R6' represents the standard piecewise bilinear interpo-
lation matrix between coarse and fine degrees of freedom, for both velocities and 
pressures. We use H /2 as the mesh size of the coarse velocities because we choose 
H as the mesh size of the coarse pressures. 

For Q1 (h) - Po (h) stabilized elements, the coarse space is defined as 

The associated coarse stiffness matrix is K 0 = K H and R6' is the standard piecewise 
bilinear interpolation matrix between coarse and fine velocities and the standard 
injection matrix between coarse and fine pressures. 

b) Local problems. For P 1 (h) - P 1 (2h) finite elements (with continuous pres-
sures), the local spaces consist of velocities and zero mean value pressures satisfying 
zero Dirichlet boundary conditions on the internal subdomain boundaries an~\ an: 

v? = yh n (H~(n~))d, 

Uf' =' {q E U" n L6(n~): q = 0 on an~\ an and outside n;}. 
Here, the minimal overlap is one pressure element, i.e. 8 = 2h. 
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For Q1 (h)- P0(h) stabilized elements, the pressures are discontinuous piecewise 
constant functions and there are no degrees of freedom associated with an~ \ an. 
In this case, we set to zero the pressure degrees of freedom in the elements that 
touch an~ \ an. The associated local pressure spaces are: 

uih = {q E L6(nD: qlr = o 'tiT: 'fn (an~ \an) -:10}. 
Here, the minimal overlap is {j = h. In matrix terms, the matrices Ri in (10) are 
restriction matrices returning the degrees of freedom associated with the interior of 
n~ and Ki = RiKhRf are the local stiffness matrices. Each discrete local problem 
(and its matrix representation Ki) is nonsingular because of the zero mean-value 
constraint for the local pressure solution. See Figure 1 for a graphic representation 
of these local spaces in two dimensions. 

We remark that K 0 ~ 8 is a nonsingular preconditioner, since K 0 and Ki, i = 
1, · · · , N, are nonsingular matrices. In the symmetric cases (Stokes and elasticity), 
K 0 ~ 8 is a symmetric indefinite preconditioner. If we need to work with global zero 
mean-value pressures, as in the Stokes and Oseen problems or in the incompressible 
limit of the mixed linear elasticity problem, we enforce this constraint in each 
application of the preconditioner. 

7. Iterative substructuring methods for spectral element discretizations 

The elimination of the interior unknowns in a saddle point problem is somewhat 
different than the analogous process in a positive definite problem. In this section, 
we illustrate this process for the spectral element discretization (see Section 5) of the 
Stokes problem. We will see that the remaining interface unknowns and constant 
pressures in each spectral element satisfy a reduced saddle point problem, analogous 
to the Schur complement in the positive definite case. We refer to Pavarino and 
Widlund [45] for a more complete treatment. 
The interface r of the decomposition {ni} of n is defined by 

r = (u~ 1 ani) \an. 
The discrete space of restrictions to the interface is defined by 

Vr ={vir, v E Vn}. 
r is composed of NF faces Fk (open sets) of the elements and the wire basket W, 
defined as the union of the edges and vertices of the elements, i.e. 

(11) r = U~! 1 Fk U W. 

We first define local subspaces consisting of velocities with support in the inte-
rior of individual elements, 

(12) Vf = yn n HJ(ni)3 , i = 1, · · · , N, 

and local subspaces consisting of pressures with support and zero mean value in 
individual elements 
(13) i = 1,··· ,N. 

The velocity space vn is decomposed as 

yn = V~ + V~ + · · · + V'Jv + V:S, 
where the local spaces vr have been defined in (12) and 
(14) V:S = sn(Vr) 
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is the subspace of interface velocities. The discrete Stokes extension sn is the 
operator that maps any u E Vr into the velocity component of the solution of the 
following Stokes problem on each element: 
Find Snu E yn and p E (~:::.:{: 1 Ut) such that on each ni 

0 \fv E Vi 

(15) 

snu = u on ani. 
Here the discrete bilinear forms are sn ( u, v) = p(V'u : V'v )n,n and bn ( u, p) = 
-(divu,p)n,n, where the discrete L2-inner product has been defined in (7). In the 
elasticity case, an analogous interface space VM can be defined using a discrete 
mixed elasticity extension operator. The pressure space un is decomposed as 

un = u~ + Uf + ... + UN + Uo' 

where the local spaces ur have been defined in (13) and 

Uo = {q E Un: qln; = constant, i = 1, · · · , N} 

consists of piecewise constant pressures in each element. The vector of unknowns 
is now reordered placing first the interior unknowns, element by element, and then 
the interface velocities and the piecewise constant pressures in each element: 

T T (u,p) = (u1 Pl, u2 P2, · · · , UN PN, ur Po) . 

After this reordering, our saddle point problem (9) has the following matrix struc-
ture: 

Au T Bu 0 0 A1r 0 ul bl 
Bn 0 0 0 B1r 0 PI 0 

(16) 0 0 ANN B'fm AN[' 0 UN bN 
() 0 BNN 0 BNr 0 PN 0 

Ar1 Bfr ArN T BN[' Arr BJ' U[' br 
() 0 0 0 Bo 0 Po 0 

The leading block of this matrix is the direct sum of N local saddle point problems 
for the interior velocities and pressures (ui,Pi)· In addition there is a reduced 
saddle point problem for the interface velocities and piecewise constant pressures 
(ur,po). These subsystems are given by 

(17) 

and 
(18) 

{ 

hi- Airur 
- Bi['U[' i = 1,2, · · · ,N, 

Arrur +An u1 + · · · + ArNUN + BfrPI + · · · + B~rPN + B{; Po 
Bour 

= br 
0. 

The local saddle point problems (17) are uniquely solvable because the local pres-
sures are constrained to have zero mean value. The reduced saddle point problem 
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(18) can be written more clearly by introducing the linear operators R~, Rf and 
Pt, PF representing the solutions of the i-th local saddle point problem: 

Then (18) can be rewritten as 

(19) 

where 

{ Srur 
Bour 

N N 

+ B'[po 

Sr = Arr + L Ar;Rf + L B'frPF, 
i=l i=l 

hr 
0, 

i= 1,2,··· ,N. 

As always, the matrices R~, Rf and P;b, Pf need not be assembled explicitly; their 
action on given vectors is computed by solving the corresponding local saddle point 
problem. Analogously, Sr need not be assembled, since its action on a given vector 
can be computed by solving the N local saddle point problems (17) with b; = 0. 
The right-hand side hr is formed from an additional set of solutions of the N local 
saddle point problems (17) with ur = 0. 

The saddle point Schur complement (19) satisfies a uniform inf-sup condition 
(see [45] for a proof): 

LEMMA 1. 

(divSnv,qo)2 {3211 112 sup > r qo £2 
snvEV5 Sn(Snv,Snv) -

where f3r is independent of qo, n, and N. 

An analogous stability result holds for the incompressible elasticity case. 

7.1. Block preconditioners for the saddle point Schur complement. 
We solve the saddle point Schur complement system (19) by some preconditioned 
Krylov space method such as PCR, if we use a symmetric positive definite pre-
conditioner and the problem is symmetric, or GMRES if we use a more general 
preconditioner. Let S be the coefficient matrix of the reduced saddle point problem 
(19) 

(20) S = [ ~~ B!]. 
We will consider the following block-diagonal and lower block-triangular precondi-
tioners (an upper block-triangular preconditioner could be considered as well): 

So= [ Sr 2] 
0 Co 

~ [ Sr Sr = 
Bo 0 l ~ ' -Co 

where Sr and Co are good preconditioners for Sr and the coarse pressure mass 
matrix Co, respectively. We refer to Klawonn [31, 32] for an analysis of block pre-
conditioners. We consider two choices for Sr, based on wire basket and Neumann-
Neumann techniques, and we take Co= Co. 
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a) A wire basket preconditioner for Stokes problems. We first consider a simple 
Laplacian-based wire basket preconditioner 

(21) l Sw 
Sr = ~ 

0 
Sw 
0 

~~ 1 ' 
Sw 

where we use on each scalar component the scalar wire basket preconditioner in-
troduced in Pavarino and Widlund [44] and extended to GLL quadrature based 
approximations in [46], 

NF 
~~1 ~~1 T '"""' ~1 T 
Sw = RoSwwRo + ~RpkSFkFkRFk· 

k=1 

Here Ro is a matrix representing a change of basis in the wire basket space, R~k 
are restriction matrices ;:eturning the degrees of freedom associated with the face 
Fk, k = 1, · · · , N F, and Sww is an approximation of the original wire basket block. 
This is an additive preconditioner with independent parts associated with each face 
and the wire basket of the elements, defined in (11). It satisfies the following bound, 
proven in [45]. 

THEOREM 2. Let the blocks of the block-diagonal preconditioner S 0 be the wire 
basket preconditioner Sr defined in {21) and the coarse mass matrix C0 . Then the 

Stokes saddle point Schur complement S preconditioned by So satisfies 

d(s ~~1S) c(1 +logn)2 
con 0 :::; f3n , 

where C is independent of n and N. 

The mixed elasticity case is more complicated, but an analogous wire basket 
preconditioner can be constructed and analyzed; see [45]. 

b) A Neumann-Neumann preconditioner for Stokes problems. In the Stokes 
case, we could also use a Laplacian-based Neumann-Neumann preconditioner on 
each scalar component; see Dryja and Widlund [22], Le Tallec [35] for a detailed 
analysis of this family of preconditioners for h-version finite elements and Pavarino 
[42] for an extension to spectral elements. In this case, 

(22) 0 1 0 ' 
SNN 

where 
N 

S~~ 1 RTK~ 1 R '"""'RT D~ 1 s~tn~ 1 R 
NN = H H H + ~ B!lJ j j j B!lJ 

j=1 

is an additive preconditioner with independent coarse solver Ki/ and local solvers 
sJ' respectively associated with the coarse triangulation determined by the ele-
ments and with the boundary orlj of each element. Here Ranj are restriction 
matrices returning the degrees of freedom associated with the boundary of O.j, Dj 
are diagonal matrices and t denotes an appropriate pseudo-inverse for the singular 
Schur complements associated with interior elements; see [22, 42] for more details. 
Also for this preconditioner, a polylogarithmic bound is proven in [45]. 
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THEOREM 3. Let the blocks of the block-diagonal preconditioner Sv be the 
Neumann-Neumann preconditioner Sr defined in {22} and the coarse mass ma-

trix Co. Then the Stokes saddle point Schur complement S preconditioned by S D 

satisfies 

d(s ~-1S) c(1+logn)2 
con D ::::; f3n , 

where C is independent of n and N. 

Other scalar iterative substructuring preconditioners could also be applied in 
this fashion to the Stokes system; see Dryja, Smith, and Widlund [19]. 

8. Numerical results 

In this section, we report the results of numerical experiments with the overlap-
ping additive Schwarz method described in Section 6 and with some of the iterative 
substructuring methods described in Section 7. The two sets ofresults cannot be di-
rectly compared because the overlapping method is applied to h-version discretiza-
tions in two dimensions, while the iterative substructuring methods are applied to 
spectral element discretizations in three dimensions. All the computations were 
performed in MATLAB. 

8.1. Overlapping Schwarz methods for h-version discretizations in 
two dimensions. In the following tables, we report the iteration counts for the 
iterative solution of our three model saddle point problems (Stokes, mixed elasticity, 
and Oseen) with the overlapping additive Schwarz method of Section 6, i.e. with the 
preconditioner K 0 ~ 8 defined in (10). In each application of our preconditioner, we 
solve the local and coarse saddle point problems directly by gaussian elimination. 
Inexact local and/or coarse solvers could also be considered, as in positive definite 
problems. We accelerate the iteration with GMRES, with zero initial guess and 
stopping criterion llrill2/llrolb::::; w-6 , where ri is the i-th residual. Other Krylov 
space accelerators, such as BiCGSTAB or QMR, could be used. The computational 
domain n is the unit square, subdivided into VN X VN square subdomains. More 
complete results for Stokes problems, including multiplicative and other variants of 
the preconditioner, can be found in Klawonn and Pavarino [33]. 

a) P1(h)- P1(2h) finite elements for the Stokes problem. Table 1 reports the 
iteration counts (with and without coarse solver) and relative errors in comparison 
with the direct solution (in the max norm) for the Stokes problem (1) discretized 
with P1(h) - P1 (2h) finite elements. Here u = 0 on 8!1 and f is a uniformly 
distributed random vector. The overlap 8 is kept constant and minimal, i.e. the 
size 8 = 2h of one pressure element. h is refined and N is increased so that the 
subdomain size is kept constant at H/h = 8 (scaled speedup). The global problem 
size varies from 531 to 14,163 unknowns. The empty entry in the table (-) could 
not be run due to memory limitations. The results indicate that the number of 
iterations required by the algorithm is bounded by a constant independent of h and 
N. As in the positive definite case, the coarse problem is essential for scalability: 
without the coarse problem, the number of iterations grows with N. These results 
are also plotted in Figure 2 (left). The convergence history of GMRES (with and 
without K018 as preconditioner) is shown in Figure 3 (left), for the case with 16 
subdomains and h = 1/32. 
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TABLE 1. Stokes problem with P1(h)- P1(2h) finite elements: it-
eration counts and relative errors for GMRES with the overlapping 
additive Schwarz preconditioner K 0 ~ 5 ; constant subdomain size 
HI h = 8, minimal overlap {j = 2h. 

with coarse no coarse 
VR h-1 iter. llxm - xlloolllxlloo iter. llxm- xlloolllxlloo 

2 16 17 3.42e-7 21 9.05e-7 
3 24 18 1.04e-6 33 1.82e-6 
4 32 19 5. 72e-7 43 9.53e-6 
5 40 19 1.84e-6 53 1.07e-5 
6 48 19 1.75e-6 63 1.39e-5 
7 56 20 l.lOe-6 73 3.17e-5 
8 64 20 1.42e-6 86 4.60e-5 
9 72 20 1.13e-6 - -

10 80 20 1.79e-6 - -

TABLE 2. Lid-driven cavity Stokes flow with Q1 (h)- Po( h) stab. 
finite elements: iteration counts and relative errors for GMRES 
with the overlapping additive Schwarz preconditioner K 0 ~ 5 ; con-
stant subdomain size HI h = 8. 

with coarse no coarse 
overlap VR h-l iter. llxm- xlloolllxlloo iter. llxm- xlloolllxlloo 

2 16 18 5.58e-7 14 4.22e-1 
8=h 4 32 27 2.04e-6 27 4.88e-1 

8 64 31 7.35e-7 44 5.14e-1 
2 16 16 1.93e-6 16 1.20e-7 

{j = 2h 4 32 21 3.84e-7 37 8.06e-7 
8 64 22 2.51e-7 81 1.96e-6 

b) Q 1 (h) -- Po (h) stabilized finite elements for the Stokes problem. Table 2 
reports the iteration counts and relative errors in comparison with the direct so-
lution for the Stokes problem (1) discretized with Q1(h)- Po(h) stabilized finite 
elements, using the MATLAB software of Elman, Silvester, and Wathen [26], which 
requires 1lh to be a power of two. Here the boundary conditions and right-hand 
side are imposed to obtain a lid-driven cavity Stokes flow. The default value of the 
stabilization parameter (3 in (5) is 114. The global problem size varies from 834 
to 12,546 unknowns and, as before, we study the scaled speedup of the algorithm 
with Hlh = 8. We could run only three cases (N = 4, 16, 64), but the iteration 
counts seem to behave as in the corresponding cases in Table 1 for P1 (h) - P1 ( 2h) 
finite elements. Therefore the experiments seem to indicate a constant bound on 
the number of iterations that is independent of h and N. Again, the coarse space 
is essential for obtaining scalability. Here we can use a minimal overlap of 8 = h 
since both velocities and pressures use the same mesh Th. We also report the results 
for {j = 2h to allow a comparison with the results of Table 1 (where the minimal 
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FIGURE 2. Iteration counts for GMRES with overlapping additive 
Schwarz preconditioner Kais (with and without coarse problem): 
sub domain size HI h = 8, overlap 8 = 2h, Stokes problem with 
P1 (h) - P1 ( 2h) finite elements (left), lid-driven cavity Stokes flow 
with Q1(h)- P0 (h) stab. elements (right). 
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FIGURE 3. Convergence history for GMRES with and without 
overlapping additive Schwarz preconditioner Kais : N = 16, 
subdomain size HI h = 8, overlap {j = 2h, Stokes problem with 
P1(h)- P1(2h) finite elements (left), lid-driven cavity Stokes flow 
with Q1(h)- Po(h) stab. elements (right). 

overlap is 8 = 2h). These results are also plotted in Figure 2 (right). The conver-
gence history of GMRES (with and without Kais as preconditioner) for the case 
N = 16,h = 1132,8 = 2h, is plotted in Figure 3 (right). 

c) P1(h)- P1(2h) finite elements for mixed elasticity. Analogous results were 
obtained for the mixed formulation of the elasticity system (2), discretized with 
P1 (h) - P1 (2h) finite elements, with u = 0 on 80. The results of Table 3 indicate 
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TABLE 3. Mixed linear elasticity with P1(h)- P1(2h) finite ele-
ments: iteration counts for GMRES with the overlapping additive 
Schwarz preconditioner K 0 ~ 8 ; subdomain size H/h = 8, minimal 
overlap 8 = 2h. 

Poisson ratio v 

-IN 1/h 0.3 0.4 0.49 0.499 0.4999 0.49999 0.5 
2 16 15 15 17 17 17 17 17 
3 24 17 17 18 18 18 18 18 
4 32 18 18 19 19 19 19 19 
5 40 18 18 19 19 19 19 19 
6 48 18 18 19 19 19 19 19 
7 56 19 19 19 20 20 20 20 
8 64 19 19 20 20 20 20 20 
9 72 19 19 20 20 20 20 20 
10 80 19 19 20 20 20 20 20 

TABLE 4. Oseen problem with Q1(h)- P0 (h) stabilized finite el-
ements and circular vortex w = (2y(l - x2 ), -2x(l - y2 )) : iter-
ation counts and relative errors for GMRES with the overlapping 
additive Schwarz preconditioner K 0 ~ 8 , constant subdomain size 
H/h = 8, overlap 8 =h. 

with coarse no coarse 
-IN h-1 iter. err. iter. err. 

2 16 19 1.12e-6 14 7.08e-7 
M=l 4 32 25 7.28e-7 31 2.7le-6 

8 64 30 7.86e-7 79 1.15e-6 
2 16 21 3.81e-7 15 5.47e-7 

1-L = 0.1 4 32 26 6.03e-7 32 7.37e-7 
8 64 27 9.89e-7 99 3.27e-6 
2 16 29 9.43e-7 22 9.16e-7 

1-L = 0.02 4 32 39 4.84e-7 42 4.81e-7 
8 64 42 1.15e-6 118 1.69e-6 
2 16 35 9.34e-7 29 9.53e-7 

1-L = 0.01 4 32 51 2.02e-6 53 1.80e-6 
8 64 58 1.62e-6 211 1.45e-5 

that the convergence rate of our method is bounded independently of h, N, and the 
Poisson ratio when approaching the incompressible limit v = 0.5. 

d) Q1(h)- Po(h) stabilized finite elements for the Oseen problem. Table 4 
reports the iteration counts for GMRES with K 0 ~ 8 and 8 = h, and the relative 
errors in comparison with the direct solution, for the Oseen problem (3), using 
the MATLAB software of Elman, Silvester, and Wathen [26]. The divergence-free 
field w is a circular vortex, w = (2y(l - x2 ), -2x(l - y2 )), and the stabilization 
parameter is 1/4. We study the scaled speedup of the algorithm with H/h = 8, 
running the three cases N = 4, 16, 64 for each given value of the diffusion parameter 
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TABLE 5. Linear elasticity in mixed form: local condition num-
ber cond( Sr 1 Sr) of the local saddle point Schur complement with 
wire basket preconditioner (with original wire basket block) on one 
interior element; Qn- Qn-2 method. 

n Poisson ratio v 
0.3 0.4 0.49 0.499 0.4999 0.49999 0.5 

2 9.06 9.06 9.06 9.06 9.06 9.06 9.06 
3 17.54 20.19 44.92 58.26 60.12 60.31 60.33 
4 24.45 29.69 62.30 85.35 88.77 89.13 89.17 
5 34.44 38.68 76.69 106.72 111.49 111.99 112.05 
6 40.97 46.84 90.97 129.73 136.38 137.09 137.17 
7 51.23 55.65 107.19 153.29 161.97 162.90 162.99 
8 59.70 64.60 122.13 176.32 187.45 188.66 188.66 

TABLE 6. Generalized Stokes problem: local condition number 
cond(Sr 1 Sr) of the local saddle point Schur complement with wire 
basket preconditioner (with original wire basket block) on one in-
terior element; Qn- Qn-2 method. 

n 

2 
3 
4 
5 
6 
7 
8 

0.3 0.4 
4.89 4.89 

14.13 17.31 
19.18 24.24 
24.18 30.56 
28.71 36.29 
33.44 42.15 
38.36 48.71 
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5 
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Poisson ratio v 
0.49 0.499 0.4999 

4.89 4.89 4.89 
36.55 44.79 45.88 
54.33 73.08 75.76 
66.25 86.85 89.92 
87.52 121.36 126.52 
95.50 130.82 136.25 

114.89 163.55 171.49 

200 
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76.04 76.07 
90.24 90.28 

127.07 127.13 
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172.34 172.43 
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FIGURE 6. Local condition number cond(Sr 1 Sr) from Tables 5 
and 6; generalized Stokes problem (left), mixed elasticity (right) 
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J.-L· The results indicate a bound on the number of iterations that is independent of 
h and N, but that grows with the inverse of the diffusion parameter J.L· 

8.2. Iterative substructuring for spectral element discretizations in 
three dimensions. We first computed the discrete inf-sup constant f3r of the 
saddle point Schur complement (20), for both the mixed elasticity and Stokes system 
discretized with Qn- Qn-2 spectral elements. f3r is computed as the square root of 
the minimum nonzero eigenvalue of C01 B'[ Sr 1 B 0 , where Sr and B 0 are the blocks 
in (20) and C0 is the coarse pressure mass matrix. The upper plot in Figure 4 
shows f3r as a function of the spectral degree n while keeping fixed a small number 
of elements, N = 2 x 2 x 1. The lower plot in Figure 4 shows f3r as a function 
of the number of spectral elements N for a small fixed spectral degree n = 2. 
Both figures indicate that f3r is bounded by a constant independent of N and n, 
in agreement with Lemma 1. We also computed the discrete inf-sup constant f3n 
of the whole Stokes problem on the reference cube by computing the square root 
of the minimum nonzero eigenvalue of C;; 1 B'{; A;; 1 Bn, where An, Bn, and Cn are 
the blocks in (9). The results are plotted in Figure 5. The inf-sup parameter of 
the Qn - Pn-1 method is much better than that of the Qn - Qn-2 method, in 
agreement with the theoretical results of [5] and the experiments in [43]. 

We next report on the local condition numbers of Sr 1 Sr for one interior el-
ement. Here Sr is the velocity block in the saddle point Schur complement (20) 
and Sr1 is the wire basket preconditioner described in Section 7 for the Stokes 
case. We report only the results obtained with the original wire basket block of 
the preconditioner, while we refer to Pavarino and Widlund [45] for more complete 
results. Table 5 presents the results for the mixed elasticity problem, while Table 
6 gives the results for the generalized Stokes problem (in which there is a penalty 
term of the form -t2 (p, q)£2 ). These results are also plotted in Figure 6. In both 
cases, the incompressible limit is clearly the hardest, yielding condition numbers 
three or four times as large as those of the corresponding compressible case. For 
a given value of v, the condition number seems to grow linearly with n, which is 
consistent with our theoretical results in Theorem 2 and 3. 
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1. Introduction 

The FETI method is based on introducing Lagrange multipliers along interfaces 
between subdomain to enforce continuity of local solutions [4]. It has been 
demonstrated to be numerically scalable in the case of second-order problems, 
thanks to a built-in "coarse grid" projection [3]. 

For high-order problems, especially with plate or shell finite element models in 
structural analysis, a two-level preconditioning technique for the FETI method has 
been introduced [2]. Computing the preconditioned gradient requires the solution 
of a coarse grid problem that is of the same kind as the original FETI problem, 
but is associated with a small subset of Lagrange multipliers enforcing continuity 
at cross-points. This preconditioner gives optimal convergence property for plate 
or shell finite element models [5]. 

This approach has been recently generalized to various local or partial 
continuity requirements in order to derive a general methodology for building 
second-level preconditioners [1]. 

For a sake of simplicity, the first method advocated for solving the coarse grid 
problems in distributed memory environment has been the same projected gradient 
as for the first-level FETI method [6] [7]. But with the increased complexity of 
the generalized 2-level FETI method, this approach leads to poor performance on 
machines with high performance compute nodes. 

In the present paper this new preconditioning technique is reinterpreted in 
a simple algebraic form, in order to derive algorithms based on direct solution 
techniques to solve efficiently the coarse grid problems in distributed memory 
environment. Performance results for real-lif~ applications are given. 

2. Notations 

In each subdomain, Oi, the local displacement field is solution of the linear 
elasticity equations with imposed forces on the interfaces with other subdomains: 

(1) 
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where Ki is the stiffness matrix, Ui the displacement field, Bi a signed boolean 
matrix associated with the discrete trace operator, and >. the Lagrange multiplier, 
equal to the interaction forces between subdomains. 

The continuity requirement along the interfaces is written as follows: 

(2) 

where the signed discrete trace matrices Bi are such that if subdomains ni and 
nj are connected by the interface rij, then restriction of equation (2) on rij is: 
Ui- Uj = 0. 

If the boundary of subdomain ni does not contain a part of the external 
boundary with prescribed displacements, the local problem has only Neumann 
boundary conditions and then the matrix Ki is positive semi-definite. 

If Kt is a pseudo-inverse of matrix Ki, and if columns of matrix Ri form a 
basis of the kernel of Ki (rigid body motions), equation (1) is equivalent to: 

(3) { Ui = Kt (bi + Bf >.) + Riai 
R~(bi + Bf>.) = 0 

Introducing Ui given by equation (3) in the continuity condition (2) gives: 

(4) 

With the constraint on >. set by the second equation of (3), the global interface 
problem can be written: 

(5) 

With: 
• F = 2: BiKt Bf, dual Schur complement matrix, 
• Ga = 2: BiRiai, jump of rigid body motions defined by Gi in ni, 
• (Gt>.)i = R~Bf>., 
• d =- 2: BiKtbi, 
• Ci = -R~bi. 

In the following sections, we shall use the term "rigid body modes" for Lagrange 
multipliers in the image space of G. 

3. Parallelization of the rigid body projection 

3.1. Rigid body projection. Thanks to the fact that the number of 
admissibility constraints related to the second set of equations: 

(6) 

the hybrid condensed system (5) can be solved in practice by a projected gradient 
algorithm. The projection associated with the rigid body modes can be explicitly 
computed: 

(7) 

The computation of the product by projection P requires products by G and ct 
and the solution of systems with form: 
(8) (GtG)a = Gtg 
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The product by G1 can be performed independently in each subdomain, the product 
by G requires exchanging data through interfaces between neighboring subdomains. 
The product by ( G1 G) - 1 requires the solution of a coarse grid problem associated 
with rigid body motions coefficients in each subdomain. This problem has the 
same kind of algebraic structure as a finite element problem whose elements are 
the subdomains and whose degrees of freedom in each element are the subdomain 
rigid body motions coefficients. 

3.2. Forming and factorization of (GtG). The (GtG) matrix has a sparse 
block structure. If subscripts i and j are associated with subdomains 0; and Oj, 
the block ( G1 G);i representing entries in ( G1G) associated with influence between 
rigid body modes in 0; and Oj is equal to: 

(9) 

The columns of B;R; and BjRj are respectively the traces on interfaces of rigid body 
motions of subdomains 0; and 0 1 . The entries of these columns are simultaneously 
non zero only on interface f;j. So, the computation of block ( GtG);j just requires 
the values of the traces on r ij of rigid body motions of subdomains 0; and oj. 

In order to minimize computation costs and memory requirements, the 
following algorithm can be implemented to compute and factorize the (etc) matrix. 

(10) 

1. Store in each sub domain 0;, the traces of rigid body motions on each 
interface f ij with neighboring subdomain Oi. This requires the storage 
for each interface f;j of a matrix (B;R;)j with number of rows equal to the 
number of degrees of freedom on interface f;j and number of columns equal 
to the number of rigid body motions in 0;. 

2. Exchange (B;R;)1 matrices with neighboring subdomains. This means that 
subdomain 0; sends matrix (B;R;)j to subdomain Oj and receives from it 
matrix (BjRj ); whose number of rows is equal to the number of degrees 
of freedom on interface r ij and number of columns equal to the number of 
rigid body motions in oj. 

3. In subdomain 0;, compute the following matrix-matrix products for each 
interfacef ij: 

(G1G);i 
(GtG);; 

(B;R;); (BiRi ); 
(GtG);; + (B;R;);(B;R;)i 

Now, subdomain 0; has a part of the sparse block structure of matrix (GtG). 
4. Assemble the complete (etc) matrix via global data transfer operations 

("GATHER"). 
5. Factorize the complete ( G1G) matrix via Choleski factorization using 

optimal renumbering strategy. Note that numerical pivoting strategy may 
also be implemented to detect global rigid body motions in the case of a not 
clamped global problem. In this case, the global rigid boy motions form the 
kernel of the (etc) matrix. 

6. Compute the rows of the (Gtc)- 1 matrix associated to the rigid body modes 
in the neighborhood of subdomain, including the subdomain itself and its 
neighbors (see next section). 
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3.3. Computation of rigid body modes projection. The projected 
gradient is given by: 

(11) 

The computation of ctg is purely local. In subdomain oi, (Gtg)i = RIBfg. 
The main step of the projection is the product by (Gtc)- 1 . As the global (GtG) 

matrix has been factorized, the product by (Gtc)- 1 requires a forward-backward 
substitution. To perform it, the global ct g vector must be assembled. 

Once a:= (Gtc)- 1Gtg has been computed a product by G must be performed 
to compute the projected gradient. As Ga: is defined as: 

(12) 

its restriction on interface r ij is given by: 

(13) 

This means that subdomain Oi can compute the projected gradient on its interfaces 
without any data transfer, provided that it has the values of a: in all its neighboring 
subdomains. Furthermore, it does not need at all the values of a: in the other 
subdomains. 

Hence, the computation of the projection can be parallelized with minimal 
data transfer, provided that each subdomain computes the solution of the coarse 
problem: 

(14) 

for its neighborhood including the subdomain itself and its neighbors. Only the 
rows of the (Gtc)- 1 matrix associated to the neighborhood are required in the 
subdomain to do so. These rows form a matrix with number of rows equal to 
the number of rigid body motions in the neighborhood and number of columns 
equal to the total number ofrigid body modes. Thanks to the symmetry of (GtG), 
the rows of this matrix are equal to the columns of (Gtc)- 1 associated to the 
neighborhood. So, computing this matrix noted (etc) ;}ne_i requires a forward-
backward substitution with complete matrix (GtG) for each row. The computation 
of this matrix represents the last step of the forming and factorization of ( ct G), as 
indicated in the previous section. 

(15) 

(16) 

So, computing the projected gradient in parallel requires the following steps: 
1. Compute (Gtg)i = R~Bfg in each subdomain Oi. 
2. Gather complete (3 = ct g in each subdomain via a global data transfer 

operation. 
3. Compute components of a: = ( ctc)- 1 (3 in neighborhood of each subdomain 

Oi. This means compute the matrix-vector product: 

4. Compute Ga: in each subdomain Oi as: 

for each interface r ij. 
5. Compute Pg = g- Ga: in each subdomain. 

The only transfer this algorithm requires is the gathering of (3 = ct g in step 2. 
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~~11 ~0 ----1 

~--------0~1 ~{)--------~ 
FIGURE 1. A "corner motion" for a scalar problem 

4. The second level FETI preconditioner 

4.1. Definition of corner modes. In this section, the second level FETI 
preconditioner is presented in the case of a coarse grid defined as the so-called 
"corner modes". The objective consists in constraining the Lagrange multiplier to 
generate local displacement fields that are continuous at interface cross-points. To 
get a practical formulation of this constraint, it can be observed that requiring the 
continuity of displacement fields at interface cross-points is equivalent to imposing 
their jump to be orthogonal to the jump of "corner motions" defined as displacement 
fields with unit value in one space direction at a node connected to a crosspoint as 
in Figure (1). 

Note Ci the set of corner motions in subdomain ni, then the Lagrange multiplier 
>. satisfies the continuity requirement of associated displacement fields at interface 
cross-points if the projected gradient satisfies: 

(17) 

4.2. Coarse grid space. Let us define "corner modes" from corner motions 
and the associated global operator C in the same way as rigid body modes and 
operator G are defined from rigid body motions: 

(18) 

The second-level FETI preconditioner consists in building the search direction 
vector w from the projection of the gradient Pg in order to satisfy the constraint 
of generating local displacement fields that are continuous at interface cross-points. 
As the jump of displacement fields created by w is equal to P Fw, this constraint 
can be written in the following way: 

(19) ctPFw = ctptpw = 0 

In order to satisfy this constraint, the search direction vector w must be constructed 
from P g corrected by a vector in the image space of C: 

(20) w = Pg+C'Y 

The search direction vector w must also satisfy the constraint of orthogonality to 
the traces of rigid body modes. This constraint can be written Pw = w. Sow must 
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have the following form: 

(21) w = Pg + C1 + Gf3 with Pw = w 

So, the coarse grid space associated with the second-level FETI preconditioner must 
contain both image spaces of C and G. This means that it is the image space of 
the matrix noted [CG] whose first columns are the columns of C and last columns 
the columns of G. 

4.3. Second-level FETI problem . By definition of the rigid body modes 
projection P, P Fw satisfies: 

(22) G1PFw = G1PtFw = 0 

From the definition of the coarse grid space (21), the search direction vector must 
have the following form: 

(23) w = Pw = Pg + P(C1 + Gf3) 

The formulation of constraints in equations (19) and (22), entails that 1 and f3 
satisfy the following problem: 

(24) 
ct pt F P( c1 + Gf3) 
Gt pt F P( c1 + Gf3) 

These equations can be rewritten as: 

-ctptppg 
-GtPtFPg 

(25) [CG]t ptpp [CG] [ ~] = -[CG]t ptppg 

This system is precisely a coarse FETI problem, posed in the subspace of Lagrange 
multipliers defined as the image space of [CG]. With this coarse grid preconditioner, 
the solution algorithm appears clearly as a two-level FETI method: at each iteration 
of projected conjugate gradient at the fine level, an additional preconditioning 
problem of the same type has to be solved at the coarse grid level. 

4.4. Rigid body projection for coarse grid vectors. The rigid body 
projection takes a simple form for vectors belonging to the coarse grid space. In 
general, for any Lagrange multiplier f-L, the rigid body projection is defined by: 

(26) Pp, = p, + G8 with Gt(p, + G8) = 0 

In the same way, for a vector in the coarse grid space, the projection can be written: 

(27) P(C1 + Gf3) = C1 + Gf3 + G8 = C1 + G(f3 + 8) 

correction 8 being defined by the constraint: 

(28) 

So, ({3 + 8) satisfies: 

(29) 
Hence, the projection of a vector in the coarse grid space is given by the following 
equation: 

(30) 
This equation illustrates the fact that the effective degrees of freedom of the second-
level FETI preconditioner are the corner modes coefficients. The rigid body modes 
have been added to the coarse grid space just for allowing coarse grid vectors to 
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satisfy the rigid body constraint. For any set of corner modes coefficients 1, the only 
coarse grid vector satisfying the rigid body constraint is given by equation (30). 

Let us note Rc;c the matrix defined by: 

(31) 

Reel represents the coefficients of the rigid body modes correction to apply on the 
corner mode generated by coefficients 1 for satisfying the rigid body constraint. 

Note Pcoarsc the following matrix: 

(32) 

Equation (30) can be rewritten: 

(33) P [CG] [ ~ ] = [CG] Pcoarsc [ ~ ] 

So, actually Pcoarse is the rigid body projection for coarse grid vectors in the natural 
coarse grid basis defined by columns of [CG]. 

4.5. Projected coarse grid problem. The second-level FETI problem (25) 
can be rewritten as: 

(34) ( p [ c G] ) I F ( p [ c G] ) [ ~ ] = - ( F p [ c G] ) I p g 

Thanks to the definition of the rigid body projection for coarse grid vectors given by 
equation (33), a new formulation of the second-level FETI problem can be derived 
from equation (34): 

(35) P,1uarsc ( [CG] 1 F [CG] ) Pr·oorsc [ ~ ] = -P,1oarsc ( F [CG] )1 Pg 

Note Fcoarse the projection of the FETI operator in the coarse grid space: 

(36) Feoarsc = [CGjl F [CG] 

From the definition of Pcoarsc in equation (32), the second-level FETI problem can 
be rewritten: 
(37) 

[ ~ ] [ R~:c r Fcuar"· [ R~:c ] [ I 0 ] [ ~ ] = - [ ~ ] [ R~c r ( F [CG] )1 
Pg 

Thanks to the definition of the rigid body projection for coarse grid vectors, the only 
degrees of freedom of equation (37) are coefficients of f. Eliminating null blocks in 
this equation finally leads to the projected coarse grid problem that defines T 

[ I ] 1
. [ I ] [ I ] 1 1 (38) Rc:c Faw.sr Rc;c 1 = - Rc:c ( F [CG] ) Pg 

From equation (23) and (30), the search direction vector satisfying both corner 
modes constraint and rigid body modes constraint is given by: 

(39) w = Pw = Pg + P(C1 + G[3) = Pg + [CG] [ R~c] 1 
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Subdomain f:!J 
with a non zero 
block (F[cGJ )iJ 

FIGURE 2. Contribution of subdomains to blocks of Fcoarse 
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5. Parallel computation of the projected coarse grid FETI matrix 

5.1. Forming of Fcoarse· The projection of FETI operator on the coarse grid 
space is defined in equation (36). The coarse grid matrix [CG] and the first-level 
FETI matrix F can be written: 

(40) [CG] 
F 

= I:J BJ[CJRJ] 

= I:k BkK: Bk 
where [CJRJ] is the matrix whose columns are the corner and rigid body motions 
of subdomain nj. 

From this equation, it can be derived that Fcoarse has a sparse block structure, 
such that the block of interaction between coarse grid degrees of freedom m 
subdomains ni and nj is defined as: 

k j 

As a consequence of the fact that the trace operator Bn is non zero only on interfaces 
of subdomain fln, a block of form: 

(42) 

is non zero only if subdomain nk is neighbor of both subdomains ni and nj. 
Such a block is the contribution of subdomain flk to the block matrix (Fcoarse)iJ. 

This means that the contribution of subdomain flk to the coarse-grid FETI matrix 
Fcoarse is a dense square matrix with dimension equal to the sum of numbers of 
corner and rigid body motions in its neighborhood, including the subdomain itself 
and all its neighbors. Figure (2) show the dependency between subdomains for the 
computation of (Fcoarse)ij. 
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5.2. Local contribution to Fcoarse· From equation (42), it appears that 
subdomain Ok can compute its contribution to the Fcaarse matrix, if it has all 
the traces of corner and rigid body motions in its neighborhood. So, forming the 
contribution of a subdomain to the Fcaarse matrix can be organized according to 
the algorithm described below. 

1. Store in each sub domain Ok, the traces of corner motions on each interface 
rki with neighboring subdomain Oi. This requires the storage for each 
interface rkj of a matrix (BkCk)j with number of rows equal to the number 
of degrees of freedom on interface rkj and number of columns equal to the 
number of corner motions in nk. 

2. Exchange (BkCk)j matrices with neighboring subdomains. This means that 
subdomain Ok sends matrix (BkCk)j to subdomain Oj and receives from 
it matrix (BjCj)k whose number of rows is equal to the number of degrees 
of freedom on interface rkj and number of columns equal to the number of 
corner motions in nj. 

3. In subdomain Ok, perform a forward-backward substitution for each local 
corner and rigid body motion, and for each corner and rigid body motion of 
neighboring subdomains, in order to compute the following matrices: 

(43) K: BkBjCj and K: BkBjRj 

(44) 

(45) 

for j = k or j such that nj is a neighbor of nk. 
4. Store the traces of resulting vectors interface by interface. On each 

interface rki, these traces form two sets of matrices (BkK: BkBiCj)i and 
(BkKtBkBiRj)i whose number of rows is equal to the number of degrees 
of freedom on interface rki and number of columns respectively equal to the 
number of corner or rigid body motions in nj 

5. In subdomain nk, for each interfacerki, compute the following matrix-matrix 
products: 

( BiCi )~ ( BkK: Bl BjCj )i 
( BiRi )~ ( BkK: Bl BiG) )i 

( BiCi )k ( BkK: Bk BjRj )i 
( BiRi )k ( BkK: Bl BjRj )i 

In the same way, the following blocks must be computed and added to the 
contribution of other interfaces: 
( BkCk )~ ( BkK: Bl BjCj )i 
( BkRk )~ ( BkK: Bl BjCj )i 

( BiCi )~ ( BkK: Bl BjRj )i 
( BiRi )k ( BkK: Bl BiRi )i 

Now, subdomain Ok has its contribution to the (Fcoarse)ij block, for any 
pair of its neighboring subdomains ni and nj. 

5.3. Contribution of subdomain to the projected coarse grid FETI 
problem. If the restriction of coarse grid on neighborhood of sub domain Ok, 
including Ok itself, is written J(k), then the projected coarse grid problem of 
equation (38) is constructed from the local contributions to the coarse grid FETI 
matrix as follows: 

(46) [ R~c r Fcaarse [ R~c] = ~ [ R~c r (J(k))t Fglrse (J(kl) [ R~c] 
where Fglrse is the contribution of Ok to the coarse grid FETI matrix constructed 
in the way presented in section 5.2. 
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So, once F~~2rse has been formed, the computation of the contribution of 
subdomain Ok to the projected coarse grid FETI matrix only requires the rows 
of Rcc associated with rigid body modes in the neighborhood of nk. 

In the same way, once the projected coarse grid problem of equation (38) 
is solved, the computation of the vector w as described in equation (39) can 
be performed without any data transfer in each subdomain, provided that the 
complete solution "( and the rows of Rcc associated with rigid body modes in the 
neighborhood are known. 

5.4. Forming of the rigid body projection for coarse grid vectors. 
From the previous section, it appears that each subdomain must construct the 
rows of the rigid body projection associated with the rigid body modes of its 
neighborhood. In subdomain Ok, these rows form the following matrix: 

(47) J(k) [ R~c J = J(k) [ -(ctc~-lctc J 
The etc matrix has exactly the same kind of sparse block structure as GtG and can 
be formed in parallel using the same methodology. The ( ct G) matrix has already 
been formed and factorized in each subdomain. The only problem to compute 
the rows of Rcc associated with the rigid body modes in the neighborhood of 
subdomain nk lies in the fact that all the entries corresponding to corner motions 
in ALL subdomains must be computed. 

( 48) 

(49) 

The following algorithm can be implemented. 
1. In subdomain Ob compute the following matrix-matrix products for each 

interfacer kj: 

(ctc)jk 
(ctc)kk 

(BjR1 )k(BkCk)j 
(GtC)kk- (BjRj)k(BkCk)j 

The result is scattered in a matrix whose number of columns is equal to the 
number of corner motions in subdomain nk and number of rows equal to the 
total number of rigid body modes. This matrix forms the subset of columns 
of etc associated with corner modes of subdomain nk. 

2. Compute -(Gtc)- 1GtC for all columns of etc associated with corner 
modes of subdomain nk. This requires a number of forward-backward 
substitutions, using the COMPLETE factorization of (etc), equal to the 
number of corner motions in subdomain Ok. Now, subdomain Ok has all 
the columns of 

associated with its own corner modes. 
3. Exchange the columns of Rcc associated with corner modes of subdomain 

Ok with neighboring subdomains. Now, subdomain Ok has all the columns 
of Rcc associated with all corner modes in its neighborhood, itself included. 

4. Subdomain Ok has all the COLUMNS of Rcc associated with its own corner 
modes. To get the ROWS of Rcc associated with its rigid body modes, a 
global matrix transposition through data exchange between all processors 
must be performed. 

5. A last data transfer operation with neighboring subdomains must be 
performed in order to get rows of Rcc associated with rigid body modes 
in the whole neighborhood of each subdomain. 
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6. Build the matrix: 

I(k) [ I ] 
Rcc 

The rows of Rcc associated with rigid body modes in the whole 
neighborhood of each subdomain form the lower part of this matrix, the 
upper part is just the boolean restriction to the subset of corner modes in 
the whole neighborhood of each subdomain. 

5.5. Forming and factorization of the projected coarse grid FETI 
matrix . The forming and factorization of the complete projected coarse grid 
FETI matrix can be performed in 4 steps. 

(51) 

1. In each subdomain Ok, compute the matrix-matrix product: 

[ I ] 1 (I(k))t p(k) (I(k)) [ I ] 
Rcc coarse Rcc 

The result is a square matrix of dimension equal to the total number of corner 
modes. It is the contribution of subdomain Ok to the projected coarse grid 
FETI matrix. 

2. Assemble the projected coarse grid FETI matrix through a global data 
transfer. This is a reduction with add operation. 

3. Build the pseudo-inverse of the projected coarse grid FETI matrix via 
Choleski factorization with numerical pivoting. This matrix is not full rank 
when there is some redundancy of the corner modes. 

4. Compute the rows of the pseudo-inverse of the projected coarse grid FETI 
associated with the corner modes in the neighborhood of subdomain, 
including the subdomain itself and its neighbors. 

6. Parallel solution of the second-level FETI problem 

6.1. Right-hand side of the projected coarse grid problem. From 
equation (38) it can be derived that the first step of the computation of the right-
hand side of the projected coarse grid problem requires the computation of: 

(52) ( F [CG] )1 Pg = ( ( "L, BkK: Bk ) ( "L, Bj[CjRj] ) )t Pg 
k j 

All the data to compute the contribution of subdomain nk to this product are 
already present, thanks to the computation of the local contribution to Fcaarse, as 
explained in section 5.2. Also, the columns of the rigid body projection for the 
coarse grid problem have been computed locally. 

Hence, the parallelization of the computation of the right-hand side of the 
projected coarse grid problem can be performed as follows: 

(53) 

1. In subdomain nk, for each interfacerk;, compute the following matrix-vector 
products: 

( BkK: Bk BjCj )~ (Pg)k; 
( BkK: Bk BjRj )~ (Pg)ki 

for all subdomains nj in the neighborhood of nk, itself included. 
Scatter the resulting vectors in a vector of dimension equal to the sum of 
corner and rigid body motions in all subdomains in the locations associated 
with the corner and rigid body modes of the neighborhood of nk. If j = k, 
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the contributions of all interfaces must be added. This vector represents the 
contribution of subdomain nk to ( F [CG] )t Pg. 

2. Assemble ( F [CG] )t Pg via global data exchange. This is a reduction with 
add operation. 

3. Compute in each subdomain nk the part of the product: 

associated with corner modes of nk. Only the columns of the matrix Rcc 
associated with corner modes of nk and that have been computed during 
the forming of the rigid body projection for the coarse grid, are needed. 

This procedure gives the restriction to each subdomain of the right-hand 
side of the projected coarse grid problem. 

4. Gather complete right-hand side of the projected coarse grid problem in each 
subdomain via a global data transfer operation. 

6.2. Solution of the projected coarse grid FETI problem. Once the 
complete right-hand side has been gathered in each subdomain, the computation 
of the solution 'Y of the projected coarse grid problem (38) in subdomain ni just 
requires a product by the matrix: 

(55) 

using the rows of the pseudo-inverse of the projected coarse grid FETI associated 
with the corner modes in the neighborhood of subdomain computed as explained 
in section 5.5. 

6.3. Computation of the search direction vector. From equation (39) it 
can be observed that the search direction vector w can be computed locally in each 
subdomain, provided that entries of the solution of the projected coarse grid FETI 
problem "( and of vector (3 = Rcc'Y associated to the subdomain and its neighbors 
are known. 

The procedure described in the previous section has given the entries of the 
solution of the projected coarse grid FETI problem"( associated to the subdomain 
and its neighbors. The computation of the search direction vector w can be 
completed as follows. 

(56) 

1. In each subdomain, compute the contribution to (3 by computing the matrix-
vector product: 

(3 = Rcc'Y 

for columns of Rcc associated with corner modes of subdomain. 
2. Assemble (3 through a global data transfer. This is a reduction with add 

operation. Extract the entries of (3 associated to the subdomain and its 
neighbors. 

3. In subdomain ni, for each interface rij, compute the following matrix-vector 
products: 
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This step computes without any data transfer the restriction to subdomain 
of: 

w = Pg + Oy + G(J = Pg + [CG] [ R~c ] 'Y 

6.4. Computation of the starting ,\. For a given ,\0 satisfying the rigid 
body constraint: 

(59) 

in each subdomain Oi, note g0 the gradient F,\0 - d. The corner mode correction 
of .-\0 , w, must be of form: 

(60) w = P(C"f + G(J) 

The corrected initial .X, is .-\0 + w, and the associated corrected gradient is g0 + Fw. 
The correction w must be such that the projected corrected gradient satisfy: 

(61) CtP(g0 + Fw) 
GtP(g0 + Fw) 

0 
= 0 

From these equations, the same development as in section 4.3 leads to the second 
level FETI problem: 

(62) [CG]t pt F P[CG] [ ; ] = -[CG]t Pg0 

This problem is similar to the one of equation (25), except for the right-hand-side. 
As, by definition of the rigid body projection P, ct Pg0 is equal to 0, the right-hand 
side can be even simplified: 

(63) [CG]t pt F P[CG] [ ; ] = -Ct Pg0 

This problem can be solved in the same way as for the search direction vector, 
except for the right-hand side that is simpler and can be computed exactly in the 
same way as the right-hand side of a rigid body projection, using corner motions 
Ci instead of rigid body motions Gi. 

7. Application 

7.1. "Interface averaging" modes. The second-level preconditioner has 
been presented in the previous sections for the case of a coarse grid associated with 
"corner modes". This preconditioner has been demonstrated to be very efficient for 
dealing with the singularity at cross-points for high order problems like plate and 
shell finite element problems. In this case, the coarse grid is built for imposing a 
local continuity requirement. But the same approach can be used to enforce more 
global continuity requirements, like for instance continuity of mean value of each 
component of the displacement field on each interface between two subdomains. 

The corresponding modes, called interface averaging modes are simply the 
jumps of local constant motion on a single interface as in Figure 3. Once again, 
building the coarse grid space as the set of jumps of local special motions makes 
it simpler to define and gives automatically admissible Lagrange multipliers. This 
approach also allows to define efficient coarse grid preconditioner in the case where 
local Neumann problems are well posed, especially for time-dependent problems. 
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FIGURE 3. Generation of a single interface averaging mode for a 
scalar problem 

TABLE 1. Solution time on IBM-SP2 with corner and interface 
averaging modes 

Numb. of 1-level FETI 2-level FETI 2-level FETI 
corner modes corner + averaging 

Domains Iterations Time(s) Iterations Time(s) Iterations Time(s) 
16 52 21 26 11 19 8.4 
32 91 14 28 5 20 3.5 
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In such a case, there is no rigid body projection to play the role of a first-level coarse 
grid preconditioner, and the standard FETI method is not numerically scalable. 

7.2. Parallel performance. To illustrate the efficiency of the second-level 
FETI preconditioner parallelized by the solution technique presented in this paper, 
a small shell problem, with 25600 nodes and 6 degrees of freedom per node, has 
been solved on an IBM-SP2 system with either 16 or 32 processors and one domain 
per processor. 

The reason why a small problem has been chosen is the following: the objective 
is to demonstrate that with the parallelization technique developed in this paper, 
the 2-level FETI method is not only numerically scalable, but its implementation 
on distributed memory systems actually gives scalable performances. The main 
drawback with the coarse grid preconditioners is the fact that their implementation 
on distributed memory machines can be very inefficient because the number of data 
transfers they require is high and their granularity is very low. Of course, for a given 
target architecture, if the local size of the problem is large enough, the cost for the 
forward-backward substitution may remain dominant. But to be really scalable, a 
method must be efficient even in the case where the size of the local problems is 
not very large. 

The stopping criterion is the same in all cases presented in this paper and is 
related to the global residual: 

(64) IIKu- bll/llbll < 10-6 

Also, in all cases presented in this paper, the local optimal Dirichlet preconditioner 
is used. Table 1 gives a comparison of the elapsed parallel times for the iterations 
of 1-level and 2-level FETI methods with various coarse grid preconditioners. It 
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TABLE 2. Solution time on IBM-SP2 with corner and interface 
averaging modes 

1-level FETI 2-level FETI 2-level FETI 
corner modes corner + averaging 

Iterations Time(s) Iterations Time(s) Iterations Time(s) 
Iterations Time(s) Iterations Time(s) Iterations Time(s) 

163 106 25 11 16 7.8 

TABLE 3. Number of modes and times for building the second-level preconditioner 

1-level FETI 2-level FETI 2-level FETI 
corner modes corner + averaging 

Numb. of Rigid Dirichlet + Numb. of Set-up Numb. of Set-up 
Body Modes Neumann(s) Modes Time(s) Modes Time(s) 

304 17 588 20 924 40 

demonstrates clearly that the cost for the parallel solution of the coarse grid 
problems is small enough to ensure that the solution time decreases in the same 
proportion as the number of iterations. Enforcing the corner continuity is enough 
to make the method scalable for this kind of shell problem. Nevertheless, the 
averaging modes give a significant decrease of the number of iterations. Speed-ups 
with the 2-level FETI method are even super-linear, thanks to the decrease of the 
bandwidth of local matrices with larger number of subdomains. 

7.3. Constructing cost for the coarse grid preconditioner. In the 
previous section, only the timings for the iterations were given. But the cost for 
assembling, factorizing and inverting the second-level FETI operator can be far 
from negligible in comparison with the time for the initial factorization of the local 
Dirichlet and Neumann problems matrices. 

In order to illustrate this point, a larger shell model problem with 100000 nodes 
and 600000 degrees of freedom has been decompose in 64 subdomains. With such 
a large number of subdomains, the global number of coarse grid modes with both 
corner and averaging modes can be nearly one thousand. It would clearly not make 
sense to use such a large number of coarse grid modes for solving a small problem 
with only a few thousands degrees of freedom. Nevertheless, with 64 subdomains, 
the number of nodes per subdomain is less than 2000, hence the time for factorizing 
the local Dirichlet and Neumann matrices is rather small. 

Table 2 features the number of iterations and the parallel times for the iterations 
of 1-level and 2-level FETI methods with various coarse grid preconditioners. Table 
3 shows the total number of rigid body modes and of corner and corner + averaging 
modes, and it gives a comparison of times spent on each processor for factorizing 
the local Dirichlet and Neumann matrices and for assembling and factorizing the 
second-level FETI preconditioner. 

In the case of the largest coarse grid space, this table shows that the time for 
forming the second-level preconditioner can be more than two times larger than the 
factorization time of local Dirichlet and Neumann matrices. Hence, this time may 
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be considered too high, especially in comparison with the time for the iterations 
shown in Table 2. 

Nevertheless these results are quite good. First, as discussed above, the global 
size of this problem is not that large for such a number of subdomains. The time 
for local factorizations and forward-backward substitutions increases faster with the 
number of nodes per subdomain than the time for building the second-level FETI 
preconditioner. So, for larger problems, the comparison will be more in favor of the 
2-level method. 

Secondly, this time to build the second-level FETI preconditioner is payed only 
once in the case of multiple right-hand-side, and the overall efficiency will be even 
better in such a case. 

Thirdly, for the timings presented here, the factorization of the second-level 
FETI matrix has been computed in sequential. It would be possible to use a 
parallel skyline method to perform this factorization that represents nearly half the 
time spent in the construction of the second-level FETI preconditioner. Even a 
very low efficiency would be enough to make the factorization time itself negligible. 

8. Conclusion 

Thanks to the algebraic interpretation of the 2-level FETI method presented 
here a parallel implementation methodology has been designed. It allows using 
global direct solvers for the second-level FETI preconditioner but keeps working 
with a simple description of the interfaces at subdomain level. 

The actual efficiency obtained with this approach makes feasible the enrichment 
of the coarse grid spaces used in the preconditioner, making the overall method 
faster and more robust. 
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Domain Decomposition and Multi-Level Type Techniques 
for General Sparse Linear Systems 

Yousef Saad, Maria Sosonkina, and Jun Zhang 

1. Introduction 

Domain-decomposition and multi-level techniques are often formulated for lin-
ear systems that arise from the solution of elliptic-type Partial Differential Equa-
tions. In this paper, generalizations of these techniques for irregularly structured 
sparse linear systems are considered. An interesting common approach used to de-
rive successful preconditioners is to resort to Schur complements. In particular, we 
discuss a multi-level domain decomposition-type algorithm for iterative solution of 
large sparse linear systems based on independent subsets of nodes. We also discuss 
a Schur complement technique that utilizes incomplete LU factorizations of local 
matrices. 

A recent trend in parallel preconditioning techniques for general sparse linear 
systems is to exploit ideas from domain decomposition concepts and develop meth-
ods which combine the benefits of superior robustness of ILU-type preconditioning 
techniques with those of scalability of multi-level preconditioners. Two techniques 
in this class are the Schur complement technique (Schur-ILU) developed in [19] 
and the point and block multi-elimination ILU preconditioners (ILUM, BILUM) 
discussed in [16, 21]. 

The framework of the Schur-ILU preconditioner is that of a distributed sparse 
linear system, in which equations are assigned to different processors according to a 
mapping determined by a graph partitioner. The matrix of the related Schur com-
plement system is also regarded as a distributed object and never formed explicitly. 
The main difference between our approach and the methods described in [2, 7], is 
that we do not seek to compute an approximation to the Schur complement. Simply 
put, our Schur-ILU preconditioner is an approximate solve for the global system 
which is derived by solving iteratively the Schur complement equations correspond-
ing to the interface variables. For many problems, it has been observed that the 
number of steps required for convergence remains about the same as the number 
of processors and the problem size increase. The overall solution time increases 
slightly, at a much lower rate than standard Schwarz methods. 
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ILUM and BILUM exploit successive independent set orderings. One way to 
think of the idea underlying ILUM is that by a proper reordering of the original 
variables, the matrix is put in the form 

(1) A=(~~), 
where B is diagonal so that the Schur complement system associated with the C 
block remains sparse. Then the idea is applied recursively, computing a sequence of 
Schur complement (or reduced) systems. The last of these reduced systems is solved 
by an iterative solver. This recursively constructed preconditioner has a multi-level 
structure and a good degree of parallelism. Similar preconditioners have been de-
signed and tested in [4, 21] to show near grid-independent convergence for certain 
type of problems. In a recent report, some of these multi-level preconditioners have 
been tested and compared favorably with other preconditioned iterative methods 
and direct methods at least for the Laplace equation [3]. Other multi-level precon-
ditioning and domain decomposition techniques have also been developed in finite 
element analysis or for unstructured meshes [1, 5]. 

The ILUM preconditioner has been extended to a block version (BILUM) in 
which the B block in (1) is block-diagonal. This method utilizes independent sets 
of small clusters (or blocks), instead of single nodes [4, 21]. In some difficult cases, 
the performance of this block version is substantially superior to that of the scalar 
version. The major difference between our approach and the approaches of Botta 
and Wubs [4] and Reusken [13] is in the choice of variables for the reduced system. 
In [4] and [13], the nodes in the reduced system, i.e., the unknowns associated with 
the submatrix C in (1), are those nodes of the independent set itself and this leads to 
a technique which is akin to an (algebraic) multigrid approach [14]. An approximate 
inverse technique is used to invert the top-left submatrix B in (1) which is no 
longer diagonal or block-diagonal. In their implementations, these authors employ 
a simple approximate inverse technique which usually requires diagonal dominance 
in the B matrix. In contrast, our approach chooses the nodes of the reduced 
system to be those unknowns associated with the complement to the independent 
set. Therefore the difference is that B is associated with the independent set instead 
of C. This approach is more akin to a domain decomposition technique and it is 
more generally applicable since it does not require diagonal dominance in either the 
B or C submatrix. 

One aim of the current paper is to further extend BILUM techniques of [21] 
to include blocks of large size and to treat related issues of keeping sparsity of 
the BILUM factors. Measurable parameters are introduced to characterize the 
efficiency of a preconditioner. Numerical results with some hard-to-solve problems 
are presented to demonstrate the merits of the new implementations. For the Schur-
1 U preconditioner, we compare the performance of various options for solving the 
local problems and make some observations and recommendations. 

(2) 

2. Schur Complements and Recursive Schur Complements 

Consider a linear system of the form 

Ax=b, 

where A is a large sparse nonsymmetric real matrix of size n. To solve such a system 
on a distributed memory computer, a graph partitioner is usually first invoked to 
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External 

FIGURE 1. A local view of a distributed sparse matrix. 

partition the adjacency graph of A. The data is then distributed to processors such 
that pairs of equations-unknowns are assigned to the same processor. When this 
is done, three types of unknowns can be distinguished. ( 1) Interior unknowns that 
are coupled only with local equations; (2) Local interface unknowns that are cou-
pled with both non-local (external) and local equations; and (3) External interface 
unknowns that belong to other subdomains and are coupled with local equations. 
This setting which is illustrated in Figure 1, is common to most packages for parallel 
iterative solution methods [7, 9, 10, 11, 15, 18, 22, 23]. 

2.1. Distributed sparse linear systems. The matrix assigned to a certain 
processor is split into two parts: the local matrix Ai, which acts on the local variables 
and an interface matrix Xi, which acts on the external variables. Accordingly, the 
local equations can be written as follows: 

(3) AiXi + XiYi,ext = bi, 

where Xi represents the vector of local unknowns, Yi,ext are the external interface 
variables, and bi is the local part of the right-hand side vector. It is common tore-
order the local equations in such a way that the interface points are listed last after 
the interior points. This ordering leads to an improved interprocessor communica-
tion and to reduced local indirect addressing during matrix-vector multiplication. 
Thus, the local variables form a local vector of unknowns xi which is split into two 
parts: the subvector Ui of internal vector components followed by the subvector Yi 

of local interface vector components. The right-hand side bi is conformally split into 
the subvectors fi and 9i. When the block is partitioned according to this splitting, 
the local equations (3) can be written as follows: 

(4) ( Bi 
Ei 

0 
LjENi EijYj )=(~:)· 
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Here, Ni is the set of indices for subdomains that are neighbors to the subdomain 
i. The term EijYj is a part of the product XiYi,ext which reflects the contribution 
to the local equation from the neighboring subdomain j. These contributions are 
the result of multiplying Xi by the external interface unknowns: 

L EijYj = XiYi,ext· 
jENi 

The result of this multiplication affects only the local interface unknowns, which is 
indicated by a zero in the top part of the second term of the left-hand side of (4). 

2.2. Schur complement systems. This section gives a brief background on 
Schur complement systems; see e.g., [17, 22], for additional details and references. 
The Schur complement system is obtained by eliminating the variable Ui from the 
system ( 4). Extracting from the first equation Ui = Bi 1 (fi - Fiyi) yields, upon 
substitution in the second equation, 

(5) SiYi + L EijYj = 9i- EiBi 1 fi = g~, 
jENi 

where Si is the "local" Schur complement 

(6) 

The equations (5) for all subdomains i (i = 1, ... ,p) constitute a system of equa-
tions involving only the interface unknown vectors Yi· This reduced system has a 
natural block structure related to the interface points in each subdomain: 

(7) 

Ep-1,2 

The diagonal blocks in this system, the matrices Si, are dense in general. The off-
diagonal blocks Eij, which are identical with those involved in the global system 
(4), are sparse. The system (7), which we rewrite in the form 

Sy=g', 

is the Schur complement system and S is the "global" Schur complement matrix. 

2.3. Induced global preconditioners. It is possible to develop precondi-
tioners for the global system (2) by exploiting methods that approximately solve the 
reduced system (7). These techniques, termed "induced preconditioners" (see, e.g., 
[17]), are based on a reordered version of the global system (2) in which all the 
internal vector components u = ( u1, ... , up f are labeled first followed by all the 
interface vector components y, 

B1 F1 U1 h 
B2 F2 U2 h 

(8) 
Bp Fp _!!:E__ _f_p_ 

E1 E2 Ep c y g 
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which also can be rewritten as 

(9) 

Note that the B block acts on the interior unknowns. Consider the block LU 
factorization 

(10) 

where S is the global Schur complement 

S=C-EB- 1F. 

This Schur complement matrix is identical to the coefficient matrix of system (7) 
(see, e.g., [17]). The global system (9) can be preconditioned by an approximate 
LU factorization constructed such that 

(11) L = ( E~-1 ~ ) and U = ( ~ ~s ) 

with Ms being some approximation to S. 
Note that the effect of the forward solve is to compute the modified right-hand 

side g' for the Schur complement system (7). Once this is done, the backward solve 
with the matrix U consists of two additional steps: solving with Ms to compute 
approximations toy, and then back-substituting to compute the approximations to 
the u variables. 

Therefore, a global preconditioning operation induced by a Schur complement 
solve would consist of the following three steps. 

1. Compute the reduced right-hand side g' = g- EB- 1 f ; 
2. Approximately solve Msy = g'; 
3. Back-substitute for the u variables, i.e., solve Bu = f- Fy. 

Each of the above three steps can be accomplished in different ways and this leads 
to a rich variety of options. For example, in (1) and (2) the linear system with 
B can be done either iteratively or directly, or approximately using just an ILU 
factorization for B. The choices for (2) are also numerous. One option considered 
in [19] starts by replacing (5) by an approximate system of the form, 

(12) Yi + s;- 1 2:.: E;jYj = .si- 1 [g;- E;B; 1 t;J , 
jENi 

in which S; is some (local) approximation to the local Schur complement matrix 
S;. This can be viewed as a block-Jacobi preconditioned version of the Schur 
complement system (7) in which the diagonal blocks S; are approximated by S;. The 
above system is then solved by an iterative accelerator such as GMRES requiring 
a solve with S, at each step. In one method considered in [19] the approximation 
S; was extracted from an Incomplete LU factorization of A;. The idea is based on 
the following observation (see [17]). Let A; be the matrix on the left-hand side of 
(4) and assume it is factored as A;= L;U;, where 

(13) ( LB 0 ) d U ( UB 
L; = E;U~,1 Ls, an i = 0, L1J~ F.; ) u . S, 

Then, Ls,Us, is equal to the Schur complementS; associated with the partitioning 
(4), see [17, 19]. Thus, an approximate LU factorization of S; can be obtained 
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canonically from an approximate factorization to Ai, by extracting the related 
parts from the Li and Ui matrices. 

2.4. Recursive Schur complements. The diagonal blocks Si in the Schur 
complement system (7) are usually dense blocks. However, the off-diagonal terms 
Eij are sparse. As a result, it is interesting to consider a particular situation when 
the blocks Bi are all of small size, e.g., of size one or two. In this situation the 
coefficient matrix in (7) remains sparse and it is natural to think about a recursive 
application of the induced preconditioning technique described above. The second 
level of reduction can be applied to Schur complement system (7) resulting in 
the second-level Schur complement system ("the Schur complement for the Schur 
complement"). This process can be continued for a few more levels and the last level 
system can be solved with a standard iterative method. This idea was exploited in 
[16] for blocks Bi of the smallest possible size, namely one. In [21], the idea was 
generalized to blocks larger than one and a number of heuristics were suggested for 
selecting these blocks. 

We recall that an independent set is a set of unknowns which are not coupled 
by an equation. A maximal independent set is an independent set that cannot 
be augmented by other elements to form another independent set. These notions 
can be generalized by considering subsets of unknowns as a group. Thus, a block 
independent set is a set of such groups of unknowns such that there is no coupling 
between unknowns of any two different groups. Unknowns within the same group 
may be coupled. 

IL UM and BIL UM can be viewed as a recursive applications of domain decom-
position in which the subdomains are all of small size. In ILUM the subdomains are 
all of size one and taken together they constitute an independent set. In BILUM 
[21], this idea was slightly generalized by using block-independent sets, with groups 
(blocks) of size two or more instead of just one. As the blocks (subdomains) become 
larger, Schur complements become denser. However, the resulting Schur comple-
ment systems are also smaller and they tend to be better conditioned as well. 

3. Block Independent Sets with Large Blocks 

Heuristics based on local optimization arguments were introduced in [21] to 
find Block Independent Sets (BIS) having various properties. It has been shown 
numerically that selecting new subsets according to the lowest possible number of 
outgoing edges in the subgraph, usually yields better performance and frequently 
the smallest reduced system. These algorithms were devised for small independent 
sets. Extending these heuristic algorithms for extracting Block Independent Sets 
with large block sizes is straightforward. However, these extensions may have some 
undesirable consequences. First, the cost is not linear with respect to the block size 
and it can become prohibitive as the block size increases. The second undesirable 
consequence is the rapid increase in the amount of fill-ins in the LU factors and 
in the inverse of the block diagonal submatrix. As a result, the construction and 
application of a BILUM preconditioner associated with a BIS having large subsets 
tend to be expensive [21]. 

Suppose a block independent set (BIS) with a uniform block size k has been 
found and the matrix A is permuted into a two-by-two block matrix of the form 
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(with the unknowns of the independent set listed first) 

(14) A rv P APT = ( ~ ~ ) , 

where P is a permutation matrix associated with the BIS ordering and B = 
diag[B1, B2, ... , Bs] is a block diagonal matrix of dimension m = ks, where s is 
the number of uniform blocks of size k. The matrix Cis square and of dimension 
l = n- m. In [21], a block ILU factorization of the form (11) is performed, i.e., 

(15) ( ~ ~ ) ~ ( E~-1 ~ ) X ( ~ r ) = 1 X U. 

Here A1 C- EB- 1 F is the Schur complement and I is the identity matrix. 
In order to maintain sparsity a dropping strategy is adopted when computing the 
submatrices EB- 1 and A1 , based on a threshold tolerance. The BILUM precondi-
tioner is obtained by recursively applying the above procedures to these successive 
Schur complements up to a certain number of levels, say nlev. The last reduced 
system obtained is solved by a direct method or a preconditioned iterative method. 

Once the BILUM preconditioner is constructed, the solution process (applica-
tion of BILUM) consists of the (block) forward and backward steps [16]. At each 
step (level), we partition the vector Xj as 

(16) x - ( YJ ) 
J - Xj+1 

corresponding to the two-by-two block matrix (14). The BILUM preconditioning 
amounts to performing the following steps: 

Copy the right-hand side vector b to xo. 
For j = 0, 1, ... , nlev- 1, do forward sweep: 

Apply permutation Pj to Xj to partition it in the form (16). 
Xj+l := Xj+l - EjBj 1Yj· 

End do. 
Solve with a relative tolerance c:: 

AnlevXnlev := Xnlev· 

For j = nlev- 1, ... , 1, 0, do backward sweep: 
Yi := Bj 1(yj- FjXj+l). 

Apply inverse permutation PT to the solution Yi. 
End do. 

BILUM is, in effect, a recursive application of a domain decomposition technique. In 
the successive Schur complement matrices obtained, each block contains the internal 
nodes of a subdomain. The inverse and application of all blocks on the same level 
can be done in parallel. One distinction with traditional domain decomposition 
methods [12, 22] is that all subdomains are constructed algebraically and exploit 
no physical information. In addition, the reduced system (coarse grid acceleration) 
is solved by a multi-level recursive process akin to a multigrid technique. 

We define several measures to characterize the efficiency of BILUM (and other 
preconditioning techniques). The first one is called the efficiency ratio ( e-ratio) 
which is defined as the ratio of the preprocessing time over iteration time, i.e., the 
ratio of the CPU time spent computing the BILUM preconditioner to that required 
by GMRES/BILUM to converge. The efficiency ratio determines how expensive it 
is to compute a preconditioner, relative to the time spent in the iteration phase. It 
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FIGURE 2. Characteristic measures for solving the 5-POINT ma-
trix for different sizes of uniform blocks. 

15 

15 

should be used with the second measure that is called the total CPU time which 
is the CPU time in seconds that a computer spends to compute the preconditioner 
and to solve the linear system. Given a total CPU time, a good preconditioner 
should not be too expensive to compute. 

The third measure is the sparsity ratio ( s-ratio) which is the ratio of the number 
of nonzeros of the BILUM factors to that of the matrix A. Note that the number 
of nonzeros for BIL UM includes all the nonzeros of the L U factors at all levels plus 
those of the last reduced system and its preconditioner. If a direct method is used to 
solve the last reduced system, this latter number is to be replaced by the number of 
nonzero elements of the (exact) LU factorization of this system. The sparsity ratio 
determines how much memory is needed to store the given preconditioner, compared 
with that needed for the simplest preconditioner ILU(O). If the sparsity ratio is too 
large, a preconditioned iterative solver may lose one of its major advantages over a 
direct solver. The fourth measure is the reduction ratio (r-ratio) which is the ratio 
of the dimension of the last reduced system to that of the original system A. The 
reduction ratio determines how good an algorithm finds the independent set. The 
total CPU time, efficiency ratio and sparsity ratio may be suitable to characterize 
other preconditioning techniques, but the reduction ratio is mainly for the BILUM-
type preconditioners. These four characteristic measures are more informative than 
the measure provided by the iteration count alone. 

Our iterative algorithm consists of GMRES with a small restart value as an 
accelerator and BILUM as a preconditioner. The last reduced system is solved 
iteratively by another GMRES preconditioned by an ILUT preconditioner [17]. 
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TABLE 1. Description of test matrices. 

matrix size nonzeros description 
5-POINT 40 000 199 200 5-point upwind scheme of convection-diffusion 
RAEFSKY3 21 200 1 488 768 Fluid structure interaction turbulence problem 
VENKAT50 62 424 1 717 792 Unstructured 2D Euler solver, time step = 50 
WIGT0966 3 864 238 252 Euler equation model 

The dropping strategy that we used in [21] is the simplest one. Elements in EB- 1 

in the L factor and in the reduced system A1 are dropped whenever their absolute 
values are less than a threshold tolerance droptol times the average value of the 
current row. For BILUM with large size BIS formed by the greedy algorithm, this 
simple single dropping strategy is not sufficient to keep BILUM sparse enough. 
Figure 2 shows the behavior of the four characteristic measures as the block size 
changes when an algorithm using this single dropping strategy is used to solve 
a system with the 5-POINT matrix described in [21] (some information about 
this matrix is given in Table 1). Here, a 20-level BILUM with single dropping 
strategy was used. The coarsest level solve was preconditioned by ILUT(l0-4, 10). 
The iteration counts are 5 for block sizes ~ 4, and 4 otherwise. It can be seen 
that although BILUM with large block sizes reduced all three other measures (not 
monotonically), it increased the storage cost substantially. The sparsity ratio was 
doubled when the block size increased from 1 to 15. Such an uncontrolled large 
storage requirement may cause serious problems in large scale applications. 

Inspired by the dual threshold dropping strategy of ILUT [17], we propose 
a similar dual threshold dropping for BILUM. We first apply the single dropping 
strategy as above to the EB- 1 and A1 matrices and keep only the largest lfil 
elements (absolute value) in each row. 

Another cause of loss of sparsity comes from the matrix B- 1. In general, each 
block of B is sparse, but the inverse of the block is dense. For BIS with large blocks 
this results in a matrix B-1 that is much denser than B. However, if a block is 
diagonally dominant, the elements of the block inverse are expected to decay away 
from the diagonal rapidly. Hence, small elements of B-1 can be dropped without 
sacrificing the quality of the preconditioner too much. In practice, we may use a 
double dropping strategy similar to the one just suggested, for the EB- 1 and A1 
matrices, possibly with different parameters. 

4. Numerical Experiments 

The Schur-ILU factorization has been implemented in the framework of the 
PSPARSLIB package [15, 18, 20] and was tested on a variety of machines. The 
experiments reported here have been performed on a CRAY T3E-900. ILUM and 
Block IL UM have been implemented and tested on sequential machines. Addi-
tional experiments with BILUM, specifically with small blocks, have been reported 
elsewhere, see [21]. We begin with experiments illustrating the Schur-ILU precon-
ditioners. 

Some information on the test matrices is given in Table 1. The Raefsky matrix 
was supplied to us by H. Simon from Lawrence Berkeley National Laboratory. The 
Venkat matrix was supplied by V. Venkatakrishnan from NASA and the Wigton 
matrix by L. Wigton from Boeing Commercial Airplane Group. Despite being 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



DOMAIN DECOMPOSITION FOR GENERAL SPARSE LINEAR SYSTEMS 183 

18 I 
I 

16 ql 
II 

14 

rn -g12 
8 
Q) 10 
rn 
w 
C') 8 
1-

4 

2 

RAEFSKY3 - CPU Time 

~ w ~ ~ ~ ~ 00 ~ 00 ~ ~ 
Processors 

FIGURE 3. Time results on different processor numbers: total solu-
tion time (dash-dotted line), preconditioning operation time (dash-
circled line), and FGMRES time (solid line). 

small, the Wigton matrix is fairly difficult to solve by iterative methods. In all the 
tests, the right-hand sides were generated artificially by assuming that the solution 
is a vector of all ones. 

4.1. Tests with approximate Schur-ILU preconditioning. Two test 
problems RAEFSKY3 and VENKAT50, described in Table 1, as well as a 5-point 
PDE problem are considered for the numerical experiments in this subsection. In 
these test problems, the matrix rows followed by the columns were scaled by 2-norm. 
The initial guess was set to zero. A flexible variant of restarted GMRES (FGM-
RES) [17] with a subspace dimension of 20 has been used to solve these problems to 
reduce the residual norm by 106 . In the preconditioning phase of the solution, the 
related Schur complement systems have been solved by ILUT-preconditioned GM-
RES, and thus preconditioning operations differed from one FGMRES iteration to 
another. Furthermore, varying the preconditioning parameters, such as the number 
of fill-in elements for ILUT, the maximum number of iterations, and tolerance for 
GMRES, affects the overall cost of the solution. 

In general, the more accurate solves with the Schur complement system, the 
faster (in terms of iteration numbers) the convergence of the original system. How-
ever, even for rather large numbers of processors, preconditioning operations ac-
count for the largest amount of time spent in the iterative solution. Consider, for 
example, the comparison of the total solution time for RAEFSKY3 versus the pre-
conditioning time (Figure 3). For the two test problems, Figure 4 displays the time 
and iteration number results with various choices (see Table 2) for the precondition-
ing parameters. In Table 2, each set of choices is assigned a name stated in column 
Label and the GMRES parameters tolerance and maximum number of iterations 
are shown in columns tal and itmax, respectively. For the Schur-ILU precondition-
ing, the parameter lfil specifies the amount of fill-ins in the whole local matrix 
Ai in the processor i (see equation (3)). Thus, with an increase in lfil, as it can 
be inferred from equation (13), the accuracy of the approximations to the parts of 
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TABLE 2. Schur-ILU preconditioning parameter choices for 
RAEFSKY3 and VENKAT50. 

Problem Label lfil tol it max 
RAEFSKY3 Rprecl 40 w-:l 5 

Rprec2 90 w-4 30 
VENKAT50 Vprecl 20 10 ·0 5 

Vprec2 50 w-4 30 
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FIGURE 4. Solution time and iterations when different accuracy is 
used in Schur-ILU preconditioning: For RAEFSKY3, Rprecl (solid 
line) and Rprec2 (dash-dotted line); for VENKAT50, Vprecl (solid 
line) and V prec2 (dash-dotted line). 

Li and Ui increases. However, an increase in the accuracy of the preconditioning 
operation does not necessarily lead to a smaller CPU time cost ( cf., for example, 
the numerical results for VENKAT50 in Figure 4). 

Notice the upward jump of the execution time which occurs for the RAEFSKY3 
example for exactly 36 processors. This behavior is common for parallel iterative 
solvers for irregularly structured problems. For a reason that would be difficult to 
determine, the local linear systems suddenly become hard to solve for this particular 
number of processors, causing these solves to take the maximum number of steps 
(30) in each or most of the calls. The difficulty disappears as soon as we restrict the 
maximum number of steps in each preconditioning operation to a smaller number 
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(e.g., 5). Unfortunately, these difficulties are hard to predict in advance, at the 
time when the partitioning is performed. The problem does not occur for 37 or 35 
processors. 

Finally, we should point out that the previous two test matrices are relatively 
small for a machine of the size of the T3E, and so the fact that the execution 
times do not decrease substantially beyond 20 or 30 processors should not be too 
surprising. 

Next we consider a linear system which arises from a 2-dimensional regular 
mesh problem. Specifically, consider the elliptic equation: 

au au 
-~u + 100exp(x * y) ax+ 100exp( -x * y) ay - 100u = f 

on the square (0, 1)2 with Dirichlet boundary conditions. When discretized using 
centered difference so that there are 720 interior mesh points in each direction, the 
resulting linear system is of size n = 7202 = 518,400. The shift term -100u makes 
the problem indefinite. 

It is interesting to observe various measures of parallel performance for this 
problem. Strictly speaking, each run is different since the preconditioners are dif-
ferent, resulting from different partitionings. In particular, the number of iterations 
required to converge increases substantially from 4 processors to 100 processors, as 
shown in Figure 5 (top-left plot). This contrasts with the earlier example and other 
tests seen in [19]. Recall that the problem is indefinite. The increase in the number 
of iterations adds to the deterioration of the achievable speed-up for larger numbers 
of processors. It is informative to have a sense of how much of the loss of efficiency 
is due to convergence deterioration versus other factors, such as communication 
time, load imbalance, etc. For example, if we were to factor out the loss due to 
increased iteration numbers, then for 60 processors over 4 processors, the speed-up 
would be about 13, compared with the perfect speed-up of 15. In this case, the 
efficiency would be about 80%. However, the increase in the number of the itera-
tions required for convergence reduces the speed-up to about 9 and the efficiency 
decreases to about 55%. The Speed-up and Efficiency plots in Figure 5 show the 
'adjusted' measures which factor out iteration increases. 

4.2. Experiments with BILUM. Standard implementations of ILUM and 
BILUM have been described in detail in [16, 21]. We used GMRES(10) as an 
accelerator for both the inner and outer iterations. The outer iteration process 
was preconditioned by BILUM with the dual dropping strategy discussed earlier. 
The inner iteration process to solve the last reduced system approximately was 
preconditioned by ILUT [17]. Exceptions are stated explicitly. The construction 
and application of the BILUM preconditioner was similar to those described in [21], 
except that here the dual dropping strategy was applied from the first level. The 
initial guess was a vector of random numbers. 

The numerical experiments were conducted on a Power-Challenge XL Silicon 
Graphics workstation equipped with 512MB of main memory, two 190 MHZ R10000 
processors, and 1MB secondary cache. We used FORTRAN 77 in 64-bit precision. 

The inner iteration was stopped when the (inner iteration) residual in the 2-
norm was reduced by a factor of 102 or the number of iterations exceeded 10, 
whichever occurred first. The outer iteration was stopped when the residual in the 
2-norm was reduced by a factor of 107 . We also set an upper bound of 200 for the 
outer GMRES(10) iteration. (A symbol "-" in a table indicates that convergence 
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FIGURE 5. Performance measures for solving a linear system aris-
ing from a 5-point matrix on a 720 x 720 mesh. The adjusted 
speed-ups and efficiencies are defined as speed-ups and efficiencies 
divided by the gain (loss) ratios in the iteration count. 

TABLE 3. Characteristic parameters for solving the RAEFSKY3 
matrix for different sizes of uniform blocks. BILUM with 20 levels 
and double dropping strategy was used. 

lfil = 40, draptol = 10 . ., lfil = 50, droptol = 10 . ., 
iter. tot-cpu e-rato s-rato r-rato iter. tot-cpu e-rato s-rato 

- - - 1.15 0.247 - - - 1.33 
- - - 1.44 0.213 22 90.35 2.47 1.62 
84 140.73 0.45 1.55 0.179 17 72.71 2.70 1.72 
150 222.60 0.28 1.83 0.156 19 81.89 2.75 2.02 
106 160.58 0.39 1.90 0.140 16 71.19 2.96 2.07 
- - - 1.87 0.122 51 103.71 0.85 2.07 
30 74.66 1.27 1.99 0.127 14 68.48 3.31 2.24 
27 64.85 1.25 1.92 0.100 13 60.50 3.17 2.19 
- - - 1.99 0.100 160 222.78 0.25 2.24 
- - - 2.07 0.106 18 66.39 2.27 2.33 

r-rato 
0.258 
0.216 
0.178 
0.158 
0.129 
0.114 
0.120 
0.106 
0.106 
0.094 

did not reached in 200 outer iterations.) We used droptol = w-3 and tested two 
values for lfil. The block size k varied from 5 to 50. The first test was with the 
matrix RAEFSKY3. The test results are presented in Table 3. 
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TABLE 4. Characteristic parameters for solving the VENKAT50 
matrix for different sizes of uniform blocks. BILUM with 10 levels 
and double dropping strategy was used. 

iter. 
-

180 
166 
157 
166 
192 
180 
179 
161 
174 

lfil = 30, droptol = 10 ° lfil = 40, droptol = 10 ·v 

tot-cpu e-rato s-rato r-rato iter. tot-cpu e-rato s-rato 
- - 2.53 0.218 - - - 2.30 

458.11 0.27 3.10 0.146 136 426.62 0.40 3.55 
412.81 0.26 3.43 0.109 126 377.43 0.41 3.94 
373.77 0.26 3.42 0.087 124 368.74 0.39 4.27 
382.25 0.23 3.52 0.074 115 324.93 0.41 4.40 
397.33 0.19 2.91 0.060 121 334.93 0.37 4.10 
374.07 0.19 2.97 0.054 109 306.89 0.40 4.16 
366.01 0.19 2.95 0.048 llO 302.77 0.37 4.21 
333.82 0.20 2.99 0.042 l15 308.04 0.35 4.23 
353.54 0.18 3.00 0.040 105 287.42 0.37 4.31 

RAEFSKY3: n = 21 200, nz = 1 488 768 
10' .----,-----,---.----,---,----.---.--.---,----. 

10 ... 

.,_ 
\ ..... , 
\ -·-·-·-·-·-

\-

' 

block size = 40 

block size= 10 

,_ 

bk>ck size= 15 

10 ... o:-----:2-:::0----::40--::so:-----!ao=-------:-:1 oo::-----:, 20~----:-,4'-::-o---:,-'-:so--,..Lso,----:-'200 
Number of iterations 

FIGURE 6. Convergence history of BILUM with different block 
sizes to solve the RAEFSKY3 matrix. BILUM with 20 levels and 
double dropping strategy was used and the coarsest level solve was 
preconditioned by ILUT(lo-3 , 40). 

r-rato 
0.260 
0.170 
0.130 
0.110 
0.095 
0.079 
0.073 
0.066 
0.056 
0.052 

The results suggest that in order to increase the size of the independent set, it 
is preferable to have large enough blocks. However, block sizes should not be too 
large. In the present tests it seems that a good upper limit is the average number 
of nonzero elements kept in each row (the lfil parameter) during the BILUM fac-
torization. Figure 6 shows the convergence history of BILUM with different block 
sizes for solving the RAEFSKY3 matrix. With these block sizes, initial convergence 
was fast in all cases. However, after a few iterations, only BILUM using large block 
sizes was able to continue converging at a good rate. 
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TABLE 5. Test results of WIGT0966 matrix solved with ILUT. 

lfil droptol iter. tot-cpu e-rato s-ratio 
340 w-s 110 81.54 2.48 9.14 
350 10 ° 41 86.16 6.78 9.33 
400 10 ° 22 87.07 12.60 10.06 
340 w-4 - - - -

330 10 " - - - -

330 w-6 - - - -

TABLE 6. Test results of WIGT0966 matrix with 10 level BILUM. 

k lfil droptol iter. tot-cpu e-rato s-rato r-rato 
100 50 10 -4 100 18.72 0.47 3.21 0.017 
100 60 10 4 - - - - -

100 100 10 4 22 15.90 3.11 5.34 0.042 
80 80 10 4 - - - - -

62 50 10 - - - - -

62 50 10 0 - - - - -

62 62 10 4 40 15.10 1.60 3.83 0.101 
62 65 10 4 42 16.50 1.59 3.91 0.101 
62 70 10 4 - - - - -

50 50 10 4 44 12.64 1.30 3.12 0.094 
50 50 10 J 48 13.02 1.18 3.08 0.094 
50 60 10 .5 35 13.48 1.85 3.50 0.081 
50 60 10 4 32 13.10 2.02 3.52 0.081 
40 50 10 .4 52 14.80 1.21 3.10 0.120 
40 60 10 4 28 14.07 2.58 3.57 0.099 
30+ 40 10 4 69 14.71 0.91 2.65 0.006 
+ 0 . 20 levels of reductwn were used. 

The second test is with the matrix VENKAT50. Each row has 28 nonzeros on 
average. We again used droptol = w- 3 and tested two values for lfil. The test 
results are shown in Table 4. The test results for both RAEFSKY3 and VENKAT50 
indicate that lfil should be chosen large enough to allow a sufficient amount of fill-
ins and the block size k should also be large enough to insure a good reduction rate. 
We point out that both tests yielded slow convergence for k = 5 which indicates 
that the independent sets were not large enough to guarantee a fast convergence. 

Each row of the matrix WIGT0966 has 62 nonzeros on average. This matrix 
is very hard to solve by ILUT [6] which only worked with a large value of lfil, i.e., 
a large number of elements per row. Test results using ILUT with different lfil 
and droptol are given in Table 5. We note the large values for the efficiency ratio 
and the sparsity ratio. Table 6 shows the test results for the matrix WIGT0966 
solved by BIL UM with 10 levels of reduction (an exception was indicated explicitly). 
Different block size k, lfil, and droptol were tested. We find that for this example, 
BILUM was 6 times faster than ILUT and used only one-third of the storage space 
required by ILUT. Once again, we see that the block size k should not be larger 
than the number of nonzeros kept in each row. 
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The option of making the diagonal blocks sparse at each level is not tested in 
this paper. Its potential success obviously depends on the diagonal dominance of 
the submatrices. There are other techniques that may be used to enhance stability 
of the inverse of the blocks so that preconditioning effects may be improved. A 
typical example is the employment of approximate singular value decomposition. 
Special blocks such as arrow-head matrices could also be constructed which would 
entail no additional fill-in in the inverse [8]. Furthermore, it is not necessary that all 
blocks should be of the same size. For unstructured matrices, blocks with variable 
sizes may be able to capture more physical information than those with uniform 
size. A major difficulty of applying these and other advanced techniques is the 
complexity of programming. We will examine these and other ideas experimentally 
and the results will be reported elsewhere. 

5. Concluding Remarks 

We discussed two techniques based on Schur complement ideas for deriving 
preconditioners for general sparse linear systems. The Schur-ILU preconditioning 
is an efficient yet simple to implement preconditioner aimed at distributed sparse 
linear systems. The simplicity of this preconditioner comes from the fact that only 
local data structures are used. The multi-level domain-type algorithm (BILUM) for 
solving general sparse linear systems is based on a recursive application of Schur 
complement techniques using small subdomains. We proposed a dual dropping 
strategy to improve sparsity in the BILUM factors. Several parameters were intro-
duced to characterize the efficiency of a preconditioner. Numerical results showed 
that the proposed strategy works well for reducing the storage cost of BILUM with 
large block sizes. This class of methods offers a good alternative to the standard 
11 U preconditioners with threshold, in view of their robustness and efficiency. How-
ever, their implementation on parallel platforms may prove to be more challenging 
than the single-level Schur complement preconditioners such as the approximate 
Schur-LU technique. 
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Spectral/ hp Methods For Elliptic Problems on Hybrid Grids 

Spencer J. Sherwin, Timothy C.E. Warburton, 
and George Em Karniadakis 

1. Introduction 

We review the basic algorithms of spectral/hp element methods on tetrahedral 
grids and present newer developments on hybrid grids consisting of tetrahedra, 
hexahedra, prisms, and pyramids. A unified tensor-product trial basis is developed 
for all elements in terms of non-symmetric Jacobi polynomials. We present in some 
detail the patching procedure to ensure C0 continuity and appropriate solution 
techniques including a multi-level Schur complement algorithm. 

In standard low-order methods the quality of the numerical solution of an 
elliptic problem depends critically on the grid used, especially in three-dimensions. 
Moreover, the efficiency to obtain this solution depends also on the grid, not only 
because grid generation may be the most computationally intensive stage of the 
solution process but also because it may dictate the efficiency of the parallel solver to 
invert the corresponding algebraic system. It is desirable to employ grids which can 
handle arbitrary geometric complexity and exploit existing symmetry and structure 
of the solution and the overall domain. 

Tetrahedral grids provide great flexibility in complex geometries but because 
of their unstructured nature they require more memory compared with structured 
grids consisting of hexahedra. This extra memory is used to store connectivity 
information as well as the larger number of tetraheda required to fill a specific 
domain, i.e. five to six times more tetrahedra than hexahedra. From the parallel 
solver point of view, large aspect ratio tetrahedra can lead to substantial degra-
dation of convergence rate in iterative solvers, and certain topological constraints 
need to be imposed to maintain a balanced parallel computation. 

The methods we discuss in this paper address both of the aforementioned is-
sues. First, we develop high-order hierarchical expansions with exponential conver-
gence for smooth solutions, which are substantially less sensitive to grid distortions. 
Second, we employ hybrid grids consisting of tetrahedra, hexahedra, prisms, and 
pyramids that facilitate great discretisation flexibility and lead to substantial mem-
ory savings. An example of the advantage of hybrid grids was reported in [5] where 
only 170K tetrahedra in combination with prisms were employed to construct a 
hybrid grid around the high-speed-civil-transport aircraft instead of an estimated 
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two million if tetrahedra were used everywhere instead of triangular prisms. In 
general, for elliptic problems with steep boundary layers hybrid discretisation is the 
best approach in accurately resolving the boundary layers while efficiently handling 
any geometric complexities. 

In previous work [13, 14] we developed a spectral/hp element method for 
the numerical solution of the two- and three-dimensional unsteady Navier-Stokes 
equations. This formulation was implemented in the parallel code .A!e:K.Ta.r [11]. 
The discretisation was based on arbitrary triangulisations/ tetrahedrisations of 
(complex-geometry) domains. On each triangle or tetrahedron a spectral expansion 
basis is employed consisting of Jacobi polynomials of mixed weight that accommo-
date exact numerical quadrature. The expansion basis is hierarchical of variable 
order per element and retains the tensor product property (similar to standard 
spectral expansions), which is key in obtaining computational efficiency via the 
sum factorisation technique. In addition to employing standard tetrahedral grids 
for discretisation, the formulation employed is also based on standard finite element 
concepts. For example, the expansion basis is decomposed into vertex modes, edge 
modes, face modes and interior modes as in other hexahedral h-p bases [16, 8]. 
With this decomposition, the C0 continuity requirement for second-order elliptic 
problems is easily implemented following a direct stiffness assembly procedure. 

In this paper, we extend the preliminary work of [10] in formulating a unified 
hierarchical hybrid basis for multiple domains. Specifically, we describe the basis 
in tensor-product form using a new coordinate system and provide details on how 
these heterogeneous subdomains can be patched together. We then concentrate 
on investigating the scaling of the condition number of the Laplacian system and 
discuss solution techniques, including a multi-level Schur complement algorithm 
[15]. 

2. Unified Hybrid Expansion Bases 

In this section we shall develop a unified hybrid expansion basis suitable for 
constructing a C0 global expansion using triangular and quadrilateral regions in 
two-dimensions and tetrahedral, pyramidic, prismatic and hexahedral domains in 
three-dimensions. This unified approach lends itself naturally to an object ori-
entated implementation as originally developed in [17] using C++ in the code 
./\( eK.T a.r . To construct these expansion we must first introduce an appropriate 
coordinate system as discussed in section 2.1. Having developed the coordinate sys-
tem the definition of the basis in terms of Jacobi polynomials is outlined in section 
2.2. 

2.1. Coordinate Systems. We define the standard quadrilateral region as 

Q2 = { ( 6, 6) I - 1 ::::: 6, 6 ::::: 1}, 

within which we note that the Cartesian coordinates (6, 6) are bounded by con-
stant limits. This is not, however, the case in the standard triangular region defined 
as 

7 2 = {(6,6)1-1::::: 6,~2; 6 +6::::: 0}. 
where the bounds of the Cartesian coordinates ( 6, 6) are clearly dependent upon 
each other. To develop a suitable tensorial type basis within unstructured regions, 
such as the triangle, we need to develop a new coordinate system where the local 
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FIGURE 1. Triangle to rectangle transformation. 

coordinates have independent bounds. The advantage of such a system is that we 
can then define one-dimensional functions upon which we can construct our multi-
domain tensorial basis. It also defines an appropriate system upon which we can 
perform important numerical operations such as integration and differentiation [6]. 

2.1.1. Collapsed Two-Dimensional Coordinate System. A suitable coordinate 
system, which describes the triangular region between constant independent limits, 
is defined by the transformation 

(1) 'f/1 
2(1+6)_1 
(1- 6) 

'f/2 6, 
and has the inverse transformation 

(2) 

6 'f/2· 
These new local coordinates ( 'f/1, 'f/2) define the standard triangular region by 

T 2 = { ( 'f/1 ' 'f/2) I - 1 ~ 'f/1 ' 'f/2 ~ 1}. 
The definition of the triangular region in terms of the coordinate system ( 'f/1, 'f/2) 

is identical to the definition of the standard quadrilateral region in terms of the 
Cartesian coordinates (6, 6). This suggests that we can interpret the transforma-
tion (1) as a mapping from the triangular region to a rectangular one as illustrated 
in figure 1. For this reason, we shall refer to the coordinate system ( ry1, 'f/2) as 
the collapsed coordinate system. Although this transformation introduces a multi-
values coordinate ( ryl) at ( 6 = -1, 6 = 1), we note that singular point of this 
nature commonly occur in cylindrical and spherical coordinate systems. 

2.1.2. Collapsed Three-Dimensional Coordinate Systems. The interpretation of 
a triangle to rectangle mapping of the two-dimensional local coordinate system, as 
illustrated in figure 1, is helpful in the construction of a new coordinate system for 
three-dimensional regions. If we consider the local coordinates ( ry1 , ry2 ) as indepen-
dent axes (although they are not orthogonal), then the coordinate system spans a 
rectangular region. Therefore, if we start with a rectangular region, or hexahedral 
region in three-dimensions, and apply the inverse transformation (2) we can derive 
a new local coordinate system in the triangular region T 2 , or tetrahedron region 
T 3 in three-dimensions, where T 3 is defined as: 

T 3 = { -1 ~ 6, 6, 6; 6 + 6 + 6 ~ -1} · 
To reduce the hexahedron to a tetrahedron requires repeated application of the 

transformation in (2) as illustrated in figure 2. Initially, we consider a hexahedral 
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~ 2 = (1+T)z) (1-llJl _ 1 
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~ 1 = (1+ffi) (1-T)z) - 1 
2 

~ 

FIGURE 2. Hexahedron to tetrahedron transformation by repeat-
edly applying the rectangle to triangle mapping (2). 

domain defined in terms of the local coordinate system (TJ1, TJ2 , TJ3 ) where all three 
coordinates are bounded by constant limits, i.e. ( -1 ~ TJ1, TJ2 , TJ3 ~ 1). Applying 
the rectangle to triangle transformation (2) in the (TJ2 , TJ3 ) we obtain a new ordinate 
(6) such that 

6 = (1 + T/2)(1- T/3) - 1 
2 T/3 = T/3· 

Treating the coordinates ( TJ1 , 6, TJ3 ) as independent, the region which originally 
spanned a hexahedral domain is mapped to a rectangular prism. If we now apply 
transformation (2) in the (TJ1 , TJ3 ) plane, introducing the ordinates TJ1 , 6 defined as 

- (1 + T/1)(1- T/3) 
T/1 = - 1 2 

we see that the coordinates ( T/1, 6, 6) span a region of a square based pyramid. 
The third and final transformation to reach the tetrahedral domain is a little more 
complicated as to reduce the pyramidic region to a tetrahedron we need to apply 
the mapping in every square cross section parallel to the ( T/1, 6) plane. This means 
using the transformation ( 2) in the ( TJ1 , 6) plane to define the final ordinate ( 6) 
as 

6= (1+'iJ1)(1-6) -1 
2 ~2 = 6-

If we choose to define the coordinate of the tetrahedron region (6,6,6) as the 
orthogonal Cartesian system then, by determining the hexahedral coordinates 
( TJ1 , TJ2 , 173 ) in terms of the orthogonal Cartesian system, we obtain 

(3) (1 + 6) 
T/1 = 2(-6 -6) -1, 

- 2(1 + 6) -1 
T/2 - (1 - 6) ' 
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TABLE 1. The local Collapsed Cartesian coordinates which have 
constant bounds within the standard region may be expressed in 
terms of the Cartesian coordinates 6, 6, 6. Each region may be 
defined in terms of the local coordinates since having a lower bound 
of -1 :::; 6, 6, 6 and upper bound as indicated in the table. Each 
region and the planes of constanl~cal coordinate are shown in figure 
3. 

Upper bound Local Coordinate 

Hexahedron 6,6,6:::;1 6 6 6 

Prism 6,6+6:::;1 6 - 2(1+6) -1 'rf2 - (1-6) 6 

Pyramid 6+6,6+6:::; 1 - _ 2(1Hl) _ 1 'rf1 - (1-6) 
rJ _ 2(1H2) _ 1 2 - (1-6) 'r/3 = 6 

Tetrahedron 6+6+6:::;1 - 2(1+6) 
'r/1 - (-6-6) 1 rJ - 2(1+6) - 1 

2 - (1-6) 'r/3 = 6 

which is a new local coordinate system for the tetrahedral domain which is bounded 
by constant limits. When 6 = -1 this system reduces to the two-dimensional 
system defined in ( 1). 

In a similar manner, if we had chosen to define the coordinates in either the 
pyramidic or prismatic region as the orthogonal Cartesian system then evaluating 
the hexahedral coordinates in terms of these coordinates would generate a new local 
collapsed system for these domains. Table 1 shows the local collapsed coordinate 
systems in all the three-dimensional regions. A diagrammatic representation of the 
local collapsed coordinate system is shown in figure 3. 

2.2. C° Continuous Unstructured Expansions. Ideally we would like to 
use an elemental expansion which can be assembled into an globally orthogonal 
expansion. Although it is possible to derive an orthogonal expansion within an 
elemental region [12, 10], the requirement to easily impose boundary conditions 
and tessellate the local expansions into multiple domains necessitates some modifi-
cations which destroy the orthogonality. To construct a C0 continuous bases we de-
compose orthogonal expansion developed in [12, 10] into an interior and boundary 
contribution as is typical of all hp finite element methods [16]. The interior modes 
(or bubble functions) are defined as zero on the boundary of the local domain. The 
completeness of the expansion is then ensured by adding boundary modes which 
consist of vertex, edge and face contributions. The vertex modes have unit value at 
one vertex and decay to zero at all other vertices; edge modes have local support 
along one edge and are zero on all other edges and vertices; face modes have local 
support on one face and are zero on all other faces, edges and vertices. Using this 
decomposition C0 continuity between elements can be enforced by matching simi-
lar shaped boundary modes providing some orientation constraints are satisfied as 
discussed in section 3. To construct the unified hybrid expansions we shall initially 
define a set of principal functions in section 2.2.1. Using these functions we then 
define the construction of the expansions in sections 2.2.2 and 2.2.3. 
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FIGURE 3. Planes of constant value of the local collapsed Carte-
sian coordinate systems in the hexahedral, prismatic, pyramidic 
and tetrahedral domains. In all but the hexahedral domain, 
the standard Cartesian coordinates 6, ~2, 6 describing the re-
gion have an upper bound which couples the coordinate system 
as shown in table 1. The local collapsed Cartesian coordinate sys-
tem ry1 , ry1 , rt2, ry3 represents a system of non-orthogonal coordinates 
which are bounded by a constant value within the region. 
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'l'ij 

c 
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FIGURE 4. Illustration of the structure of the arrays of principal 
functions 'lj;f(z), 'lj;fj(z) and 'lj;fjk(z). These arrays are not globally 
closed packed although any edge, face or interior region of the 
array may be treated as such. The interior of the arrays 'lj;fj ( z) 
and 'lj;fjk(z) have been shaded to indicate the minimum functions 
required for a complete triangular and tetrahedral expansion. 

2.2.1. Principal Functions. Denoting Pt'f3 (z) as the ith order Jacobi polyno-
mial which satisfied the orthogonality condition 

[
1
1 
(1- z)"(1 + z)f3 Pia,f3(z)Pt'f3(z)dz = C8ij where a, (3 > -1, 

we define three principal functions denoted by 'lj;f ( z), 'lj;fj ( z) and 'lj;fj k ( z) ( 0 :::; i :S 
I, 0 :::; j :::; J, 0 :::; k :::; K) : 

>Pi;(z) ~ { 

1/Jj(z) i = 0, O~j~J 
e-zr+l 1~i~I-1, j=O 2 . 
e-zr+l (l+z) p2i+l,l( ) 1~i~l-1, 1~j~J-1 ' 2 2 j-1 z 
1/Jj(z) i =I, O~j~J 

i = 0, 0 ~ j ~ J, 
0 So i So I, j = 0, 
1S,i~I-1, 1~j~J-1, 

1~i~I-1, 1~j'S,J-1 

0 ~ i ~I, 
i =I, 

0~ k ~ K 

0~ k ~ K 
k=O 

1~k~K-1 

0~ k ~ K 
0 ~ k ~ K 

Figure 4 diagrammatically indicates the structure of the principle functions 
'lj;f(z), 'lj;fj(z) and 'lj;fjk(z) as well as how the function 'lj;f(z) is incorporated into 
'lj;fj(z), and similarly how 'lj;fj(z) is incorporated into 'lj;fjk(z). The function 'lj;f(z) 
has been decomposed into two linearly varying components and a function which is 
zero at the end points. The linearly varying components generate the vertex modes 
which are identical to the standard linear finite element expansion. The interior 
contributions of all the base functions (i.e. 1 :::; i:::; J-1, 1 :::; j :::; J-1, 1 :::; k:::; K-1) 
are similar in form to the orthogonal basis functions defined in [10]. However, they 
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FIGURE 5. Construction of a fourth-order (P = 4) triangular ex-
pansion using the product of two principal functions 'lj;~(TJ 1 ) and 
¢tq ( 'f/2). 

are now pre-multiplied by a factor of the form e;z) e!z) which ensures that 
these modes are zero on the boundaries of the domain. The value of a, (3 in the 
Jacobi polynomial P;:·f3(x) has also been slightly modified to maintain as much 
orthogonality as possible in the mass and Laplacian systems. 

2.2.2. Hybrid Expansions. The two-dimensional expansions are defined in terms 
of the principal functions as: 

Quadrilateral expansion: c,l>pq(6,6) = ¢~(6)¢~(6) 

where 
2(1 + 6) 

'f/1 = (1 - 6) - 1, 'f/2 = 6, 
are the two-dimensional collapsed coordinates. In figure 5 we see all of the modified 
expansion modes for a fourth-order (P = 4) modified triangular expansion. From 
this figure it is immediately evident that the interior modes have zero support on 
the boundary of the element. This figure also illustrates that the shape of every 
boundary mode along a single edge is identical to one of the modes along the 
other two edges and which allows the modal shapes in two regions to be globally 
assembled into a C0 continuous expansion. In the three-dimensional expansion an 
equivalent condition is ensured by the introduction of ¢f1(z) into ¢i1k(z). 

The three-dimensional expansions are defined in terms of the principal functions 
as: 

Hexahedral expansion: c,l>pqr(6, 6, 6) = ¢~(6)¢~(6)¢~(6) 
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FIGURE 6. The construction of the collapsed Cartesian coordi-
nates system maps vertex D onto vertex C in plot (a). If we 
consider the quadrilateral region in plot (a) as describing a two-
dimensional array in p and q then we can imagine an equivalent 
array within the triangular region as shown in plot (b). 

2(1 + 6) -- 2(1 + 6) - 1 - 2(1 + 6) - 1 
T}l = ( -6 - 6) - 1, T}l - (1- 6) ' 'TJ2 - (1 - 6) ' T}3 = ~3, 

are the three-dimensional collapsed coordinates. 
2.2.3. Construction of Basis Prom Principal Functions. As can be appreciated 

from figure 4 the principal functions for the unstructured regions are not in a closed 
packed form and so we cannot consecutively loop over the indices p, q and r to ar-
rive at a complete polynomial expansion. Even though these arrays are not closed 
packed their definition permits an intuitive construction of the expansion basis as 
discussed below. 

Two-Dimensions 
The quadrilateral expansion may be constructed by considering the definition 

of the basis </>pq ( 6, 6) as a two-dimensional array within the standard quadrilateral 
region with the indices p = 0, q = 0 corresponding to the lower left hand corner 
as indicated in figure 6(a). Using this diagrammatic form of the array it was easy 
to construct the vertex and edge modes by determining the indices corresponding 
to the vertex or edge of interest. A similar approach is possible with the modified 
triangular expansion. 

We recall that to construct the local coordinate system we used a collapsed 
Cartesian system where vertex D in figure 6(a) was collapsed onto vertex C as 
shown in figure 6(b). Therefore, if we use the equivalent array system in the trian-
gular region we can construct our triangular expansions. For example, the vertices 
marked A and B in figure 6(b) are defined as 

Vertex A = </>oo(rJl, TJ2) = ¢1J(TJI)¢go(TJ2) 
VertexB = ¢P1o(rJI,rJ2) = ¢'A(TJI)¢~ 1 o(TJ2)· 

The vertex at the position marked CD in figure 6(b) was formed by collapsing the 
vertex D onto vertex C in figure 6(a). Therefore this mode is generated by adding 
the contribution from the indices corresponding to the vertices C and D, i.e. 

Vertex CD = 4>oP2 (rJl, TJ2) + ¢P1 P2 (rJl, TJ2) = ¢o (rJI)¢gp2 (TJ2) + ¢p1 (TJI)¢~ 1 P 2 (TJ2)· 
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FIGURE 7. The structure of the mass matrix for a triangular ex-
pansion qf'q = '1/J~'I/J~q of order P1 = P2 = 14 within the standard 
region T 2 . The boundary modes have been ordered first followed 
by the interior modes. If the q index is allowed to run faster, the 
interior matrix has a bandwidth of (P- 2) + (P- 3) + 1. 

For the triangular expansion the edge modes are similarly defined as: 

Edge AB: <l>vo(TJt,TJ2) 'I/J~(ryt)'I/J~o(TJ2) (0 < p < Pt) 
Edge AC: </>oq(TJt, 'r/2) 'ljJ0(ryt)'ljJ0q(TJ2) (0 < q < P2) 
Edge BD: </>P,q(TJt,T/2) 'I/J'P,(TJt)'I/J~ 1 q(TJ2) (0 < q < P2). 

In constructing the triangular region from the quadrilateral region as shown in 
figure 6 edge CD was eliminated and, as one might expect, it does not contribute 
to the triangular expansion. 

Finally the interior modes of the modified triangular expansion (which become 
the triangular face modes in the three-dimensional expansions) are defined as 

Interior: ¢Pq(TJt, 'r/2) = '1/J;(TJt)'I/J~q(T/2) (0 < p, q; p < P1; p + q < P2; P1 :S P2). 
There is a dependence of the interior modes in the p-direction on the modes in 

the q-direction which ensures that each mode is a polynomial in terms of the Carte-
sian coordinates ( 6, 6). This dependence requires that there should be as many 
modes in the q direction as there are in the p direction and hence the restriction 
that P1 :S P2 . A complete polynomial expansion typically involves all the modes 
defined above and this expansion is optimal in the sense that it spans the widest 
possible polynomial space in ( 6, 6) with the minimum number of modes. More 
interior or edge modes could be used but if they are not increased in a consistent 
manner the polynomial space will not be increased. In figure 7 we see the structure 
of the mass matrix for a P1 = P2 = 14 polynomial order triangular expansion within 
the standard triangular region. The matrix is ordered so the boundary modes are 
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G 

FIGURE 8. Generation of the standard tetrahedral domains from 
repeated collapsing of a hexahedral region. 

first followed by the interior system. It can be shown (see [13]) that if we order 
the interior system so the q index runs fastest then the bandwidth of the interior 
system is (P- 2) + (P- 3) + 1. 

Three-Dimensions 

As illustrated in figure 8, for the hexahedral domain the indices p, q, r correspond 
directly to a three-dimensional array where all indices start from zero at the bottom 
left-hand corner. Therefore, the vertex mode labelled A is described by ¢(ooo) = 
1P&(6)1P&(6)1P&(6), similarly the vertex mode labelled His described by ¢(P1 ,P2 ,P3 ) 

and the edge modes between C and G correspond to ¢o,hr (1 < r < P3). 
When considering the prismatic domain we use the equivalent hexahedral in-

dices. Accordingly, vertex A is now described by ¢(ooo) = 1P&(6)1P&('T72)1PS0(6). 
In generating the new coordinate system, vertex G was mapped to vertex E and 
therefore the vertex mode, labelled EG in the prismatic domain, is described by 
¢(o,o,P3 ) +¢(o,P2 ,P3 ) (i.e., adding the two vertices from the hexahedral domain which 
form the new vertex in the prismatic domain). A similar addition process is nec-
essary for the prismatic edge EG - F H which is constructed by adding the edge 
modes EF (i.e. ¢(p,o,P3 J) to the edge modes GH (i.e., ¢(p,P2 ,p3 J)· In degenerating 
from the hexahedral domain to the prismatic region the edges EG and F H are 
removed and therefore do not contribute to the prismatic expansion. 

This process can also be extended to construct the expansion for the pyramidic 
and tetrahedral domains. For both these cases the top vertex is constructed by 
summing the contribution of E, F, G and H. In the tetrahedral domain edges CG 
and DH are also added. Although the modified functions 1Pf1 and 1Pfjk are not 
closed packed, every individual edge, face and the interior modes may be summed 
consecutively. 

As as final point we note that the use of the collapsed Cartesian coordinate 
system means that the triangular faces, unlike the quadrilateral faces, are not ro-
tationally symmetric. This means that there is a restriction on how two triangular 
faces, in a multi-domain expansion, must be aligned. In section 3 we show that 
this condition can easily be satisfied for all tetrahedral meshes although some care 
must be taken when using a mixture of different elemental domains. 

3. Global Assembly 

The elements we have described will be tessellated together to construct a 
continuous solution domain. We shall only permit elements to connect by sharing 
common vertices, complete edges and/or complete faces. such a connectivity is 
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commonly referred to as conforming elements. In this section we shall discuss 
issues related to the process of globally assembling the elemental bases described 
in section 2.2. 

When two elements share an edge it is important for them to be able to deter-
mine if their local coordinate system at that edge are aligned in the same direction. 
This information is important since it is necessary to ensure that the shape of all 
edges modes is similar along an edge. If the local coordinate systems are not aligned 
in the same direction then edges modes of odd polynomial order will have different 
signs and so one edge mode will need to be multiplied by -1. 

This condition becomes more complicated in three dimensions when two ele-
ments share a face. In this case it is not automatic that their coordinate systems 
on the common face will line up. Considering the tetrahedra we see that there is 
a vertex on each face that the coordinate system for that face radiates from. Simi-
larly for the triangular faces of the prism and pyramid. We will call this vertex the 
face origin as it is similar to a polar coordinate origin. The alignment constraint 
necessitates that when two triangular faces meet their origin vertices must coincide. 
Initally it is not obvious how to satisfy this constraint for a mesh consisting of just 
tetrahedral elements. We outline two algorithms that will satisfy this constraint. 
The first is based on the topology of the mesh. We will only use the connections 
between elements to determine how we should orientate elements. In the second 
method we will assume that each unique vertex in the mesh will have been given a 
number. This second method works under some loose conditions but is extremely 
easy to implement and is very local in its nature. 

It is useful to observe that one of the vertices of a tetrahedron is the face origin 
vertex for the three faces sharing that vertex. We will call this the local top vertex. 
Then there is one more face origin vertex on the remaining face which we call the 
local base vertex. 

3.1. Algorithm 1. Given a conforming discretisation we can generate the 
local orientation of the tetrahedra using the following algorithm. We assume that 
we have a list of vertices and we know a list of elements which touch each vertex. 
This list of elements will be called a vertex group and all elements are assumed to 
have a tag of zero. 

For every vertex in the list: 
• Orientate all elements with a tag of one in this vertex group so that their 

local base vertex points at this vertex. Then set their tags to two. 
• Orientate all elements with a tag of zero in this vertex group so that their 

local top vertex points at this vertex. Then set their tags to one. 
This algorithm visits all vertices in the mesh and if this is the first time the 

elements in the vertex group have been visited the local top vertex is orientated at 
this vertex. If this is the second time the elements in the vertex group have been 
visited then set the local base vertex to this vertex. To see how this works we can 
consider the example shown in figure 9. 

Here we assume that we are given a discretisation of a box using six tetrahedra 
as shown in figure 9a. Starting our algorithm we begin with vertex A. Since all 
elements have a tag of zero at this point we go straight to the second part of the 
algorithm and orientate all elements that touch this vertex so that their local top 
vertices point to A. Therefore tetrahedra HBDA and BHEA are orientated as shown 
in figure 9b and now have a tag set to one. Continuing to the next vertex B we 
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a) Initial discretisation of box b) Alignment of first two elements 
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c) Final element orientation at end of algorithm 

FIGURE 9. Setting up the required connectivity for the discretisa-
tion of a box as shown in a). Vertex A is given as the first local 
top vertex as shown in b). In c) vertex B is then given as the local 
base vertex and the local base vertices from group one are aligned 
to satisfy connectivity. The final element orientation is shown in 
figure d). 

see that all elements belong to this vertex group. The first part of the algorithm is 
to orientate the elements with a tag of one to have their local base vertex pointing 
at B. So the tetrahedra HBDA and BHEA are rotated as shown in figure 9c and 
their tags are set to two. The second part of the algorithm then orientates all the 
other tetrahedra to have their local top vertex pointing at B. The connectivity is 
actually satisfied at this point since the orientation the faces have on the boundaries 
is irrelevant. However, if we continue the algorithm looping through the vertices 
consecutively we end up with the tetrahedra orientated as shown in figure 9d. 

Clearly, the connectivity is not unique since any elements that have their lo-
cal top vertex pointing at E can be rotated about E. However, we have demon-
strated that it is possible to satisfy the connectivity requirements imposed by the 
co-ordinate system and thereby imply that the requirement is non-restrictive. 

3.2. Algorithm 2. Assuming that every global vertex has a unique number, 
then for every element we have four vertices with unique global numbers: 

• Place the local top vertex at the global vertex with the lowest global number. 
• Place the local base vertex at the global vertex with the second lowest global 

number 
• Orientate the last two vertices to be consistent with the local rotation of the 

element (typically anti-clockwise). 
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It has been stated before that since the coordinate systems on the faces of 
the tetrahedra are not symmetric that it is too difficult to use these coordinate 
systems. We have shown that it is possible in linear or even constant time to 
satisfy this constraint for any given tetrahedral mesh. This algorithm is local to 
each element and should be implemented at a pre-processing stage. 

We now extend this approach to include meshes consisting of tetrahedra, prisms, 
and hexahedra. Unfortunately, in this case we find counter-examples where it is not 
possible to satisfy the origin alignment constraint. We have isolated the problematic 
cases and they are unlikely to come up when using a mesh generator. 

First we deal with the case when a quadrilateral face is shared by two elements. 
In this instance it is sufficient to simply make the coordinate directions agree by 
simply reversing either face coordinate if necessary. 

We now investigate over-constrained meshes. These cases can occur when 
prisms and tetrahedra are used together in a mesh. We will use these examples to 
motivate the actual algorithm we propose. The cost of this algorithm also depends 
linearly on the number of elements in the mesh. 

It is instructive to construct a chain of prisms. This is simply a long prism, 
with equilateral triangular faces, divided at intervals along its length into a set 
of prisms connected at their triangle faces. The connectivity constraint requires 
that the coordinate origins of the triangular faces must meet at every prism-prism 
interface. This condition enforces that the collapsed edge must run in a continuous 
line through the edges of the prism. Now we twist the chain around in a loop 
and connect its triangle ends. The chain now forms a closed loop of prisms. The 
orientation of the end faces of the original chain must also satisfy the connectivity 
constraint when they meet. But we are free to choose the orientation of the faces 
relative to each other. However, we can make the chain into a Mobius band by 
twisting it around the axis along its length. In this case the connectivity cannot be 
satisfied without changing the mesh. 

We can construct a second counter-example, this time involving one tetrahedron 
and two chains of prisms. We construct two chains of prisms as outlined above and 
we join the tetrahedra into the prism chain by connecting two of its faces to the 
prism chain triangular end faces. We repeat this operation again connecting the 
remaining two faces of the tetrahedron to the end faces of the second chain of 
prisms. We can now repeat the twisting of the prism loops. This over constrain 
the tetrahedron so that it cannot be oriented to satisfy the connectivity condition. 

These two cases indicate that we cannot allow prism chains to reconnect into 
closed loops and still satisfy our constraints. Also we should not allow a prism chain 
to connect to a tetrahedron with more than one of its triangular faces. If we only 
consider meshes that satisfy these two constraints, then the following algorithm will 
satisfy the connectivity constraints: 

3.3. Algorithm For Connecting Prisms And Tetrahedra. 

• Find all prism chains in the mesh. 
• Create a virtual connection between the faces of the tetrahedra that meet 

the triangular faces at each end of the chain. 
• Proceed with Algorithm 2 to connect the tetrahedral mesh treating the 

virtual links as real connections. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



SPECTRAL/hp METHODS FOR ELLIPTIC PROBLEMS ON HYBRID GRIDS 205 

' ' ' ' ' ' ' 

" ' ' ' ' 
'., ~· ---~ \ 

~--) 
/ 

' / 
~· / 

# 

u 
/ 

/ 

FIGURE 10. Connectivity summary. Solid arrows imply we can 
connect elements together with no problems, dashed arrows mean 
that there are some constraints on allowable configurations. 

• Orient the prisms in the chains with the same orientation as the triangular 
faces of the tetrahedra at the ends of the virtual link. This orientation 
propagate through the chain. 

In figure 10 we summarise which elements can be connected using the above 
algorithms. A solid line between elements means we can connect a given mesh with 
of the two element types with no problems. If the line is dashed then the mesh has 
to be changed to meet the connectivity constraints. 

4. Global Matrix Properties 

As discussed in section 2 and 3 we can construct a global expansions using a 
tessellated of hybrid domains which are C0 continuous. These expansions are there-
fore suitable to solve second order partial differential equations using a Galerkin 
formulation. Consider the Helmholtz problem 

\72u- >-.u = f 
supplemented with appropriate boundary conditions. The Galerkin problem may 
be stated as find u8 E X 8 such that 

(4) 

where 

a(v, u) = i \7v · \7u + >-.vu dO, 

f(v) l v f dO. 
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and u8 is the finite dimensional representation of the solution (i.e. u6 = 2:: Upqr</>pqr) 
and X 8 , V8 are the finite dimensional space of trial and test functions. In the 
Galerkin approximations we assume that X 8 and V8 span the same space. 

As is typically of most numerical approaches, equation ( 4) may be represented 
as an algebraic system. Although these algebraic systems are typically sparse the 
number of degrees of freedom of a practical three-dimensional problem requires that 
we use an iterative solver. We are therefore interested in the conditioning of these 
algebraic systems. However, before considering the conditioning of this system we 
shall first review the restructuring of the global matrix using the static condensa-
tion technique to take advantage of the matrix structure when using spectral/hp 
expansions. 

4.1. Matrix Solution via Schur Complement. Let us denote the global 
matrix problem due to the Galer kin problem ( 4) as 

(5) Mx=f. 

where x is a vector of global unknowns. The matrix M is typically very sparse 
although it may have a full bandwidth. We shall assume that the global system M 
is ordered so that the global boundary degrees of freedom are listed first, followed by 
the global interior degrees of freedom. In addition, we also assume that the global 
interior degrees of freedom were numbered consecutively. Adopting this ordering, 
the global matrix problem (5) can be written as 

(6) [ M~, Me ] [ Xb ] [ fb ] 
Me M, x, /, 

where we have distinguished between the boundary and interior components of x 
and fusing Xb, Xi and fb, fi, respectively. 

The matrix M b corresponds to the global assembly of the elemental boundary-
boundary mode contributions and similarly Me, Mi correspond to the global as-
sembly of the elemental boundary-interior coupling and interior-interior systems. 
A notable feature of the global system is that the global boundary-boundary, M b, 

matrix is sparse and may be re-ordered to reduce the bandwidth or re-factored in 
a multi-level Schur Complement solver as discussed below. The global boundary-
interior coupling matrix, Me, is very sparse and as we shall see may be stored in 
terms of its local elemental contributions. Finally, the natural form of Mi is a 
block diagonal matrix which is very inexpensive to evaluate since each block may 
be inverted individually. 

To solve the system (6) we can statically condense out the interior degrees 
of freedom by performing a block elimination. Pre-multiplying system (6) by the 
matrix 

we arrive at: 

(7) 

[ ~ 
0 

Mi 

The equation for the boundary unknowns is therefore: 
-1 T -1 (8) (Mb- McMi Me )xb = fb- MeMi fi· 
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FIGURE 11. The boundary degrees of freedom, on the mesh shown 
in plot (a), are ordered so that the boundary modes indicated by 
the square symbols are first, followed by the boundary modes indi-
cated by circular symbols within each quadrant. Using this order-
ing the resulting Schur complement matrix has a block diagonal 
sub-matrix as shown in figure (b). 

Once Xb is known, we can determine X; from the second row of equation (7) since 

(9) M -lf M-lMT X; = i i - i c Xb · 

4.1.1. Multi-Level Schur Complement. The motivation behind using Schur com-
plement was the natural decoupling of the interior degrees of freedom within each 
element leading to a global system which contained a block diagonal sub-matrix. 
This decoupling can be mathematically attributed to the fact that the interior de-
grees of freedom in one element are orthogonal to the interior degrees of freedom 
of another simply because these modes are non-overlapping. To take advantage of 
this block diagonal sub-matrix we have to construct the Schur complement system 

Ms = Mb- Mc[M;]- 1(Mcf· 

The effect of constructing each of this system is to orthogonalise the boundary 
modes from the interior modes. However, the inverse matrix [M;t 1 is typically 
full, which means that the boundary modes, within an element, become tightly 
coupled. It is this coupling which dictates the bandwidth of the globally assembled 
Schur complement system. Nevertheless, an appropriate numbering of the boundary 
system will lead to a Schur complement matrix which also contains a sub-matrix 
that is block diagonal and so the static condensation technique can be re-applied. 
This technique has been more commonly used in the structural mechanics field and 
is also known as sub-structuring [15]. 

To illustrate this ordering we consider the triangular mesh shown in figure ll(a) 
using Nel = 32 elements. The construction of the global Schur complement M 5 

requires us to globally number all of the boundary degrees of freedom as indicated by 
the open circles and squares. If we order the numbering of the elemental boundary 
degrees of freedom so that the vertex and edge modes indicated by the open circles 
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FIGURE 12. Thiangulisations used in determining the eigen-
spectrum of the Laplacian operator. 

are first followed by the vertex and edge modes within each quadrant, indicated by 
the open squares, then the resulting Schur complement system of the mass matrix 
for a polynomial expansion of p = 6 is shown in figure 11 (b). The block diagonal 
structure of the matrix is due to the fact that even after constructing the elemental 
Schur complement systems the boundary degrees of freedom in each quadrant do 
not overlap and so are orthogonal. 

We can now construct another Schur complement system to solve for the circle 
degrees of freedom and decoupling each quadrant of square degrees of freedom. 
This technique can be repeated providing that there is more than one region of 
non-overlapping data. The approach is clearly independent of the elemental shape 
and may equally well be applied to quadrilateral regions or any hybrid shape in 
three-dimensions. 

4.1.2. Preconditioners. As mentioned previously, the resolution requirements 
for problems of practical interest typically require the use of iterative algorithms. 
The convergence of such algorithms depends on the eigen-spectrum of these matrices 
as well as the preconditioners used for convergence acceleration. 

In the conjugate gradient method we estimate that the number of iterations, 
Niter, to invert a matrix M scales with the square root of the condition number, 
i.e. 

Niter CX: [~~;2(M)] 112 . 
The L2 condition number of a matrix M is defined as ~~;2(M) = IIMII2IIM-1 II2, 
which for a symmetric matrix is equivalent to the ratio of the largest to the smallest 
eigenvalue. 

In two-dimensions, for the full discrete Laplacian L the condition number scales 
as 

~~;2(M) ex: Ne1P3 . 

The required number of iterations can therefore be very high for large problems, 
and especially high-order P. However, using static condensation we can consider 
the reduced problem consisting of the element boundary contributions by forming 
only the Schur complement M 5 . For a symmetric positive definite system the 
condition number of the Schur complement matrix M s can be no larger than the 
condition number of the complete system M [15]. 

Experimental results indicating the scaling of ~~;2 ( M s) have been obtained in 
the domains shown in figure 12. The relationship of the condition number with 
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FIGURE 13. Condition number variation of the Schur complement 
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and the number of elements (right). 
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spect to the expansion order. 
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209 

polynomial order P is demonstrated in figure 13(a), and with the number of el-
ements in figure 13(b). The variation of the maximum and minimum eigenvalue 
with respect to the expansion order is shown in figure 14. The maximum eigenvalue 
is independent of the order P in accordance with the estimates in [3]. Also, the 
minimum eigenvalue varies as>:::! 1/ P which is consistent with the theoretical upper 
bound estimate in [3] of log(P)/P. For the range considered, these results also 
seem to indicate that the condition number grows at most linearly with the order 
P and slower than logarithmically with the number of elements Net· 

To get a better indication of the asymptotic behaviour with the polynomial 
order, P, we can consider the case of two elemental regions for the polynomial 
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(b) • (c) 

FIGURE 15. Condition number of the Schur complement of the 
discrete Laplacian operator for the Nel = 2 element domain plotted 
as a function of (a) Plog(P), (b) P and (c) Pllog(P). 

range 8 :S P :S 48 as shown in figure 15. In this test case we have imposed Dirichlet 
boundary conditions on all boundaries and so when we statically condense the 
system we are only left with the interior edge system. In figure 15 we see the 
condition number for this problem plotted against the functions (a) Plog(P), (b) 
P and (c) PI log(P). As can be seen the condition number clearly grows at a slower 
rate than P log( P) but faster than PI log( P) which is consistent with the results of 
[4]. Although, not formally proven the asymptotic rate is most likely to scale with 
P. To extend this result to many subdomains the upper and lower bounds on the 
condition number P log( P) and PI log( P) should be scaled by a factor of log( P)2 

[3]. Therefore, the asymptotic bound on ii2 for a large P and Nel is 

Plog(P) :S ii2 :S Plog(P) 3 . 

However, when the number of elements, Ne~, is not large a more conservative bound 
is 

Pllog(P) :S ii2 :S Plog(P)3 . 

Since the upper bound is only realized for a large Nel the upper bound in these 
estimates is often observed to be very conservative. Furthermore, one would expect 
to observe a sharp upper bound of Plog(P)2 based on the numerical behaviour 
shown in figure 15 for large P. These results may equally well be applied to the 
quadrilateral region which have similar edge support. 

If the diagonal of the Schur complement is used as preconditioner, then the 
same scaling applies but the absolute magnitude of the condition number is ap-
proximately one order of magnitude less compared with the unpreconditioned case. 
This is not, however, true for the modal basis constructed in [16] based on the 
integrated Legendre polynomials rather than the Pi· 1(x) Jacobi polynomials. The 
difference between these two formulations in the quadrilateral case is the presence 
of a factor of P that provides the proper scaling and thus the similar growth in the 
unpreconditioned and diagonal-preconditioned case. On the other hand, if a block-
diagonal preconditioner is. used which is constructed based on blocks of edge-edge 
interactions, then the scaling changes substantially. Numerical experiments suggest 
a scaling of (log(P)?, in agreement with the estimates reported in [1] for a similar 
construction. The condition number also seems to be independent of the number 
of elements for Nel :;::: 100, again in agreement with the estimates in [1]. 
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FIGURE 16. Using the N et = 32 element mesh shown on the left 
the condition number of the standard Schur complement and the 
Schur complement after one level of decomposition were calculated 
and are shown on the right. The color in the left plot indicates the 
non-overlapping regions used for the extra level of decomposition. 
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As mentioned previously it can be shown [15] that for a symmetric positive 
definite matrix the maximum and minimum eigenvalue of the Schur complement 
are bounded by the maximum and minimum eigenvalue of the original matrix. 
Therefore, when using the multi-level Schur complement solver we know that the 
condition number of the inner-most Schur complement must be bounded by the 
standard Schur complement. This point is illustrated in figure 16 where we con-
sider the condition number of the diagonally preconditioned standard Schur com-
plement as well as the diagonally preconditioned Schur complement after one level 
of decomposition of a Nel = 32 elemental domain. The standard Schur complement 
contains information from all edges interior to the domain whereas in decomposing 
the system by one level all the edges within a shaded region are blocked together 
and statically condensed out of the system leaving only the edges along the in-
terfaces between the shaded regions, see section 4.1.1. From the right hand plot 
in figure 16 we see that the condition number of the Schur complement after one 
level of decomposition is bounded by the condition number of the standard Schur 
complement. The effect of the extra level of decomposition is to reduce the slope of 
the curve although the condition number would appear still to be asymptotically 
growing with P. 

The efficiency by which we can invert the Helmholtz matrix depends on the com
bined spectrum of the Laplacian matrix and the mass matrix. The eigen-spectrum 
of the Schur complement of the mass matrix has not been studied theoretically but 
numerical experiments with triangular elements suggest a similar dependence as 
the Laplacian matrix with respect to the number of elements Nel· However, with 
respect to order P its condition number grows much faster. In particular, for no-
preconditioning we observed a growth 11,2 (M) ex: P 512 ; for diagonal-preconditioning 
,.,2 (M) ex: P 195; and for block-diagonal preconditioning as before we obtained 
""2(M) ex: P 16 . These are probably poly-logarithmic terms but we best-fitted 
experimental results to obtain these exponents. 
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FIGURE 17. Convergence rate of a preconditioned conjugate gra-
dient solver for a Schur complement of the Helmholtz matrix us-
ing the following preconditioners: (nn) vertex-non, edge-non; (dd) 
vertex-diagonal, edge-diagonal; (bd) vertex-diagonal, edge-block; 
(db) vertex-block, edge-diagonal; (bb) vertex-block, edge-block. 
Also shown for comparison is the solution for the full Helmholtz 
matrix (full). 

In summary, it is possible to apply preconditioning techniques for inverting the 
Helmholtz matrix similar to preconditioners for the Laplacian and the mass matrix. 
The effect on the convergence rate of a preconditioned conjugate gradient solver for 
the Helmholtz equation with constant A = 1 is shown in figure 17, which verifies 
the fast convergence for the Schur complement in contrast with the full discrete 
Laplacian. 

In three dimensions, it is more difficult to establish estimates of the condition 
number. Some numerical experiments show that "'2(Ms) ex (log(P)) 8 without any 
preconditioning, but they are inconclusive with respect to the dependence in terms 
of the number of elements. In [9] a polylogarithmic bound was found of the form 

"'2 :::; C(1 + log(P)) 2 

which is independent on the number of elements. This estimate is valid for hexa-
hedral elements but a similar bound was obtained in [2] for tetrahedral elements. 
The main idea is to use a wire basket preconditioner that is based on a new set of 
vertex and edge basis functions of "low energy" . These low energy functions with 
highly oscillatory traces on the wire basket decay much faster than the standard 
basis functions constructed using barycentric coordinates. An alternative approach 
that employs orthogonalisation of each vertex function with respect to functions of 
its three faces, and each edge function with respect to functions of its two faces, 
has been proposed in [7]. 
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FIGURE 18. Convergence test for the Helmholtz problem, (\72u-
Au = f; A = 1), using quadrilaterals and triangles, with Dirichlet 
boundary conditions. The exact solution is u = sin(1rx)cos(1ry) 
and forcing function f =-(A+ 21r2 )sin(1rx)cos(1ry). 
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FIGURE 19. Convergence test for the Helmholtz problem, (\72u-
>.u = f; A= 1), using a triangle and a quadrilateral, with Dirichlet 
boundary conditions. The exact solution is u = sin( 1rcos( 1rr2)) 

and forcing function f = -(A +47r4r 2 sin( 1rr2 ) 2)sin( 1r( cos( 1rr2)))-

41r2 (1rr2cos(1rr2 ) + sin(1rr2 ))cos(1rcos(1rr2 )), where r 2 = x2 + y2 . 

5. Results 

We now demonstrate that the method is stable up to high polynomial orders 
and works for complicated combinations of all the element types. 

In figure 18 we demonstrate convergence to the exact solution with p-refinement 
(exponential rate) and h-refinement (algebraic rate) for the Helmholtz equation 
with >. = 1 for Dirichlet boundary conditions. 
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FIGURE 20. Convergence for the Helmholtz problem, ('V2u->.u = 
f; >. = 1), with Dirichlet boundary conditions on a mesh of twenty 
six hybrid elements. The exact solution is sin(x)sin(y)sin(z). 

In figure 19 we show p-type convergence for a more complicated exact solution. 
This example demonstrates that the method is stable to at least P = 64. This is 
much higher order than the one used in hp finite element method [16]. 

In figure 20 we solve the Helmholtz problem on a complicated 3D domain 
discretized using all types of elements, i.e. tetrahedra, hexahedra, prisms and 
pyramids. Exponential convergence is also verified for a smooth solution. 
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100 
X 

FIGURE 21. .NeKTa.r simulations of incompressible flow on the 
above domain discretized with Nel = 966 elements (192 quadrilat-
erals and 77 4 triangles) and 6th order polynomial expansions on 
each element. The instantaneous vorticity field is shown on the 
right plot. The Reynolds number is approximately 1200. 

Finally, in figure 21 we show a solution of the incompressible Navier-Stokes 
equations. The algorithm for triangular elements is described in detail in [13] but 
here we use a mix of triangles and quadrilateral elements, the former to handle the 
complex geometry and the latter to more efficiently fill the computational domain. 
The flow computed is start-up from zero initial conditions with uniform inflow at 
Reynolds number (based on the vertical projected length) approximately 1200. 
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Physical and Computational Domain Decompositions for 
Modeling Subsurface Flows 

Mary F. Wheeler and I van Yotov 

1. Introduction 

Modeling of multi phase flow in permeable media plays a central role in subsur-
face environmental remediation as well as in problems associated with production 
of hydrocarbon energy from existing oil and gas fields. Numerical simulation is 
essential for risk assessment, cost reduction, and rational and efficient use of re-
sources. 

The contamination of groundwater is one of the most serious environmental 
problemti facing the world. For example, more than 50% of drinking water in the 
Unites States comes from groundwater. More than 10,000 active military instal-
lations and over 6,200 closed installations in the United States require subsurface 
remediation. The process is difficult and extremely expensive and only now is tech-
nology emerging to cope with this severe and widespread problem. Hydrocarbons 
contribute almost two-thirds of the nation's energy supply. Moreover, recoverable 
reserves are being increased twice as fast by enhanced oil recovery techniques as by 
exploration. 

Features that make the above problems difficult for numerical simulation in-
clude: multiple phases and chemical components, multi-scale heterogeneities, stiff 
gradients, irregular geometries with internal boundaries such as faults and layers, 
and multi-physics. Because of the uncertainty in the data, one frequently assumes 
stochastic coefficients and thus is forced to multiple realizations; therefore both 
computational efficiency and accuracy are crucial in the simulations. For efficiency, 
the future lies in developing parallel simulators which utilize domain decomposition 
algorithms. 

One may ask what are the important aspects of parallel computation for these 
complex physical models. First, in all cases, one must be able to partition dynam-
ically the geological domain based upon the physics of the model. Second, efficient 
distribution of the computations must be performed. Critical issues here are load 
balancing and minimal communication overhead. It is important to note that the 
two decompositions may be different. 

1991 Mathematics Subject Classification. Primary 65N55; Secondary 76S05. 
This work was supported in part by the U.S. Department of Energy and the National Science 

Foundation. 

@1998 American :tvlathematical Society 

217 

http://dx.doi.org/10.1090/conm/218/03011

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



218 MARY F. WHEELER AND IVAN YOTOV 

In this paper we will discuss a novel numerical methodology for subsurface 
modeling based on multiblock domain decomposition formulations. Multiblock 
discretizations involve the introduction of special approximating spaces (mortars) 
on interfaces of adjacent subdomains. This paradigm is consistent with a physi-
cal/engineering description of the mathematical equations: that is, the equations 
hold with their usual meaning on the sub-domains, which have physically meaning-
ful interface boundary conditions between them. The following features make the 
multiblock approach computationally attractive. 

In many cases geometrically highly irregular domains can be described as unions 
of relatively simple blocks. Each block is independently covered by a relatively 
simple (e.g. logically rectangular) grid. The grids do not have to match on the 
interfaces between blocks. The local grid structure allows for more efficient and 
accurate discretization techniques to be employed. (For example, mixed finite el-
ement/finite volume methods are more accurate and efficient on structured than 
unstructured grids). Moreover, structured and unstructured grids could be coupled, 
if the geometry of a given block is very irregular. · 

Since the numerical grids may be non-matching across interfaces, they can be 
constructed to follow large scale geological features such as faults, heterogeneous 
layers, and other internal boundaries. This is critical for the accuracy of the nu-
merical methods. 

The multiblock approach allows for rigorous coupling of different physical pro-
cesses, mathematical models, or discretization methods in different parts of the 
simulation domain (e.g., coupling underground with surface flow or coupling mixed 
finite element with standard finite element methods). 

Dynamic grid adaptivity can be performed locally on each block. This is very 
convenient for the fast reconstruction of grids and calculation of stiffness matrices 
in time-dependent problems. Mortar degrees of freedom may also vary, providing 
an additional degree of adaptivity. For complex problems with multiscale hetero-
geneities and behavior, this approach provides a new mechanism for upscaling by 
computing an effective flow field without having to compute effective permeabilities. 
Moreover, the jump in fluxes along interfaces is a good indicator for the magnitude 
of the local discretization error. 

The multi block structure of the discrete systems of equations allows for efficient 
parallel domain decomposition solvers and preconditioners, which maximize data 
and computation locality, to be designed and applied. In addition, weighted space 
filling curve techniques provide efficient tools for distributing computations among 
processors. Near optimal load balancing and minimal communication overhead can 
be achieved, even for unstructured or dynamically adapted grids and computation-
ally rough problems (problems with a nonuniform computational load) [26]. 

Mortar finite elements have been successfully applied for standard finite element 
and spectral finite element discretizations on non-matching grids (see, e.g. [9, 8]). 

We have demonstrated in recent work that mortar domain decomposition is a 
viable approach for modeling subsurface flow and transport. Physical and mathe-
matical considerations lead us to emphasize locally mass conservative schemes, in 
particular mixed finite element (finite volume) methods for subdomain discretiza-
tions. Theoretical and numerical results for single phase flow indicate multiblock 
mixed finite element methods are highly accurate (superconvergent) for both pres-
sure and velocity [27, 1, 5, 7, 29]. A parallel non-overlapping domain decompo-
sition implementation, based on a method originally proposed by Glowinski and 
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Wheeler [16, 13, 12], provides an efficient scalable solution technique [27]. Some 
efficient preconditioners have also been developed [18]. An extension of the method 
to a degenerate parabolic equation arising in two phase flow is presented in [28], 
where optimal convergence is shown. 

In this paper we present a nonlinear domain decomposition algorithm for mul-
tiphase flow in porous media, based on mortar mixed finite element discretizations. 
The global discrete nonlinear system of equations is reduced to a nonlinear interface 
problem in the mortar space. The results demonstrate that this approach works 
very well for systems of transient highly non-linear differential equations. 

The rest of the paper is organized as follows. In the next section we present a 
multiblock formulation and discretization for a two phase flow model. The domain 
decomposition algorithm is described in Section 3. Computational results, including 
some results on mortar adaptivity and upscaling are given in Section 4. We close 
in Section 5 with remarks on possible extensions and conclusions. 

2. Multiblock formulation and discretization 

To illustrate the numerical technique, we consider a two-phase flow model. 
In a multiblock formulation the domain n c R 3 is decomposed into a series of 
subdomains nk, k = 1, ... , nb. Let fkz = ank n ant be the interface between nk 
and n 1. We note that fkt does not have to coincide with an edge (face) of either 
subdomain. 

The governing mass conservation equations are imposed on each subdomain 
nk: 

(1) 

where a = w (wetting), n (non-wetting) denotes the phase, Sa. is the phase satu-
ration, Pa. = Pa.(Pa.) is the phase density, 1> is the porosity, q01 is the source term, 
and 

(2) 

is the Darcy velocity. Here P01 is the phase pressure, ka.(Sa.) is the phase relative 
permeability, Jl-01 is the phase viscosity, K is the rock permeability tensor, g is the 
gravitational constant, and D is the depth. On each interface fkt the following 
physically meaningful continuity conditions are imposed: 

(3) 
(4) 

Pa.lnk = Pa.lnp 

[Ua. · v]kt = Ua.lok · Vk + Ua.lo1 • Vt = 0, 

where Vk denotes the outward unit normal vector on ank. The above equations are 
coupled via the volume balance equation and the capillary pressure relation 

(5) 

which are imposed on each nk and fkt· We assume that no flow Ua. · v = 0 is 
imposed on an, although more general types of boundary conditions can also be 
treated. 
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2.1. Discretization spaces. It is important to choose properly the subdo-
main and interface discretization spaces in order to obtain a stable and accurate 
scheme. A variant of the mixed method, the expanded mixed method, has been 
developed for accurate and efficient treatment of irregular domains. The imple-
mentation and analysis of the method for single phase flow have been described in 
several previous works (see [6, 2, 3] for single block and [27, 5, 29] for multiblock 
domains). The original problem is transformed into a problem on a union of regular 
computational (reference) grids. The permeability after the mapping is usually a 
full tensor (except in some trivial cases). The mixed method could then be approx-
imated by cell-centered finite differences for the pressure, which is an efficient and 
highly accurate scheme [6]. 

To simplify the presentation we will only describe here the rectangular reference 
case. For a definition of the spaces on logically rectangular and triangular grids, 
we refer to [2] (also see [24, 10]). Let us denote the rectangular partition of nk 
by 7hk, where hk is associated with the size of the elements. The lowest order 
Raviart-Thomas spaces RTo [23] are defined on 7hk by 

- { T Vhk = V = (v1,V2,v3): viE= (0:1X1 + fJ1,0:2X2 + fJ2,0:3X3 + (33) : 
o:L,f3t E R for all E E 7hk, 

and each Vt is continuous in the lth coordinate direction}, 

V hk = { V E V hk : V · Vk = 0 on of!k n of!} 
Whk = { w: w!E = o:: o: E R for all E E 7hk }. 

To impose the interface matching condition (3)-(4) we introduce a Lagrange mul-
tiplier or mortar finite element space Mhkt defined on a rectangular grid 7hkt on 
r kl, where hkt is associated with the size of the elements in 7hkt . In this space 
we approximate the interface pressures and saturations, and impose weakly normal 
continuity of fluxes. 

If the subdomain grids adjacent to rkl match, we take 7hkl to be the trace of 
the subdomain grids and define the matching mortar space by 

Mh.', 1 = {J.L: J.Lie = o: : o: E R, for all e E Thkt }. 

If the grids adjacent to rkl are non-matching, the interface grid need not match 
either of them. Later we impose a mild condition on 7hkt to guarantee solvability 
of the numerical scheme. We define our non-matching mortar space on an element 
e E Thkt by 

MJ:(e) = {o:66 +(36 +16 +8: o:,fJ,/',8 E R}, 
where~~ are the coordinate variables on e. Then, for each rkl, we give two possibil-
ities for the non-matching mortar space, a discontinuous and a continuous version, 
as 

M~~~ = {J.L: J.Lie E MJ:(e) for all e E 7hkt }, 
M~~~ = {J.L: J.Lie E MJ:(e) for all e E 7hw J.L is continuous on rkt}. 

We denote by Mhkt any choice of Mhn,d, Mhn,c, or Mhm (on matching interfaces). kl kl kl 

REMARK 1. The usual piece-wise constant Lagrange multiplier space for RT0 

is not a good choice in the case of non-matching grids, since it only provides 0(1) 
approximation on the interfaces and a suboptimal global convergence. With the 
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above choice for mortar space, optimal convergence and, in some cases, supercon-
vergence is recovered for both pressure and velocity (see [27, 1] for single phase 
flow and [28] for two phase flow). 

2.2. The expanded mortar mixed finite element method. Following 
[6], let, for n: = w, n, 

Then 
ka(Sa)K -

Ua =- Pa(Ua- Pag'VD). 
J.la 

Before formulating the method, we note that two of the unknowns can be eliminated 
using relations (5). Therefore the primary variables can be chosen to be one pressure 
and one saturation which we denote by P and S. 

Let 0 =to < t1 < t2 < ... ,let ~tn = tn- tn-l, and let r = f(tn). 
In the backward Euler multiblock expanded mixed finite element approximation 

of (1 )-(5) we seek, for 1 :S k < l :S nb and n = 1, 2, 3 ... , uh,a Ink E v hk' uh,a Ink E 
vhk' Ph'lnk E whk' S;;'lnk E whk' Fh'lrkl E Mhw and S;;'lrkl E Mhkt such that, for 
n: =wand n, 

sn - sn-l 
{ h,a~ n h,a wdx + { '\! · Uh,a wdx = { qa wdx, wE Whk' 

lnk t lnk lnk 
(6) 

(7) r uh,a . v dx = r Ph, a'\! . v dx - r Ph',a v . 1/k da, v E v hk' 
Jnk lnk J ank \Bn 

(8) Uh,a · v dx = ~ Ph,a (Uh,a - Ph,ag'\1 D) · v dx, v E V hk, 1 1 kn K _ 

nk nk J.lh,a 

1 [Uh,a · v]kt J.L da = 0, J.L E Mhkt' 
lkt 

(9) 

Here kh,a and Ph,a E Whk are given functions of the subdomain primary variables 
Ph' and S;;'. The mortar functions Fh',a can be computed using(5), given the mortar 
primary variables Ph' and SJ::. 

REMARK 2. Introducing the pressure gradients Ua in the expanded mixed 
method allows for proper handling of the degenerate (for Sa = 0) relative per-
meability ka(Sa) in (7)-(8). It also allows, even for a full permeability tensor K, 
to accurately approximate the mixed method on each subdomain by cell-centered 
finite differences for Ph and Sh. This is achieved by approximating the vector in-
tegrals in (7) and (8) by a trapezoidal quadrature rule and eliminating U h,a and 
Uh,a from the system [6, 2, 3]. 

REMARK 3. A necessary condition for solvability of the scheme is that, for any 
¢ E Mhkt' 

(10) 

where Qh,k is the L2-projection onto V hk · vk. This is not a very restrictive condi-
tion and requires that the mortar grid is not too fine compared to the subdomain 
grids. One choice that satisfies this condition for both continuous and discontinu-
ous mortars is to take the trace of either subdomain grid and coarsen it by two in 
each direction (see [27, 1] for details). 
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3. Domain decomposition 

To solve the discrete system (6)-(9) on each time step, we reduce it to an 
interface problem in the mortar space. This approach is based on a domain decom-
position algorithm for single phase flow developed originally for conforming grids 
[16], and later generalized to non-matching grids coupled with mortars [27]. 

3.1. Interface formulation. Let 

Mh = Ef) Mhk1 
l:::;k<l:::;nb 

denote the mortar space on r = ul<k<l<nbrkl and let Mh = Mh X Mh. We define a 
non-linear interface functional Bn : Mh ";( Mh ___. R as follows. For 'ljJ = ( Pr::' s;:) T E 
Mh and J.l = (J.lw, J.ln) E Mh, let 

Bn('lj;, J.l) = L 1 ([V~.w('lj;) · v]kl J.lw + [U~.n('lj;) · v]kl J.ln)da, 
l:::;k<l:::;nb rkl 

where (S;:('l/J), U~ c,('lj;)) are solutions to the series of subdomain problems (6)-(8) 
with boundary data Ph:, a ( 'ljJ). 

Define a non-linear interface operator Bn : Mh ___. Mh by 

(Bn'lj;,J.l) = Bn('lj;,J.l), 'll'J.L E Mh, 

where (-, ·) is the L2-inner product in Mh. It is now easy to see that the solution 
to (6)-(9) equals ('lj;, s;:('lj;), U~.a('lj;)), where 'ljJ E Mh solves 

(11) Bn('lj;) = 0. 

3.2. Iterative solution of the interface problem. We solve the system 
of nonlinear equations on the interface (11) by an inexact Newton method. Each 
Newton step s is computed by a forward difference GMRES iteration for solving 
B'('lj;)s = -B('Ij;) (we omit superscript n for simplicity). On each GMRES iteration 
the action of the Jacobian B'('lj;) on a vector J.l is approximated by the forward 
difference 

{ 
0, J.l = 0, 

Dtil3('1j;: J.L) = IIJ.LIIB(.P+tiii.P~~~~~~~r~~)-B(,P), J.l "~- o, 'ljJ "~- o, 
IIJ.LIIB(tii'/111'~1)-B(,P)' J.l "1- 0, 'ljJ = 0. 

We take{)= Jf., where E is the nonlinear tolerance for evaluation of B. The inexact 
Newton-GMRES algorithm is described in details in [17]. 

Note that each GMRES iteration only requires one evaluation of the nonlinear 
operator B. The evaluation of l3 involves solving subdomain problems (6)-(8) in 
parallel and two inexpensive projection steps- from the mortar grid onto the local 
subdomain grids and from the local grids onto the mortar grid. Since each block can 
be distributed among a number of processors, the subdomain solvers are parallel 
themselves. This two level parallelism is needed to account for both the physical 
and the computational domain decomposition. The subdomain problems are also 
nonlinear and are solved by a preconditioned Newton-Krylov solver (see [14] for a 
detailed description). We must note that, since the perturbation{) is very small, the 
subdomain solution with boundary data 'ljJ is a very good initial guess for solving 
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FIGURE 1. Geological layers and numerical grids. The dark layers 
(400 md) are eight times more permeable than the light layers. 

subdomain problems with boundary data'¢+ 8ll't/JII1L/II11II· As a result it usually 
takes only one nonlinear subdomain iteration to evaluate B('¢ + 8ll't/JII~L/II~LII). 

4. Computational results 

In this section we present numerical results illustrating the application of the 
method described in the previous two sections to modeling two phase subsurface 
flow. We also give some results on adapting mortar degrees of freedom and its 
relation to upscaling in the case of single phase flow. 

4.1. A two phase flow simulation. The methodology described above has 
been implemented in a parallel implicit multiblock two phase flow simulator UT-MB 
[25, 21]. The simulator is built on top of an object oriented parallel computational 
infrastructure [22], which is based on DAGH (Distributed Adaptive Grid Hierarchy) 
library [20]. 

In this example we present the results of a two phase oil-water flow simulation 
in a faulted heterogeneous irregularly shaped multiblock reservoir. A fault cuts 
through the middle of the domain and divides it into two blocks. The curvilinear 
numerical grids follow the geological layers and are non-matching across the fault 
(see Figure 1). Each block is covered by a 32 x 32 x 20 grid. The simulation was done 
on eight processors on IBM SP2, each block distributed among four processors. Oil 
concentration contours after 281 days of displacement (water is injected at the right 
front corner and producer is placed at the left back corner) are given on Figure 2. 

4.2. Mortar adaptivity and upscaling. Adapting mortar degrees of free-
dom may result in substantial reduction of the cost for solving the interface problem. 
Note that solvability condition (10) does not prevent from using mortar grids much 
coarser that the subdomain grids. One must expect, however, certain loss of accu-
racy with coarsening the interface grids. In the following example we study how 
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FIGURE 2. Oil concentration contours at 281 days. 

reduction of mortar degrees of freedom affects the number of interface iterations 
and the flux discretization error on the interface. Similar ideas have been explored 
by Dorr in [15]. We solve a single phase flow problem on a 32 x 32 x 32 domain 
with a highly correlated log-normal permeability field and one injection and three 
production wells at the corners. A 2 x 2 x 2 domain decomposition is employed. 
This example suites well the purpose of our study, due to the large heterogeneities 
and substantial flow through all interfaces. The results of the experiment are shown 
in Figure 3. The traces of subdomain grids on each interface are 16 x 16 and hav-
ing 256 mortar degrees of freedom is equivalent to exact matching of the fluxes. 
We report the number of conjugate gradient iterations (no preconditioning) and 
relative flux L2-error on the interface for several levels of coarsening the mortar 
grids and for three different types of mortars. We first note that the error for the 
piecewise constant mortars grows very rapidly and indicates that this is not a good 
choice. This is consistent with our theoretical results (see Remark 1). The two 
bilinear cases behave similarly, although the continuous case performs somewhat 
better. We observe that in this case, the number of mortar degrees of freedom, 
and consequently the number of interface iterations, can be reduced by a factor of 
two, with the relative flux error still being under ten percent. Moreover, the global 
relative error is even smaller, as the solution away from the interfaces is not affected 
as much. 

The reduction of mortar degrees of freedom can be viewed as an upscaling pro-
cedure. Standard upscaling techniques compute effective permeabilities on coarse 
grids. It is usually difficult to estimate the error associated with the upscaling 
process. Here we compute, in a sense, an effective flow field and the flux jump is a 
good indication for the numerical error. 

If only a single bilinear mortar is used on each interface, we have a two scale 
problem, where the solution is computed locally on the fine scale and fluxes match 
on the coarse (subdomain) scale. One can view the solution as a sum of a coarse 
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FIGURE 3. Dependence of interface iterations and error on num-
ber of interface degrees of freedom; mortar !-continuous piecewise 
bilinears, mortar 2-discontinuous piecewise bilinears, mortar 3-
piecewise constants. 

grid solution and a local fine grid correction, which is similar to the approaches 
taken in [4, 19]. In the following example, also considered in [4], we solve the 
single phase flow equation with a log-normal permeability field originally presented 
in [11]. As can be seen in Figure 4, the solution on a fine 32 x 32 grid is very 
similar to the solution obtained by matching fluxes on a coarse 4 x 4 grid using 
a single linear mortar on each interface. We should note that a similar procedure 
using constant instead of linear mortars produced highly inaccurate results. 

5. Conclusions 

In this paper we considered two levels of domain decompositions - physical 
and computational. It is important to first decompose the physical problem with 
appropriate hierarchical models (geometry, geology, chemistry /physics) and then 
efficiently decompose the computations on a parallel machine. 
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Fine scale solution 

.... - ......................... ~-·--------·-·····----------·- --,~~-----------....... - --~- - - - - - -

- - ............... ,. ..... - - - - - - -

~--~-----------

"Upscaled" solution 

FIGURE 4. Computed pressure (shade) and velocity (arrows) field 
for the two scale example. 

We have introduced new mortar spaces which provide an accurate and efficient 
basis for discretizations on non-matching grids, hierarchical domain decomposition, 
and solvers. In addition, this approach allows the coupling of multiphysics, multi-
numerics, and multiscales. 

We have demonstrated the applicability of these mortar space decompositions 
to two phase flow in permeable media. Further computational experiments have 
shown the computational cost can be reduced substantially by interface adaptivity, 
which is related to upscaling. 

Our current research involves extensions of these techniques to three flowing 
phases and multiple solid phases, as well as coupling of fully implicit and various 
time-splitting schemes, as shown in Figure 5. 
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FIGURE 5. Multiphysics, multi-numerical models, complex geol-
ogy, and upscaling. 
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Nonoverlapping Domain Decomposition Algorithms for the 
p-version Finite Element Method for Elliptic Problems 

Ion Bica 

1. Introduction 

The nonoverlapping domain decomposition methods form a class of domain 
decomposition methods, for which the information exchange between neighboring 
subdomains is limited to the variables directly associated with the interface, i.e. 
those common to more than one subregion. Our objective is to design algorithms 
in 3D for which we can find an upper bound on the condition number "' of the 
preconditioned linear system, which is independent of the number of subdomains 
and grows slowly with p. Here, p is the maximum degree of the polynomials used in 
the p-version finite element discretization of the continuous problem. In this paper, 
we survey some of the results obtained in [2]. 

Iterative substructuring methods for the h-version finite element, 2D p-version, 
and spectral elements have been previously developed and analyzed by several au-
thors [3, 4], [6], [1],[13, 14], [11], [5], and [7, 8, 9]. 

However, some very real difficulties remained when the extension of these meth-
ods and their analysis to the 3D p-version finite element method were attempted, 
such as a lack of extension theorems for polynomials. The corresponding results are 
well known for Sobolev spaces, but their extension to finite element spaces is quite 
intricate. In our technical work, we use and further develop extension theorems for 
polynomials given in [1], [12], and [10] in order to prove the following bound on 
the condition number of our algorithm: 

(1) "':::; C(l + logp)4 . 

We believe that two logs can be dropped and a bound, similar to the ones in [3, 4], 
[6], and [13, 14], can be obtained. 

In Section 2, we describe the model problem we are solving and the basis func-
tions of the finite element space which are best suited for our algorithm. Section 3 
contains a brief description of the preconditioner on which the algorithm is based. 
In Section 4, we compute the local and global condition numbers of our algorithm 
and make specific recommendations on the best choice of preconditioners. 
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2. Continuous and discrete problems 

We consider the following problem formulated variationally: Find u E V such 
that 

(2) a(u, v) = 1 p(x)VuVv dx = f(v) 't/v E V. 
n 

Here, Vis a subspace of H 1(0), determined by boundary conditions, 0, is a polyhe-
dral region triangulated with tetrahedra Oi, 0 = uni. We denote by r the interface 
between subdomains, r = U80i \ 80. We assume that the boundary conditions are 
of the same type within each face of any tetrahedron that is part of the boundary. 
The coefficient p(x) > 0 can be discontinuous across the interface between the sub-
domains, but varies only moderately within each Oi. Without further decreasing 
the generality, we assume p(x) =Pi on Oi. The bound (1) holds for arbitrary jumps 
in Pi· 

We discretize the problem by the p-version finite element method. The finite 
element space VP consists of the continuous functions on 0, which are polynomials 
of total degree p in each Oi. We end up with a system K x = b, where the stiffness 
matrix K is built from local stiffness matrices, by subassembly. We will now define 
the basis functions on a reference tetrahedron Oref. There are many ways to do 
so, and a proper choice is the key to obtaining an efficient iterative method. We 
present here only a general description. We distinguish between four types of basis 
functions, associated with the vertices, edges, faces, and interior of Oref. 

1. A ver-tex basis function has value one at a vertex and vanishes on the face 
opposite to that vertex. There is only one vertex function per vertex. 

2. An edge basis function vanishes on the two faces which do not share the edge. 
The traces of the edge functions associated with the same edge are chosen 
to be linearly independent on that edge. There are p - 1 such functions per 
edge. 

3. A face basis function vanishes on the other three faces. The traces of the face 
functions associated with the same face are chosen to be linearly independent 
on that face. There are (p- 1)(p- 2)/2 such functions per face. 

4. An inter-ior- basis function vanishes on 8flref· There are (p-1)(p-2)(p-3)/6 
interior functions and they are linearly independent. 

The total number of vertex, edge, face, and interior functions is (p+ 1)(p+2)(p+3)/6. 
It is easy to see that they form a basis for PP(Oref ), the space of polynomials of 
total degree p on Oref. The union of the closed edges is the wir-e basket of Oref. 

It turns out that if we use some standard vertex and edge functions [16], the 
preconditioned system that defines our algorithm is very ill conditioned; cf. [2, 
Section 5.1.1]. We therefore construct low ener-gy vertex and edge functions; see [2, 
Chapter 4] which result in the bound (1). They satisfy certain stability properties 
related to their values on the edges and boundary of the reference tetrahedron. 
Their construction is based on the extension theorems in [1], [12], [10]. To avoid 
technical details here, we only remark that the low energy functions with highly 
oscillatory traces on the wire basket decay much more rapidly away from the edges 
than the standard ones that have the same trace. See Fig. 1 for a comparison of 
low energy and standard (high energy) basis functions. 
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FIGURE 1. Basis functions on the face F3 of the reference tetrahe-
dron Oref 

233 

We next eliminate the interior degrees of freedom and end up with a system 
Sxr = br, where Sis built from local Schur complements, also by subassembly. 

3. A wire basket algorithm 

This algorithm is similar to the wire basket algorithm defined in [6, Section 
6.2] and [13, 14, Section 6]. An interesting theoretical feature of this algorithm is 
that the bound on the condition number of the global preconditioned system is the 
same as the local one. 

We use a preconditioned conjugate gradient algorithm, with the preconditioner 
built from blocks that correspond to subspaces. In its simplest form, this algorithm 
is a block-Jacobi method. We define it in the variational framework known as the 
abstract Schwarz theory; see, e.g., Smith, Bj¢rstad, and Gropp [15]. 

The coarse space Vw is the space spanned by the vertex and edge functions 
and contains the constants. The construction of such a space is quite intricate; cf 
[6, Section 6.2], [13, 14, Section 6], [2, Section 4.3]. 

All the local spaces are associated with individual faces of the tetrahedra. For 
each face Fk, we define the face space Vpk as the space of functions in VP, that 
vanish on all the faces of the interface r except Fk. We obviously have 

VP = Vw + L:vFk· 
k 
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TABLE 1. Local condition numbers, wire basket algorithm, low 
energy vertex and edge functions 

p Constants not in the wire basket Constants in the wire basket 
Am in A max "' Am in A max "' 4 0.1921 1.8000 9.3691 0.1331 2.2549 16.9416 

5 0.1358 1.7788 13.1022 0.1063 2.3890 22.4775 
6 0.1033 1.8203 17.6186 0.0842 2.4503 29.1136 
7 0.0864 1.8205 21.0818 0.0753 2.4996 33.2026 
8 0.0740 1.8407 24.8854 0.0655 2.5374 38.7335 
9 0.0656 1.8476 28.1508 0.0601 2.5668 42.6989 
10 0.0590 1.8588 31.4892 0.0541 2.5911 47.9346 

To each subspace V = Vw or Vpk, we associate an operator Tv defined by 

av(Tvu, v) = a(u, v) Vv E V. 

Here, av(·, ·) is a positive definite, symmetric bilinear form on the subspace V. 
Each bilinear form a v ( ·, ·) uniquely defines the operator Tv and vice-versa. 

We say that Tv is an approximate projection. If av(-, ·) =a(·,·) then Tv = Pv, 
the a(·, ·)-orthogonal projection on V. For specific subspaces, we choose Tv to be 
almost spectrally equivalent to Pv, but cheaper to compute. 

On the coarse space, we can use the exact solver a(·.·) or, more economically, 
an inexact solver based on the bilinear form 

(3) aw(u, u) = (1 + logp) I>~f llu- cilli2(Wi)· 
. . 

On each face space, we choose apJ, ·)=a(·,·). 
The additive Schwarz method (ASM) is defined by the operator 

(4) 

where nf is number offaces in f. The equation Tau= 9a, where 9a = Twu+Tp1 u+ 
... + TFnf u can be solved by the conjugate gradient method, which can be viewed 
as a preconditioned conjugate gradient method for the initial system Sxr = br. 

The preconditioner for the additive Schwarz method, using the exact solver on 
Vw, has the following matrix form: 

(5) 

0 

If we use the inexact solver aw ( ·, ·), the block Sww is replaced by 

- ( (M(i)z(il) · (M(i)z(i))T) 

Sww = (1 + logp) M- L z(i)T M(i)z(i) , 
t 

where M( i) is the mass matrix of the wire basket Wi, and z( i) is the vector containing 
the coefficients of the constant function 1. The mass matrix M, for our particular 
choice of vertex and edge functions, is tridiagonal. 
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FIGURE 2. Condition numbers and bounds on them, for the wire 
basket algorithm 

The symmetrized multiplicative method (MSM) is defined by the operator 

Tm =I- (I- Tw)(I- TFJ ···(I- TFn 1 ) ···(I- TFJ(I- Tw). 

The hybrid method (HSM) is defined by the operator 

Th =I- (I- Tw )(I- TF1 - • • • TFnf )(I- Tw ). 

235 

The matrix form of the preconditioners defined by the operators T m and Th is not 
block-diagonal. 

4. Numerical experiments 

We start by computing the local condition number of the preconditioned Schur 
complement, on a reference tetrahedron; see Table 1. We obtain lower condition 
numbers in case when the constants are not in the coarse space space. However, 
as we mentioned in Section 3, we must add the constants to the coarse space. We 
do this at the expense of increasing the condition numbers by a factor of 1.5 - 1.6. 
Next, we look at the bounds on these condition numbers, as given by the theory. 
To this end, we compute all the constants in the inequalities used in the proof (1); 
see (2, Section 5.1.2]. The asymptotic logarithmic growth of these bounds is more 
visible than that of the actual condition numbers; see Fig. 2. 
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FIGURE 3. Comparison of additive, hybrid, and multiplicative 
methods, p = 6, exact solver on the wire basket. 

We now move to global experiments. The number of iterations is fixed before-
hand. We compare the performances of the additive, hybrid, and multiplicative 
methods, see Fig. 3. The extreme eigenvalues are computed via the Lanczos it-
eration. We have performed experiments on a cubic region that consists of 192 
identical tetrahedra, for p = 6, with Dirichlet boundary conditions on one face of 
0, and Neumann on the others. We have used the exact solver on the wire basket. 
We remark that the global condition number of the additive method coincides with 
the local one, given in Table 1, at the intersection of the last column and the row 
that corresponds top = 6. We remark that the multiplicative method performs bet-
ter than the hybrid method, which performs better than the additive one. We can 
use an inexact solver on the wire basket, which makes the coarse problem cheaper 
to solve, at some expense in the performance of the full algorithm; see [2, Section 
5.2.3]. 
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1. Introduction 

When using domain decomposition methods without overlapping, one can focus 
on displacements, such as primal approaches, [11] ... , or on efforts, such as dual 
approaches, [6]. Since the LATIN approach used herein allows interfaces to play 
a major role, both displacements and efforts are the unknowns; it is a "mixed" 
approach. A general drawback with domain decomposition methods is the decrease 
in convergence as increases the number of substructures. Using a global mechanism 
to propagate information among all substructures can eliminate this drawback. 

We are proposing herein to take into account the introduction of two scales when 
decomposing the structure into substructures and interfaces. As a first step, the 
implemented version is concerned with linear elasticity. The large scale problem 
is then used to build a global exchange of information and therefore to improve 
performance. Moreover, comparisons with other decomposition methods, and in 
particular with several variants of the FETI method, are proposed. 

2. Formulation of the problem 

The studied structure is seen as the assembly of two mechanical entities: sub-
structures nE, E E E, and interfaces LEE'. Each possess its own variables and 
equations. The principles of this one-level approach have been described in [9], its 
feasibility has been shown in [10], and [2] proposes some significant examples. 

Since we are dealing herein with linear elasticity, only the final configuration is 
of interest. 

2.1. Substructure behaviour. Each substructure nE is submitted to the 
action of its environment (neighbouring interfaces): an effort FE and a displacement 
field wE on its boundary anE. Eventually, [_d is a prescribed body force (Figure 1). 

For each E E E, (WE; FE) has to satisfy: 
• kinematic equations: 

(1) ~UE E uE, fE = c(UE) and U~o_E =wE 
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FIGURE 1. Substructure and interface 

where UE is the set of displacement fields defined On OE which possess a 
finite energy, and cE is the associated strain. 

• equilibrium equations: a stress field erE balances [d and FE, i.e.: 

(2) VU* E uE, r Tt[erEc(U*)]dO = r Ld. U*dO + r pE. U*dS JnE JnE lanE 

(3) 

• constitutive relation: herein, the behaviour is linear and elastic (K denotes 
Hooke's tensor) and 

s denotes the set of unknowns (WE, FE, U E, erE) for E E E, that characterises 
the state of all substructures. 

2.2. Interface behaviour. The state of the liaison between two substructures 
OE and OE' is defined by values on its surface of both the displacements and efforts 
(WE; FE) and (WE';EE') (see Figure 1). For a perfect liaison, they must satisfy: 

(4) pE + pE' = 0 and WE= WE' 

Of course, other kinds of liaison can be expressed, such as the prescribed effort 
liaison, the prescribed displacement liaison, and the unilateral contact liaison with 
or without friction, as described in [9], [2]. Here, we are only dealing with perfect 
interfaces that continuously transfer both efforts and displacements. 

2.3. Description of the one-level algorithm. According to the framework 
of LArge Time INcrement (LATIN) methods, equations are split into two groups in 
order to separate difficulties, [10]: 

• r is the set of unknowns s satisfying each interface behaviour ( 4), and 
• Ad is the set satisfying each substructure behaviour (1), (2), (3). 

The solution Sex searched is then the intersection of Ad and r. A two-stage 
algorithm successively builds an element of Ad and an element of r. Each stage 
involves a search direction; these are the parameters of the method: 

• the local stage uses the search direction E+: (F- F)- k(W- W) = 0 
Finding s E r in such a way that s - Sn belongs to the search direction 

E+ is a local problem on the interfaces. For instance, with perfect interfaces, 
the solution is explicitly written: W = W1 = ~[(W + W 1)- k- 1 (E + F 1)] 

A A 1 I I and F = -E1 = 2[(F- F)- k(W- W )]. It can easily be parallelised. 
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FIGURE 3. Convergence rate versus number of substructures 

• the linear stage uses the search direction E-: (F- F)+ k(W- W) = 0 
Finding Sn+l E Ad in such a way that Sn+l - s belongs to E- is a 

global problem on each substructure. When using the search direction, (2) 
is an elasticity-like problem on each substructure, with Robin boundary 
conditions. It can be solved concurrently once the substructures have been 
distributed among the available processors, along with their neighbouring 
interfaces. 

Finally, a convergence check can be built with lis- snll· More details for this one-
level approach can be found in [10]. In the case of linear elasticity, this algorithm is 
similar to the one proposed in [8], [12], [7], i.e. it is one version of Uzawa algorithm. 

3. A 2-level extension 

Let us first consider the model problem of a slendered bidimensional structure 
submitted to a parabolic bending loading (see Figure 2). The reference (U; a)ref 
here is the direct finite element solution without decomposition. It allows us to 
define the convergence rate in energy norm: 

en+l 
T = - log -- where 

en 

Figure 3 presents the averaged convergence rate (up to convergence: en :::;; 0.1%) 
versus the number of substructures. It illustrates a well-known behaviour of domain 
decomposition methods: slowing the convergence rate when increasing the number 
of subdomains, [1]. To remedy such a drawback, we select herein to express the 
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solution on two different scales: 

(5) 

1 and 2 denote unknowns related to large scale (effective quantities) and related to 
corrections on the fine scale respectively. The large scale problem is kept global in 
order to build the global information exchange mechanism, while the fine scale is 
managed with the previous substructuring technique. 

Each level can arise from a different model for the structure; here, they are 
related to 2 different meshes with embedded elements. Let 0 1 and 02 denote these 
meshes. The principles of such a technique are described in [4]. As in the multigrid 
terminology, information transfer between levels is performed with a prolongation 
operator, P, and a restriction operator, R = PT. (U,a-) is the effective part 
of the solution, i.e. the part defined on the mesh 01 (then, Uf = pE[J and 
it = L REO"f). With embedded grids, the prolongation is straightforward and 

EEE 
performed with a classical hierarchical finite element projection, as hierarchical 
bases are used for splitting UE into U1 and Uf. With such a splitting, the global 
equilibrium equations become: 

(6) 'v'Ui E u1, vu; E uf' L r Tr[O"(c(Ui) + c(u;))dn = 
EEEJ!!E 

= L r E (t_d . Ui + f_d . u;) dO + L r E Ff . u;ds 
EEEJ!! EEElao 

with O" = 0"1 + 0"2 = Kc-(U1) + Kc-(U2), and the search direction on fine scale 
E AE AE E . E E . 

F2 = F2 + kW2 - kW2' Wlth w2 = u2 \B!!E, lt leads to: 

• on the fine scale 2, for each substructure Of, the stress field O"!j also has to 
balance -O"f = -Kc-(U110E) = -Kc-(PE[J): 

(7) vu; E Uf, { Tr[c-(U2)Kc(U;)]d0 + { U2 · kU;ds = 
~E ~!!E 

(8) 

= f f_d · u;dn + f (F~ + kW~). u;ds- f Tr[c-(U1)Kc-(u;)]d0 
lo.E 1 8!!E lo.E 

The discretised displacement-oriented formulation of the problem (7) is: 

[KE] and [kE] denote rigidity matrices (constant along iterations), arising 
from material and search direction respectively, [JE] is a load due to Ef + 
k W f, and B2 is the operator giving the generalised forces that balance a 
given stress field on mesh Of. We can notice that the problem to solve is 
global on the substructure and is elasticity-like in nature. 

• on the large scale 1, 

(9) 'v'Ui E U1, 

r Tr[c(Ul)Kc-(Ur)JdO = r f_d. urdn- L r Tr[c(U2)Kc-(Ur)Jd0 
lo lo EEE lo.E 
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TABLE 1. 2-level algorithm 

Large scale - 1 processor Fine scale - n processors 
Initialisation Initialisation 

initialisation of [B1 a2] = 0 computing contributions [B1 ad]I!1E 
receiving [Blad]I!1E +-- +-- sending [Blad]I!1E 
assembling the contributions initialisation of 8 = 0 
factorisation of [K1] factorisation of [KE] + [kE] 
forward-backward on (10) 
sending [J _____.. _____.. receiving [J 

computing coupling term [B2af] 
forward-backward on (8) 

Loop over iterations Loop over iterations 
computing coupling term [B1a2]1nE 

receiving [B1a2J1nE +-- +-- sending [B1 a2J1nE 
assembling the contributions local stage, 
forward-backward on (10) convergence check +---------> 

sending [[ _____.. _____.. receiving [J 
computing coupling term [B2af] 
forward-backward on ( 8) 

with u~ = PU, the last term is: - L r Tr[REc(U2)Kc(O*)]d0. As 
EEE lnE 

(10) 

the stress field a must balance -a2 =- L REKc(Uf), the scales are not 
EEE 

separated. The discretised displacement-oriented formulation of the problem 
(9), with ad arising from external loads, is: 

The solution is searched successively from the two levels within each LATIN 
iteration on the substructured fine scale, in a fixed point method, as described in [4]. 
The linear stage is then performed on both scales, while local stage is still the same 
as for the one-level approach but only deals with fine scale quantities: cwf; i'f). 
Table 1 describes the algorithm. It has been implemented in the industrial-type 
code CASTEM 2000 developed at the CEA in Saclay, [13]. 

For the previous example, the convergence rate has been illustrated in Figure 3. 
The quasi-independence of the convergence rate with respect to the number of 
substructures shows the numerical scalability of the 2-level LATIN method. One 
can notice that for this example, the new optimum value for the search direction is 
now related to the interface length (Lo has then be chosen as equal to 0.25 times 
the length of one substructure). It is no longer characterised by the behaviour of 
the whole structure [2], but becomes a substructuring characteristic, see [4]. 

4. Comparisons 

Several domain decomposition algorithms currently use a global mechanism, 
like the FETI method, [6]. It produces at each iteration a solution that satisfies 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



A 2-LEVEL AND MIXED DOMAIN DECOMPOSITION 

IIEJ Substructure 
IIIII Extemal interlace 
llllllntemal intertace 

FIGURE 4. Meshes of the large-scale problem (a,b,c,d) and of the 
substructured problem (assembly of substructures and interfaces) 
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equilibrium through the interfaces, and that has to accommodate global equilib-
rium on each subdomain. This leads to the resolution of a global problem on all 
subdomains to find their rigid body movement, related to the large-scale problem. 

The proposed example at this time is a tridimensional beam with a parabolic 
bending loading at one extremity. 32 substructures and a mesh with 20-node cubic 
elements are considered for this problem (one substructure has 3 675 d.o.f. and 
requires 12.8 Mb of storage for the factorised rigidity, while the direct problem 
has 95 043 d.o.f. and requires 1 252 Mb). For the large scale, the influence of the 
discretisation with 8-node cubic elements is studied, as also shown in Figure 4. 

Figure 5 shows error en versus iterations, for the FETI method without pre-
conditioning, then with lumped preconditioning, and finally with optimal Dirichlet 
preconditioning. These three computations have been performed by F.-X. Roux 
with the PARAGON machine at ONERA-Chatillon, France. The previous single-level 
LATIN algorithm as well as the 2-level extension for the different large-scale dis-
cretisations are also reported. These computations have been performed on the 
CRAY-T3D computer at IDRIS in Orsay. Both of these parallel computers have 
been used with 32 processors. Since time comparisons between two approaches de-
pends on the processor, the intercommunication network, the compilers, disk usage, 
etc., we retain only the major tendencies by weighting the previous results; after 
analysing the costly parts of simulations, we identified CPU costs of initialisations 
for the FETI approach and the LATIN single-level to 1, in terms of CPU equivalent 
time (accumulated on the 32 processors). Afterwards, the FETI iteration and the 
2-level LATIN iteration for the case (a) are identified in terms of cost. Figure 6 then 
shows the evolution of error versus this CPU equivalent time. 

The cost for a direct finite element approach is 18 in terms of CPU equivalent 
time. When using the multi-frontal scheme, [3], [5], the condensed Schur comple-
ment problem has 19 875 d.o.f. and requires 329 Mb of storage. The costs are 3 for 
local condensations and forward-backward substitutions (which can be performed 
concurrently) and 2.6 for the resolution of the condensed problem (sequentially). 
Total cost of the analysis is then 5.6 in CPU equivalent time. The cost of a local 
condensation is higher than a simple factorisation due to the higher fill-in of the 
local rigidity matrix (in order to treat the boundary d.o.f. at the end). 
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One can initially note that when increasing the large-scale problem size of the 
2-level LATIN algorithm, the error indicator starts out lower at the first iteration 
because the large-scale first solution is used to initiate the algorithm. Another effect 
is the increase in the convergence rate (Figure 5), but since iteration costs are also 
increasing, the two effects cancel each other for the proposed example, (Figure 6). 

5. Conclusions 

The originality in both the use of the large time increment method and a 
substructuring approach is the major role played by interfaces, which are considered 
as structures in their own right. This leads to a "pure parallel" algorithm that can 
be improved when using a 2-level scheme. The consequence is the generation of 
a global problem to solve on the whole structure at each iteration. The resulting 
algorithm is then numerically scalable. 

The ultimate goal is the extension to non-linear structural analysis with a large 
number of d.o.f. One approach which is currently under development deals with a 
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2-level version more suited to homogenisation techniques, completely merged with 
non-incremental LATIN methods. 
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Iso-P2 Pl/Pl/Pl Domain-Decomposition/Finite-Element 
Method for the N avier-Stokes Equations 

Shoichi Fujima 

1. Introduction 

In recent years, parallel computers have changed techniques to solve problems 
in various kinds of fields. In parallel computers of distributed memory type, data 
can be shared by communication procedures called message-passing, whose speed 
is slower than that of computations in a processor. From a practical point of view, 
it is important to reduce the amount of message-passing. Domain-decomposition 
is an efficient technique to parallelize partial differential equation solvers on such 
parallel computers. 

In one type of the domain decomposition method, a Lagrange multiplier for 
the weak continuity between subdomains is used. This type has the potential to 
decrease the amount of message-passing since (i) independency of computations 
in each subdomain is high and (ii) two subdomains which share only one nodal 
point do not need to execute message-passing each other. For the Navier-Stokes 
equations, domain decomposition methods using Lagrange multipliers have been 
proposed. Achdou et al. [1, 2] has applied the mortar element method to the Navier-
Stokes equations of stream function-vorticity formulation. Glowinski et al. [7] has 
shown the fictitious domain method in which they use the constant element for the 
Lagrange multiplier. Suzuki [9] has shown a method using the iso-P2 Pl element. 
But the choice of the basis functions for the Lagrange multipliers has not been well 
compared in one domain decomposition algorithm. 

In this paper we propose a domain-decomposition/finite-element method for 
the Navier-Stokes equations of the velocity-pressure formulation. In the method, 
subdomain-wise finite element spaces by the iso-P2 Pl/Pl elements [3] are used for 
the velocity and the pressure, respectively. For the upwinding, the upwind finite 
element approximation based on the choice of up- and downwind points [10] is 
used. For the discretization of the Lagrange multiplier, three cases are compared 
numerically. As a result, iso-P2 Pl/Pl/Pl element shows the best accuracy in a 
test problem. Speed up is attained with the parallelization. 
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2. Domain decomposition/finite-element method 
for the Navier-Stokes equations 

247 

Let n be a bounded domain in R2 . Let r D ( i- 0) and r N be two parts of the 
boundary 80. We consider the incompressible Navier-Stokes equations, 

(1) 8uj8t + (u · grad)u + gradp = (1/ Re)'\12u + f inn, 
(2) divu 0 inn, 
(3) u gv on rv, 
(4) (J·n gN on rN, 
where u is the velocity, p is the pressure, Re is the Reynolds number, f is the 
external force, gv and gN are given boundary data, (} is the stress tensor and n is 
the unit outward normal to r N. 

We decompose a domain into K non-overlapping subdomains, 

(5) 

We denote by nk the unit outward normal on ank. If Ok n 01 (k i- l) includes an 
edge of an element, we say an interface of the subdomains appears. We denote all 
interfaces by r m, m = 1, ... , M. We assume they are straight segments. Let us 
define integers '"- ( m) and '"'+ ( m) by 

(6) (,.__(m) < '"'+(m)). 
Let 7k,h be a triangular subdivision of Ok. We further divide each triangle 

into four congruent triangles, and generate a finer triangular subdivision 7k,h;2. 
We assume that the positions of the nodal points in O~<+(ml and ones in 0~<-(ml 
coincide on r m· We use iso-P2 P1/P1 finite elements [3] for the velocity and the 
pressure subdomain-wise by 

- 2 1 2 (7) Vk,h {v E (C(Ok)) ; vie E (P (e)) ,e E 7k,h/2,v = 0 on 80k n rv}, 
(8) Qk,h = {q E C(Ok); Qle E P 1(e),e E 7k,h}, 

respectively, we construct the finite element spaces by Vh = TI~=l Vk,h and Qh = 
rr~=l Qk,h· 

Concerning weak continuity of the velocity between subdomains, we employ 
. the Lagrange multiplier on the interfaces. For the discretization of the spaces of 
the Lagrange multiplier defined on r m (1 $ m $ M), we compare three cases (see 
Figure 1): 

Case 1: The conventional iso-P2 P1 element, that is defined by 

(9) Wm,h = (X~<+(m),hlrm) 2 , 

where Xk,h = {v E C(Ok); VIe E P 1(e), e E 'Ik,h/2}· 
Case 2: A modified iso-P2 P1 element having no freedoms at both edges of 

interfaces [4]. 
Case 3: The conventional P1 element, that is defined by 

(10) Wm,h = (Y~<+(m),hlrm) 2 , 

where Yk,h = {v E C(Ok); VIe E P 1(e),e E 7k,h}· 

The finite element space wh is defined by wh = TI~=l Wm,h· 
We consider time-discretized finite element equations derived from (1)-(4): 
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(11) 
(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

SHO!Cill FCJIMA 

FIGURE 1. Shapes of iso-P2(left), modified iso-P2(center) and 
P1(right) basis functions for the Lagrange multiplier and a sub-
division 'Tx:,h/2 

n+l n 

1::/vhEVh, (uh t::.~uh,vh)h+b(vh,P'h)+j(vh,,\f,) 
h( n n ) -a1 uh,uh,vh 

-ao(u}',, vh), 

1::/qh E Qh, b(u~+J, qh) 0, 

1::/p,h E Wh, j(u~+ 1 ,p,h) 0. 

Forms in Problem 1 are defined by, 

K 

(u, v) = L 1 uk ·vkdx, 
k=l nk 

K 

a1(w, u, v) L 1 (wk · graduk)vkdx, 
k=l nk 

ao(u,v) 2 K 1 
Re ~ nk D(uk) ® D(vk)dx, 

K 

b( v, q) - L 1 qkdivvkdx, 
k=l nk 

AI 

j(v, p,) - L 1 (v"+(rn)- V~<_(m))f.Lrnds, 
'm=l rm 

K 

\],v) L(1 f · vkdx + 1 9N · vkds), 
k=l nk anknrN 

(, )h denotes the mass-lumping corresponding to (, ), a~ is the upwind finite element 
approximation based on the choice of up- and downwind points [10] to a 1 , and D 
is the strain rate tensor. 

We rewrite Problem 1 by a matrix form as, 

(20) 

where M is the lumped-mass matrix, B is the divergence matrix, J is the jump ma-
trix, pn is a known vector, and un+l ,Pn and An are unknown vectors. Eliminating 
un+l from (20), we get the consistent discretized pressure Poisson equation [8] of a 
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FIGURE 2. Two upwind points(W,U) and two downwind 
points(D,B) in the finite element approximation based on 
the choice of up- and downwind points(left) and a domain-
decomposition situation(right) 
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domain-decomposition version. Further eliminating pn, we obtain a system of lin-
ear equations with respect to An. Applying CG method to this equation, a domain 
decomposition algorithm [6] is obtained. It is written as follows. 

1. A (O): initial data; 

( M BT ) ( U(o) ) ( F - JT A (o) ) 
2. Solve B 0 p(O) = 0 ; 

3. R(O) := -JU(0); ~A(O) := R(0); p := (R( 0 l,~A( 0 l); 
4. For l := 0, 1, 2, ... , until p < c:cc do 

( M BT) ( ~U(l)) ( -JT~A(l)) (a) Solve B 0 ~p(l) = 0 ; 

(b) Q := J~U(ll; a(!):= pf(~A(ll,Q); 
(c) (U,P,A)(l+l) := (U,P,A)(l) +a(ll(~U,~P,~A)(ll; 
(d) R(l+ 1l := R(1l- a(llQ; 
(e) J..L := (R(l+ll,R(l+ll); f3(l) := J..L/p; P := J..L; 
(f) ~A (!+1) := R(!+l) + {3(1) ~A(!) 

In Step 2 and 4a, we solve the pressure(P(0 ) or flp(t)) separately by the consistent 
discretized pressure Poisson equation (its matrix is BM- 1 BT) and afterwards we 
find the velocity(U(o) or ~U(ll). They are subdomain-wise substitution compu-
tations since BM- 1 BT is a diagonal block matrix and it is initially decomposed 
subdomain-wise in the Cholesky method for band matrices. 

REMARK 1. The quantity Am,h corresponds to a· n~~:+(m) I'Ym. 
REMARK 2. In the implementation, an idea of two data types is applied to the 

Lagrange multipliers and the jump matrix. (Each processor handles quantities with 
respect to 80k. They represent either contributive quantities from 80k to U~= 1 r m 

or restrictive quantities from U~= 1 r m to 80k. The detail is discussed in [5].) The 
idea simplifies the implementation and reduces the amount of message-passing. 

REMARK 3. In order to evaluate a~(uh,uh,vh), we need to find two upwind 
points and two downwind points for each nodal point (Figure 2(left)). In the 
domain-decomposition situation, some of these up- and downwind points for nodal 
points near interfaces may be included in the neighboring subdomains. In order to 
treat it, each processor corresponding to a subdomain has geometry information 
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FIGURE 3. An example of domain-decomposition(4 x 4) and the 
triangulation(N = 32) 

of all elements which share at least a point with neighboring subdomains (Figure 
2(right)). The processors exchange each other the values of uR before the evaluation. 
Hence the evaluation itself is parallelized without further message-passing. 

3. Numerical experiments 

3.1. Test problem. Let 0 = (0, 1) X (0, 1) and rv =an (rN = 0). The exact 
stationary solution is u(x, y) = (x2y +y3 , -x3 - xy2 f, p(x, y) = x3 + y3 -1/2, and 
the Reynolds number is set to 400. The boundary condition and the external force 
are calculated from the stationary N avier-Stokes equations. 

We have divided 0 into a union of uniform N x N x 2 triangular elements, where 
N = 4, 8, 16 or 32. We have computed in two domain-decomposed ways, where 
the number of subdomains in each direction is 2 or 4. Figure 3 shows the domain-
decomposition and the triangulation in the case N = 32 and 4 x 4 subdomains. 
Starting from an initial condition for the velocity, the numerical solution is expected 
to converge to the stationary solution in time-marching. If maxk,i iu:k,i -u~.i 1 1/ D..t < 
10-5 is satisfied, we judge that the numerical solution has converged and stop the 
computation. Computation parameters are set as D..t = 0.24/N, a = 2.0 and 
cca = w-20 (a: is the stabilizing parameter of the upwind approximation). 

Figure 4 shows relative errors between the numerical solutions (uh,Ph, Ah) and 
the exact solution ( u, p, .X). They are defined by 

maxmaxi.Xh- .XI/maxp, 
m I'm 0 

where 

(We normalize the error of the Lagrange multiplier with maxo p, since this quantity 
is independent of K and the pressure is a dominant term in the stress vector. 
I·I(Hl(Ok))2 denotes the H 1 semi-norm.) Results of the non-domain-decomposition 
case are also plotted in the figure. We can observe that the errors of the velocity 
and the pressure realize the optimal convergence rate of the iso-P2 P1/P1 elements, 
that is O(h), regardless of choice of Wm,h· In the first case (iso-P2 P1 element for 
Wm,h), the error of the Lagrange multiplier does not converge to 0 when h tends 
to 0. It may indicate the appearance of some spurious Lagrange multiplier modes, 
since the degree of freedom of the Lagrange multiplier is larger than that of jump of 
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the velocity in the choice. In the latter two cases the convergence of the Lagrange 
multiplier has also observed. The third case (P1 element for W m,h) shows the best 
property with respect to the convergence of the Lagrange multiplier. 

Since the conventional P1 element has the smallest degree of freedom of the 
Lagrange multiplier, it can decrease the amount of computation steps in a iteration 
time in the CG solver. Hence we adopt iso-P2 P1(u)/P1(p)/P1(A.) element in the 
following. 

3.2. Cavity flow problem. We next computed the two-dimensional lid-driv-
en cavity flow problem. The domain 0 = (0, 1) x (0, 1) is divided into a uniform 
N x N x 2 triangular subdivision, where N = 24, 48 or 112. The Reynolds number 
is 400(when N = 24, 48) or lOOO(N = 112). We chose b.t = 0.01(N = 24), 
0.004(N = 48) or 0.001(N = 112), o: = 2 and Ecc = 10-16 . We computed 
in several domain-decomposition cases among 1 x 1, ... , 8 x 6, 8 x 7 (The case 
N = 112 and 2 x 2 domain-decomposition was almost full of the memory capacity 
in the computer we used1 , in this case each subdomain had 6272 elements). 

Figure 5(left) shows computation times per a time step (the average of the 
first 100 time steps). We see that the computation time becomes shorter as the 
number of subdomains (i.e. processors) increases, except for the non-domain-
decomposition case, in which case the performance is almost same with the 2 x 2 
domain-decomposition case. The velocity vectors and the pressure contours of the 
computed stationary flow in 4 x 4 subdomains are shown in Figure 6. We can 
observe that the flow is captured well in the domain decomposition algorithm. 

REMARK 4. Since the number of elements in a subdomain is proportional to 
K- 1 , the amount of computation per a CG iteration time is in proportion to 
K-1.s ,...., K-1 (the former is due to the pressure Poisson equation solver). We 
have observed that the numbers of CG iteration times per a time step are about 
O(K0·35 ) when K is large (Figure 5(right)). Thus the amount of computation in a 

1 Intel Paragon XP /Sin INSAM, Hiroshima University. 56 processors, 16MB memory/proc. 
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FIGURE 5. Domain-decomposition vs. computation time(left) and 
the number of CG iteration times(right) per a time step 

FIGURE 6. Velocity vectors and pressure contour lines of the lid-
driven cavity flow problem, Re = 400, on a uniform 24 x 24 x 2 
triangular subdivision and a 4 x 4 domain-decomposition 

time step is estimated to be proportional to K-1.1 5 "' K- 0·65 . Obtained speed up, 
about O(K-0·7 ) in the case of N = 112, agrees with the estimation. 

4. Conclusion 

We have considered a domain decomposition algorithm of the finite element 
scheme for the Navier-Stokes equations. In the scheme, subdomain-wise finite ele-
ment spaces by iso-P2 Pl/Pl elements are constructed and weak continuity of the 
velocity between subdomains are treated by a Lagrange multiplier method. This 
domain decomposition algorithm has advantages such as: (i) each subdomain-wise 
problem is a consistent discretized pressure Poisson equation so that it is regular, 
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(ii) the size of a system of linear equations to be solved by the CG method is 
smaller than that of the original consistent discretized pressure Poisson equation. 
For the discretization of the Lagrange multiplier, we compared three cases: the 
conventional iso-P2 Pl element, a modified iso-P2 Pl element having no freedoms 
at both edges of interfaces, and the conventional Pl element. In every case, we 
checked numerically in a sample problem that the scheme could produce solutions 
which converged to the exact solution at the optimal rates for the velocity and 
the pressure. In the latter two cases we have also observed the convergence of the 
Lagrange multiplier. Employing the conventional Pl element, we have computed 
the lid-driven cavity flow problem. The computation time becomes shorter when 
the number of processor increases. 
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Overlapping Nonmatching Grids Method: 
Some Preliminary Studies 

Serge Goossens, Xiao-Chuan Cai, and Dirk Roose 

1. Introduction 

In this paper, we report some preliminary studies of a finite difference method 
on overlapping nonmatching grids for a two-dimensional Poisson problem. The 
method can be regarded as an extension of the Generalised Additive Schwarz 
Method (GASM). GASM was originally developed as a preconditioning technique 
that uses special transmission boundary conditions at the subdomain interfaces. By 
involving a nonmatching grids interpolation operator in the subdomain boundary 
conditions, we show that the method can also be used as a discretisation scheme. 
We focus only on the error issues. 

2. Generalised Additive Schwarz Method 

We first recall briefly the GASM. Suppose we wish to solve Au = f where A 
represents the discretisation of a PDE defined on a domain which is partitioned 
into nonoverlapping subdomains. Let R;: D f--> !1; denote the linear restriction 
operator that maps onto subdomain i by selecting the components corresponding 
to this subdomain. The matrix M; = R;ARr denotes the principal submatrix of 
the matrix A associated with subdomain !1;. The result of applying the GASM can 
be written as a sum of the solutions of independent subdomain problems, which 
can be solved in parallel: M- 1 = I:f=1 Rr M;- 1 R;. 

We describe this GASM for the case of two subdomains separated by the in-
terface r. A more detailed description has been given by Tan [12] and Goossens et 
al. [2]. At the heart of the GASM lies an extension of the subdomains to slightly 
overlapping grids. With a proper definition of the overlap, the restrictions R; can 
be defined in such a way that the original discretisation is distributed across the 
subdomain operators M;. Figure 1 illustrates the extension process. In case the 
classical five-point star stencil is used, an overlap of one mesh width is sufficient. 
After extension towards overlap, and thus duplication of Ot and Or into Ol and Or: 
respectively, we obtain an enhanced system of equations Au = f in which we still 
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FIGURE 1. Extension of the subdomains to slightly overlapping grids. 

have to specify the relation between the overlapping unknowns. The obvious way 
is just to state that the values in the duplicated subdomains Or and Or should be 
copied from the values in the original subdomains Ot and Or respectively. This is 
known as the Dirichlet-Dirichlet coupling. 

Tang [15] has shown that fast convergence can be obtained by choosing a 
good splitting, instead of increasing the overlap when a Schwarz enhanced matrix 
is used. Tan [12] has shown that the spectral properties of the preconditioned 
operator AM-1 and thus the convergence properties of a Krylov subspace method 
preconditioned by a GASM, are improved by pre-multiplying the enhanced linear 
system Au = f with a properly chosen nonsingular matrix P. This has been 
exploited by Goossens et al. [2] to accelerate the solution of the Shallow Water 
Equations. 

This pre-multiplication with P boils down to imposing more general conditions 
at the subdomain interfaces. This approach has originally been introduced by 
Lions [5] and subsequently been used by several authors. Hagstrom et. al. [3] 
advocate the use of nonlocal transmission conditions. Tan and Borsboom [13] 
have applied the Generalised Schwarz Coupling to advection-dominated problems. 
Nataf and Rogier [8, 9] have shown that the rate of convergence of the Schwarz 
algorithm is significantly higher when operators arising from the factorisation of the 
convection-diffusion operator are used as transmission conditions. Based on these 
results, Japhet [4] has developed the so-called optimised order 2 (002) conditions 
which result in even faster convergence. 

The submatrices Ctr, Cu, Crr and Crt represent the discretisation of the trans-
mission conditions and can be chosen freely subject to the condition that the ma-
t . C ( Ctr -Cu ) . . 1 Th. . . t th G 1" d nx = -Crr Crt remams nonsmgu ar. 1s g1ves nse o e enera 1se 
Additive Schwarz Preconditioners which are thus based on the enhanced system of 
equations Au= f: 

(1) 

An A11 
A11 Au 
0 Cu 
0 -Crt 
0 0 
0 0 

0 0 
Atr 0 
Ctr -Cu 

-Crr Crt 
0 Arl 
0 0 

0 0 
0 0 

-Clr 0 
Crr 0 
Arr Ar2 
A2r A22 

/1 
fl 
0 
0 
fr 
h 

The GASM differs from the classical Additive Schwarz Preconditioner intro-
duced by Dryja and Widlund [1] in that the transmission conditions at the inter-
faces, i.e. the boundary conditions for the subdomain problems, can be changed in 
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FIGURE 2. Stencil for interpolation and nonmatching grid. 

order to improve the spectral properties of the preconditioned operator. An excel-
lent description of the classical Additive Schwarz Preconditioner is given by Smith 
et al. [10]. 

3. Nonmatching Grids 

The main topic addressed in this paper is a technique aiming at expanding the 
applicability of this GASM to nonmatching grids. Tan and Borsboom [14] have 
already shown how to apply the GASM on patched subgrids. The domain they 
are using, consists of a set of naturally ordered parallelograms, all of which have 
the same mesh width tangent to the interface. The mesh widths normal to the 
interface can be different on opposite sides of the interface. We want to alleviate 
this restriction and present a technique which also allows the GASM to be used 
when the mesh widths tangent to the interface are different on the opposite sides 
of the interface. The fact that nonmatching grids are being used implies that 
interpolation is necessary to transfer information from one grid to the other grid. 

3.1. Consistence of grid interpolations. The following definition encap-
sulates an important concept in the nonmatching grids case. 

DEFINITION 1 (Consistent Interpolation). Let hr--.h, be the interpolation op-
erator from Oi to Oi with mesh parameters hi and hi. SupposeD is the differential 
operator to be approximated by a finite difference operator Di ( Lh,, hr--.h,), which 
depends on the usual finite difference operator Lh, and on hr-•h,. We claim that 
the interpolation operator hr-+h; is consistent on ni if 

(2) 

for all X E 01, the part of Oi that is overlapped. 

The rest of this section is devoted to consistency. Bilinear interpolation is not 
sufficient for the interpolation operator h 1 _,h, . Figure 2 shows the stencil. The 
value of v1 is given by v1 = (1- a:)(1- (3)u1 + a:(1- (3)u2 + (1- a)(3u3 + af3u4 
where a: = (Xv1 - Xu 1 )/(Xu2 - Xu 1 ) and (3 = (Yv 1 - YuJ/(Yu 3 - Yu 1 ). If in the 
discretisation of - '\72 u in 0 1, the point in Or does not match with a point in Or 
and its value is computed by bilinear interpolation from points in Or and 02, then 
this discretisation is not consistent. Hence higher order interpolation is required. 

In [11], a fourth order interpolation formula was constructed with a small 
interpolation constant for smooth functions satisfying an elliptic equation of the 
form -(Aux)x- (Buy)y +au= j, where A, B > 0 and a 2: 0. This interpolation 
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formula uses a 4 by 4 stencil. Consequently, the GASM constructed with this 
interpolation formula requires an extension of at least two grid lines. 

Instead of using bilinear interpolation to compute v1 from u1 , u2 , u3 and u4 , 

which may result in an inconsistent discretisation, we discretise the partial differen-
tial equation on the stencil formed by u,, u2, u3, U4 and v,. We seek the coefficients 
'Yo, /'1 , /'2, /'3 and ')' 4 in 

L( a, (3) ')'oU (0, 0) +/'I u ( (1 - a)h, (1 - (3)h) + 1'2U ( -ah, (1 - (3)h) 

(3) + ')'3U ( -ah, -(3h) + ')'4U ((1- a)h, -(3h) 

so that a consistent approximation to ( Uxx + Uyy )h2 /2 at VI = u(O, 0) is obtained. 
This can be done using the Taylor expansion for u(x, y) about the origin: u(x, y) = 
u+uxx+uyy+uxxx2 /2+uxyxy+uyyY2 /2+0(h3). We assume lxl :Shand IYI :S h 
so that the remainder term can be bounded by Ch3 . The requirements that the 
coefficients of u, Ux, uy and Uxy vanish together with the requirements that the 
coefficients of Uxxh2 /2 and Uyyh2 /2 equal1 in the Taylor expansion of (3), yield an 
overdetermined system C g = c: 

1 1 1 1 1 

(E)~ 
0 

0 (1 - {3) (1 - {3) -{3 -{3 0 

(4) 0 (1- a) -a -a (1- a) 0 
0 (1 - {3)2 (1- !3? /32 /32 1 
0 (1- a? a2 a2 (1- a)2 1 
0 (1- a)(1- /3) -a(1- /3) af3 -(1- a)f3 0 

This overdetermined system Cg = c can only have solutions if the determinant of 
the enhanced matrix 6 = ( C I c) is zero: 

(5) det 6 = det ( C I c) = ((3 - a)( a + (3 - 1). 

Hence a solution can only exist when a = (3 or a+ (3 = 1, i.e. when the point v1 lies 
on one of the diagonals of the square, formed by u1, u2, U3 and u4 . The solution is 

(6) g = ( -2- (1- a)/a- a/(1- a) a/(1- a) 1 (1- a)/a 1 )T 

when a = (3 and when a + (3 = 1 it is 

(7) g= ( -2-(1-a)/a-a/(1-a) 1 (1-a)/a 1 a/(1-a) )T. 

The truncation error is determined by substitution of this solution in (3): 

where C01 = 1- 2a in case a= (3 and C01 = 2a -1 when a+ (3 = 1. Hence an O(h) 
approximation to Uxx + Uyy can be obtained, an O(h2) approximation can only be 
obtained when a = (3 = 1/2: 

(9) L(a, (3) = h2 (uxx + Uyy) /2 + h4 (uxxxx + 6Uxxyy + Uyyyy) /96 + O(h6 ). 

In summary, a consistent discretisation exists only if VI is in the center or on 
one of the diagonals of the square formed by UI, u2 , u3 and u4 . The truncation error 
is O(h2 ) when VI is in the center and is O(h) when VI is on one of the diagonals. 
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3.2. Error Analysis. Miller [6] has proven the convergence of the Schwarz 
algorithm based on a maximum principle. We restrict ourselves here to showing that 
second order accuracy in the L 00 norm is obtained when a consistent interpolation 
is used. The convergence of the GASM will be studied elsewhere. 

We denote by p = ( i, j) an index pair. ln is the set of index pairs of grid points 
in the domain 0. We make the following assumptions. 

1. For all p E ln: Lh has the form: LhUp = -cpup + l:k CkUk where the 
coefficients are positive and the sum over k is taken over mesh points which 
are neighbours of p. 

2. For all p E ln: cP 2 l:k Ck· 
3. The set Jn is connected. By definition a point is connected to each of its 

neighbours occurring in (1) with a nonzero coefficient. By definition a set 
is connected if, given any two points p and q in ln, there is a sequence of 
points p =Po, Pl, ... , Pm+l = q, such that each point Pi is connected to 
Pi-1 and Pi+l, fori= 1, 2, ... , m. 

4. At least one of the equations must involve a Dirichlet boundary condition. 
The maximum principle as given by Morton and Meyers [7] can briefly be stated 
as follows. 

LEMMA 2 (Maximum Principle [7]). Suppose that Lh, Jn and Jan satisfy all 
the assumptions mentioned above and that a mesh function up satisfies Lh up 2 0 
for all p E ln. Then Up cannot attain a nonnegative maximum at an interior point: 

(10) maxpEJo Up ::; max {maxaEJvn Ua, 0}. 
THEOREM 3. Suppose a nonnegative mesh function <I>p is defined on Jn U Jan 

such that Lh<I>p 2 1 for all p E Jn and that all the assumptions mentioned above 
are satisfied. Then the error in the approximation is bounded by 

(11) lepl ::; maxaEJan <I> a maxpEJo ITpl 
where Tp is the truncation error. 

To prove second order accuracy in the L 00 norm, we show that the discreti-
sation of V'2 ( -u) = f and the coupling equations satisfy the assumptions (1) and 
(2) for the maximum principle. The comparison function is chosen as <I>(x, y) = 
((x- J..L) 2 + (y- v) 2 ) /4, resulting in Lh<l>p = 1 for all p E ln. The scalars J..L and v 
are chosen to minimise the maximum value of this function <I>(x, y) on the boundary 
80. The classical five-point discretisation of V'2 u 

(12) LhiuP = (ui-l,j + ui,j-1- 4ui,j + ui+l,j + ui,j+l) /h~ 
satisfies the assumptions for the maximum principle. In case (9) is used to obtain 
an equation for v1 , the assumptions (1) and (2) for the maximum principle are 
satisfied since this equation has ck = 1/(2h7) and Cp = 4/(2h~). For problems with 
at least one Dirichlet boundary condition, the standard error analysis using the 
maximum principle yields second order accuracy in the L 00 norm. The proof is 
essentially the same as the one given by Morton and Meyers [7]. 

If the point v1 is not in the center of the square formed by u1, u2, u3 and U4, 

we have to use (8) to obtain an equation from which v1 can be determined. In 
this case we still have second order accuracy, but a different comparison function 
must be defined in 0 1. This is analogous to the classical result that second order 
accuracy is obtained with a second order discretisation of the partial differential 
equation and only first order discretisation of the boundary conditions. 
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TABLE 1. Results for u1 (x, y) = exp( -x2 - y2 ). 

Results for ho = 2h1. 
no n1 Loo in block 0 ratio Loo in block 1 
6 11 0.00173386 0.00160317 
11 21 0.000492551 3.52016 0.000439111 
21 41 0.000128595 3.83025 0.000113528 
41 81 3.28033e-05 3.92018 2.87286e-05 
81 161 8.28181e-06 3.96089 7.21997e-06 
no n1 L2 in block 0 ratio L2 in block 1 
6 11 0.0006622 0.00051287 
11 21 0.000194007 3.41328 0.000137398 
21 41 5.20312e-05 3.72867 3.51015e-05 
41 81 1.34408e-05 3.87114 8.8388e-06 
81 161 3.41357e-06 3.93746 2.2156e-06 

Reference results for ho = h1. 
no n1 Loo in block 0 L2 in block 0 Loo in block 1 
6 6 0.00288425 0.0010893 0.00288425 
11 11 0.000736578 0.000280968 0.000736578 
21 21 0.000185341 7.12195e-05 0.000185341 
41 41 4.63929e-05 1. 79235e-05 4.63929e-05 
81 81 1.16036e-05 4.49551e-06 1.16036e-05 
161 161 2.90103e-06 1.1257e-06 2.90103e-06 

4. Numerical Examples 

The testcases are concerned with the solution of 

-V'2u = f on nand u = 9 on an. 

ratio 

3.65094 
3.86787 
3.95174 
3.97905 

ratio 

3.73273 
3.91431 
3.9713 
3.98935 

L2 in block 1 
0.00117384 
0.000299917 
7.41716e-05 
1.83303e-05 
4.54876e-06 
1.1325e-06 

259 

The domain n = no U n1 consists of two subdomains no = ( -1, 0) X ( 0, 1) and 
n 1 = (-h1,1) x (0,1). The coordinates of the grid points are (xi,y1), where 
Xi = Xrer+ih and Y1 = Yrer+jh, fori = 0, 1, ... , (no -1) for block 0; i = 0, 1, ... , n1 
for block 1 and j = 0, 1, ... , (n- 1). The reference point for block 0 is ( -1, 0) and 
for block 1 it is ( -h1, 0). The grid sizes are ho = 1/(no- 1) and h1 = 1/(n1 - 1). 
The interface r is defined by X= -hi/2. The right-hand side f and the boundary 
conditions 9 are chosen such that the exact solution is u1 resp. u2 in the testcases, 
where u1(x,y) = exp(-x2 - y2) and u2(x,y) = exp(o:x)sin(j3y), where o: = 2 and 
j3 = 811". 

By definition the error is ei,j = u(xi, y1) - ui,j where u(xi, y1) is the exact 
solution and ui,j is the computed approximation. In Tables 1-3 we list both the 
Lao norm and L2 norm of the error, defined by L00 (e) = maxi,jlei,jl and L2(e) = 
. / 1 "n-1 "n-1 2 V n 2 L.Ji=O L.Jj=O ei,j' 

The results for - V'2u1 = !I on a nonmatching grid are given in Table 1. We 
also give the results for the same problem on matching grids. This allows us to 
verify the accuracy of the results. In Table 2 we give the results for -V'2u2 = f2. 
The ratios in the fourth and sixth columns approach 4 as the mesh widths are 
divided by 2, showing that the method is second order accurate. 

To emphasize the importance of consistent interpolation, we give in Table 3 the 
results for - V'2u2 = h when bilinear interpolation is used. In this case (2) is not 
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TABLE 2. Results for u2 (x, y) = exp(2x) sin(81ry). 

Results for ho = 2h1. 
no n1 Loo in block 0 ratio Loo in block 1 ratio 
6 11 7.23983 4.21601 
11 21 0.48669 14.8756 0.718661 5.86648 
21 41 0.102748 4.73673 0.17356 4.14071 
41 81 0.0249472 4.11862 0.0453624 3.82608 
81 161 0.00656458 3.80027 0.011314 4.0094 
no n1 £2 in block 0 ratio £2 in block 1 ratio 
6 11 3.20061 1.66157 
11 21 0.204226 15.6719 0.303296 5.47838 
21 41 0.0435961 4.6845 0.0748621 4.0514 
41 81 0.01074 4.05923 0.0188233 3.9771 
81 161 0.00269816 3.98049 0.00473253 3.97743 

Reference results for ho = h1. 
no n1 Loo in block 0 £2 in block 0 Loo in block 1 £2 in block 1 
6 6 18.0965 6.69002 47.1923 21.3855 
11 11 0.717338 0.264132 3.3735 1.40949 
21 21 0.136687 0.0502781 0.718661 0.301632 
41 41 0.0321275 0.011811 0.17356 0.074284 
81 81 0.00831887 0.00290772 0.0453624 0.0186726 
161 161 0.00207194 0.000724103 0.011314 0.00469548 

TABLE 3. Results for u2(x, y) = exp(2x) sin(81ry) when bilinear 
interpolation is used. 

no n1 Loo in block 0 Loo in block 1 £2 in block 0 £2 in block 1 
7 12 9.63784 7.65477 4.32959 2.7709 
12 22 0.847174 0.995454 0.262247 0.366744 
22 42 0.142845 0.220307 0.048968 0.082186 
42 82 0.0315985 0.0496966 0.011165 0.0197278 
82 162 0.00710074 0.0118877 0.00271561 0.00485607 

satisfied. The results are for the same problem but solved on shifted grids. The 
reason for using shifted grids is that an interpolation is required for every point in 
Or, while for grids as in Fig. 2 only half of the points in Or require an interpolation 
since the other points match some point in Or. The coordinates of the grid points 
are now given by (xi,Yj) where Xi= Xref + (i- ~)hand Yj = Yref + (j- ~)h for 
i = 0, 1, ... , (n- 1) and j = 0, 1, ... , (n- 1). The reference point for block 0 is 
( -1, 0) and for block 1 it is (0, 0). The grid sizes ho = 1/(no-2) and h1 = 1/(nl-2) 
are the same as in the previous case. Since an inconsistent interpolation is used, 
the error is larger. 

5. Concluding Remarks 

We studied an overlapping nonmatching grids finite difference method. A con-
sistency condition is introduced for the nonmatching grids interpolation operator, 
and under the consistency condition we proved second order global accuracy of the 
discretisation scheme. 
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Nonconforming Grids for the Simulation of 
Fluid-Structure Interaction 

Celine Grandmont and Yvon Maday 

1. Introduction 

Fluid structure interaction phenomena occur in a large number of applications 
and the literature on the subject is quite important, both from the practical and 
implementation point of view. Nevertheless, most of the applications are focused 
on a particular range of situations in which the domain that is occupied by the fluid 
is essentially assumed to be independent on time. Recently, a lot of effort has been 
made on the numerical simulations of fluid structure interactions in the case where 
this assumption is no more true and, in particular, in situations where the shape of 
the domain occupied by the fluid is among the unknowns of the problem. We refer 
for instance to the works [9, 10, 11] and also to some web pages1 where medical 
and engineering applications are displayed. We refer also to [6] for an analysis of 
the mathematical problem. 

This new range of applications is made possible thanks to the increase in com-
puting power available and the recent advances in CSD and CFD. Indeed, the 
current implementations for the simulation of the coupled phenomena are mostly 
based on the effective coupling of codes devoted to fluid simulations for the ones, 
and structure simulations for the others. Such a coupling procedure allows for flex-
ibility in the choice of the separate constitutive laws and modelisations of the fluid 
and structure separately and allows also for the rapid development of the simu-
lation of the interaction phenomenon. This flexibility is however at the price of 
the definition of correct decoupling algorithms of the different codes that lead to 
a resolution of the coupled situation. In this direction, some attention has to be 
given for the time decoupling and we refer to [11, 10, 8] for numerical analysis of 
this part. Another problem has to be faced which consists in the coupling of the 
spatial discretizations. This difficulty, already present in the former works (where 
the shape of the fluid part is fixed), is certainly enhanced now that the time de-
pendency has increased by one order of magnitude the size of the computations. 
Indeed, it is mostly impossible to afford the same mesh size on the fluid and on 
the structure computational domains, especially in three dimensional situations. 

1991 Mathematics Subject Classification. Primary 65M55; Secondary 65M60, 46E25, 20C20. 
1www.crs4.it, www.science.gmu.edu/-rlohner/pages/lohner.html 
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Another reason for this difficulty appears when different definitions of finite ele-
ments are naturally introduced in the structure (hermitian for plates) and the fluid 
(lagrangian for fluid). 

The problem of coupling different discretizations occurs not only in the case 
of the interaction of different phenomena, but also in cases where, taking benefit 
of a domain decomposition, one wants to use different discretizations on different 
subdomains so as to optimise the discretization parameters and the final CPU time. 
In cases where, a priori, (exact) continuity should be imposed on the unknown 
solutions we have to face to the same difficulty as before for similar reasons. The 
mortar element method [1] has been proposed in this frame to produce an optimal 
approximation in case of variational approximations of elliptic and parabolic partial 
differential equations. 

In this paper we state the main results concerning different ways of impos-
ing these different discrete continuities with a particular interest to the coupling 
conditions that lead to the optimality of the global approximation. 

The modelization that we shall consider here is the two or three dimensional 
incompressible Navier Stokes equations, for the fluid, and a linear elasticity for the 
structure. In addition, the structure will be assumed to be of small thickness in 
one dimension so that a one or two dimensional behaviour of beam or plate type 
will be used. 

2. Formulation of the continuous and discrete problems 

Let OF(t) be the (unknown) domain occupied by the fluid at any timet during 
the simulation, we consider that the boundary aflF(t) is decomposed into two Open 
parts : 

aoF(t) = ro u r(t) 

where fo is independent of time and the (unknown) part r(t) is the interface 
between the solid and the fluid. Note that f(t) coincides with the position of 
the structure at time t. In this fluid domain we want to solve the Navier Stokes 
equations : Find u and p such that 

(1) { au 
at - IJ~U + '\Jp + u.'\Ju = f 

div u = 0 
in OF(t), 
in OF(t), 

these equations are complemented with appropriate boundary conditions over f 0 

(that we shall take here as being of homogeneous Dirichlet type on the velocity) 
and of coupling type over f(t) (that we shall explicit in a while). We consider 
now the structure part, that is assumed to be set in a Lagrangian formulation, i.e. 
the unknowns will be the displacement of the structure points with respect to a 
reference configuration. Under the assumptions we have done on the structure, we 
have a reference set 0~ (that can be the position of the structure at rest) and the 
position of the structure in time is parametrised by the mapping 

X f-+ X+ d(x, t) 

from 0~ onto Os(t) that coincides with r(t). The equations on b is here implicitly 
given in an abstract variational framework : find d such that d(., t) E Y and for 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



264 CELINE GRANDMONT AND YVON MADAY 

any bEY 

(2) i ()2d 
~ 2 (x, t)b(x)dx + a(d(., t), b)= G(b)(t) oo ut 

s 

Here Y is some appropriate Hilbert space and G is the outside forcing term that 
is applied to the structure. We shall assume in what follows that this forcing term 
only results from the interaction with the fluid and is equal to the fluid stresses on 
the interface r(t). The bilinear form a is assumed to take into account the elastic 
behaviour of the structure and is assumed to be elliptic over Y. The remaining 
constraint is the coupling between the fluid velocity and the displacement. Actually 
we want to express the fact that the fluid sticks to the boundary f(t), and thus 

8d 
Vx E rl~, u(x + d(x, t), t) = ot (x, t) 

Assuming that we are able to give a proper definition to the space L2 (rlp(t)) of 
all measurable functions defined over rlp(t) with square integrable and H 1 (rlp(t)) 
its subspace of all elements the gradient of which belongs to L 2 (rlp(t)), we first 
set HJ.r0 (rlp(t)) as the subspace of H 1 (rlp(t)) of all functions that vanish over f 0 , 

then X(t) = (HJ,r0 (rlp(t))?, and we propose a global variational formulation of 
the coupled problem : find ( u, p, d) with 

\It, u(., t) E X(t) 
Vt, p(., t) E L 2 (rlp(t)) 

(3) Vt, d(., t) E Y 
8d 

Vt, Vx E fl~, u(x + d(x, t), t) = ot (x, t) 

such that, for any ( v, b) in the coupled space V defined as 

v = {(v, b) E X(t) X y I v(x+ d(x,t)) = b(x), Vx En~}' 
the following equation holds 

{ ouv+vi \?u\?v+ { u.\7u.v+1 p\?.v 
lstF(t) 0t nF(t) lstF(t) !lF(t) 

1 ()2d 1 + ~b + a(d, b)= fv, V(v, b) E V, 
n~ ut !lF(t) 

{ \?.u q = 0, Vq E L2 (rlp(t)). 
JoF(t) 

(4) 

It has already been noticed (see eg [3] and [6]) that, provided that a solution exists 
to this system, it is stable in the following sense 

(5) lluiiL=(O,T;£2(!1F(t)))n£2(0,T;H 1 (!1F(t))) :S c(f) 
and 

(6) lldllwt=(o.T;£2(n~))nL=(o,T;Y) :S c(f) 
Actually it is the kind of stability that we want to preserve in the spatial discretiza-
tion. To start with, we discretize the reference configuration fl~ with an appropriate 
finite element mesh of size h and associate an appropriate finite element space Yh. 
We have now to determine a discretization associated to the fluid part. There are 
many ways to proceed. Here we shall view the domain rlp(t) as the range, through 
some (time dependent) one to one mapping <T>(t), of some domain {2F (e.g. the 
initial domain rlp(O) and we shall take this example hereafter). We assume also 
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that the boundary of the domain OF is composed of the structure reference do-
main 08 (0) and a part f'0 associated to the fixed portion fo. We shall mesh OF 
(with a triangulation of size H) and define over this (fluid) reference domain an 
acceptable couple (XH, MH) of finite element spaces for the approximation of the 
Stokes problem (we refer to [5] or [2] for more about this question). We then use 
the mapping q>(t) to define the mesh and the appropriate spaces over OF(t). The 
major question is then : how is defined the mapping from OF onto nF(t)? 

Of course, it has to coincide in some sense with x + dh(x, t). Hence we define 
an operator 1rH- that will allow to associate to each x + dh(x, t) a discrete position 
of the interface 1rH- ( x + dh ( x, t)) adapted to the mesh (of size H) that exists on the 
side 00F \ f'o. From this position 1rH(x + dh(X, t)) extended to f'o by the identity 
(that is thus only given over the boundary of OF) we define, by prolongation, a 
mapping q> H(t) that is a finite element function over the mesh of OF(O). This 
mapping provides, at the same time, the domain OH,F(t), the mesh on this domain 
and the spaces of discretization (XH(t) and MH(t)) and finally the velocity of the 
mesh u 'H that verifies 

(7) u'H(1rH-(x + dh(x, t)), t) = 1rH-( 0~h (x, t)) 

In order to define the discrete problem associated to (4), we first give the proper 
interpretation at the discrete level of the equality between the velocity of the fluid 
and the velocity of the structure. Of course, the equality all over the interface 
cannot be exactly satisfied, this is why we have to introduce again a projection 
operator 7rH from the h mesh onto the Hone. We introduce the discrete equivalent 
of V as follows 

and we look for a solution (uH,PH,dh) E XH(t) x MH(t) x Yh such that 

(8) 

and of course complemented with the coupling condition 

(9) 

Note that we have chosen here, as is often the case, to treat the nonlinear 
convection terms in a skew symmetric way. 

It is an easy matter to note that ( UH' a~h) is an admissible test function since 
from (9), it satisfies the coupling condition on the interface. By plugging this choice 
of test functions in equation (8) and using the discrete incompressibility condition 
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in ( 8) we first get 

{ ~au~ + v { (VuH )2 + { u~(t) uH-.n 
JflH,F(t) 2 at 2 lnH,F(t) J['H(t) 2 

1 a dh adh adh 1 
+ 0 at2 at+ a(dh, at)= fuH, 

fl 5 flH,F(t) 

Reminding the Taylor derivation theorem about integral derivatives, and recalling 
that the velocity of the interface is uH-, we end at 

~~ { u~ + v { (VuH)2 

2 dt JflH,F(t) JflH,F(t) 

1 d r (adh) 2 1 d 
+2 dt }flo at + 2 dt a(dh, dh) :S llfll£2(flH,F(t)) lluHII£2(flH,F(t)) 

s 

which, similarly as in the continuous case (5),(6) leads to a stability result (and 
thus to an existence result on any fixed time) of the discrete solution 

lluH IIL=(o,T;H1 (flH,F(t)))nH 1 (O,T;£2 (nH,F(t))) 

+lldhiiL=(O,T;Hl(fl~)nWl·=(O,T;£2(fl~) :S C(f) 
(10) 

Now that this problem is set, we want to understand how to define the operator 
7rH so as to obtain an optimal error that could read 

(11) 
llu- uHIIP(O,T;Hl) +liP- PHIIP(O,T;£2) +lid- dhiiL=(o,T;H 1 ) 

:S c~nt llu- VHII£2(0,T;H 1 ) +~~liP- QHIIP(O,T;£2) + ir! lid- bhiiL=(O,T;H 1 )· 

This error analysis is far out of hand since currently, as far as we know, no gen-
eral existence result is available on the continuous coupled problem in the general 
case (see however [6]). Nevertheless, since this discretization question is mainly 
related to the spatial discretization, we present in the following section the numer-
ical analysis of a simplified steady problem in which we believe that all the main 
features for the definition of the coupling operator 1r H are present. 

3. Steady State Study 

We shall degenerate here the original problem as follows: 
• the problem is steady 
• the "fluid equations" are replaced by a Laplace equation 
• the structure has only a normal displacement that is modelled through a 

fourth order equation 
We consider the problem where a Laplace equation is set on an unknown domain 
that is delimited over an edge, the equation of which is determined through a fourth 
order equation in the right hand side of which stands the normal derivative of the 
solution to the Laplace equation. We denote by n =]0, 1[2 the unit square of IR2 . 

We take two given functions f and g respectively in (L2 (JR2 )) 2 and H-2 (0, 1). 
We are looking for v = (v1 ,v2 ) E (HJ(<p(d)(D))) 2 such that: 

(12) 
f in <p(d)(D), 

o over a<p(d)(n), 
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and dE HJ(O, 1) such that 

(13) { ~:~ 
d~ d(1) 

g- ((\7v) o 'P(d) cof \7'P(d).n)2 

d~ d(O) = d(1) = d(O) = 0, 

sur (0,1), 

where 'P(d) maps 0 onto 'P(d)(O) and is one to one and satisfies on the interface 

(14) 'P(d)(x, 1) = (x, 1 + d(x)). 

A simple choice for 'P( d) is the following 

(15) cp(d)(x,y) = (x,y+yd(x)). 

We can rewrite this strong formulation in a variational formulation. We introduce 
the space of test functions 

vd = {(w,b) E HJ('P(d)(O)) X HJ,ro(cp(d)(O)) X H6(0,1)/ 

w2 o cp(d) = b sur ]0, 1[x{1}}. 

The problem is then the following : 
find (v, d) E (HJ( 'P(d)(0)))2 x HJ(O, 1) such that 

{ 1 -\7v\7w + {1 dd2~ dd2~ = 1 -fw+ < g, b > H-2,H2 
(16) <p(d)(!1) } 0 X X <p(d)(!1) 0 

'<!(w,b) E Vd. 

Let c: and o: be two real numbers, 0 < c: < 1 and 0 < o: < 1/2. We search the 
displacement in the set defined by 

B~ = { Z E H5-a(O, 1) / llzliH5-"(0,1) ~ M-1(1- c:)}, 

where M is the continuity constant of the injection of H 2-a(o, 1) in C 1 ([0, 1]). The 
problem (16) has at least a solution, for small enough exterior forces. We have 

THEOREM 1. Assume that f and g satisfy 

llgiiH-2(0,1) + C(c:)ilfli(£2(JR2)2 ::; M-1(1- c:). 

Then there exists a solution of (16), (v,d) E (HJ(cp(d)(0))2 x (HJ(O, 1)nB~. If we 
suppose, moreover, that the function f is lipschitz with an L2 -norm and a lipschitz 
constant small enough, then the solution is unique. 

The proof of this theorem is based on a fixed point theorem. For a given 
deformation 'Y of the interface r, we have the existence of ( v('Y), d('Y)) and we prove 
that the application T defined by : 

T: B~ _, T(B~) 
'Y !----; d('Y), 

satisfies the hypothesis of Schauder theorem. 
Next, we want to discretize the problem. For the fluid part, we consider a Pk 

finite element discretization, with k 2: 1, we denote by H the associated space step 
and XH the associated finite element space. This discretization of the reference 
domain n is mapped on the deformed configuration as was explained in section 
2. For the structure part, we consider P3- Hermitian finite element, since the 
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displacement is solution of a fourth-order equation. The space step is denoted by 
h and Y~ is the associated finite element space. 

To discretize the problem we are going to work with the variational formulation 
but written on the reference domain D. With the help of the mapping <p( d) we can 
change of variables in (16). We obtain 

r f 1 ~d~b Jr: 'V<p(d)-t'V<p(d)-1 det(V'<p(d))V'(u)V'w + Jo dx2 dx2 = l f o <p(d) det('V<p(d))w+ < g, b > H-2,H~, \f(w, b) E V* 
(17) 

where 

{ 1' 1 h 2 } V* = (w,b) E Ho(O) X Ho,ro(n) X Ha(O, 1)lw2 = b sur r ' 

and v o <p(d) = u. We set F('y) = V'<p('y)-t'V<p('Y)- 1 det(V'<p('y)). 
The discrete variational formulation is the following find UH E (Xjj )2 and dh E Y~ 
such that 

(1B) { l F(dh)'VuH'VWH + 11 ~: 2h ~:: = 
<g,b>H-2,H~ + f0(1+dh)fo<p(dh)wH, \f(wH,bh) E VH,h, 

with 

XH 
y;o h 

xo H 
VH,h 

d~ 

d~ 

d~ 

d~ 

{v E C0 (D) I vir E Pk(T), \iT E TH }, 
{bE C1([0, 1]) I bis E P3(S), \iS E rh} n H5(0, 1), 
{v E C0 (D) 1 vir E Pk(T), \iT E TH} n HJ(D), 
{(wH, bh) E (XH )2 x Y~ I wHiro = 0, (wH hir = IIH(bh), 

(wH)l E Xjj} 

and TH (resp. Th) denotes the triangulation associated to the fluid part (resp. to 
the structure) and IIH represents the matching operator of the test functions. As 
was explained in the previous section, the nonconforming grids prevent the discrete 
test functions to satisfy the continuity condition at the interface. The discrete 
space of test functions VH,h is thus not included in the continuous space V. We are 
going to study different type of matching : a pointwise matching and an integral 
matching. On one hand, we will consider for IIH the finite element interpolation 
operator associated to the fluid part, and in the other hand the mortar finite element 
operator [1]. So, we have the two cases 

VH,h = {(wH, bh) E (XH f X Y~ I WHiro = 0, (wH hir = IH(b,), 
(19) (wH h E Xjj }, 

where IH denotes the finite element interpolation operator, and 

VH,h = {(wH,bh) E (XH) 2 X Y~ I WHiro = 0, (wHhir = 0, 

(20) 11 (bh- (wH )2)'1/J = o \f'l/J E XH(r)}, 

where XH(r) is a subspace of codimension 2 in XH(r), space of trace on r of XH 
and define by 

XH(r) d;J {wh E XH(r)IVTETH, if (0, 1) ET or if (1, 1) ET, WHirnr E Pk-1(T)}. 
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THEOREM 2. Let f E (W2•00 (!R2)) 2 and g E H-2(0, 1) there exists (uH,dh) E 
X~ x Y~ solution of {18} such that 
For the pointwise matching through the interpolation operator I H, we have 
• if k :S 2 

lid- dhiiH5(0,l) < C(f, >.) [ Hk + lid- d/; IIH5(0,l)] ' 

llu- uHII(Ht\(!1))2 < C(f, >.) [ Hk + lid- d/; IIH5(0,l)] . 

• if k > 2 

lid- dhiiH5(0,l) < C(f, >.) [H2 +lid- d/;IIH5(o,l)], 

llu- uHII(HtJ(!"lJJ2 < C(f,>.) [H2 +IId-d/;IIH5(o,l)]. 

For the matching through the mortar operator, we have 

lid- dhiiH5(0,l) < C(f,>.) [Hk +lid- d/;IIHg(o,lJ], 

llu- uHII(Ht\(fl))2 < C(f, >.) [Hk +lid- d/;IIH5(o,l)] 

where d/; denotes the projection of d on Y~ in semi norm H2 (0, 1). 

We remark that for the finite element interpolation operator we obtain opti-
mal error estimates when the degree of the fluid polynomial is less or equal to 2. 
These estimates are no more optimal when k 2: 2. This is due to the fact that the 
displacement is solution of a fourth order equation. When the weak matching is 
imposed through the mortar operator then the error estimates are optimal in all 
the cases. 
The proof of this result is based on a discrete fixed point theorem due to Brezzi 
Rappaz Raviart in a modified version due to Crouzeix [4]. This theorem gives us 
the existence of the discrete solution together with the error between this discrete 
solution and the exact solution. We want to underline the reason why the point-
wise matching yields optimal error estimates in some (interesting) cases. When we 
consider the nonconforming discretization of a second order equation using nonover-
lapping domain decomposition for the pointwise matching the error estimates are 
never optimals. In fact in both situations, the error analysis involves a best fit error 
and a consistency error which measures the effect of the nonconforming discretiza-
tion. Classically, for the Laplace equation ( c.f. Strang's lemma ) this term can be 
written as follows 

1 ~~[wo] 
sup ~r'--:-:----

whEVo llwoiiH'I2(r)' 

where [w0] represents the jump at the interface of the functions belonging to the 
discrete space V0 , and u denotes the exact solution. In the fluid structure interac-
tion, even if we deal with a non linear problem a similar term appears (not exactly 
under this form) in the proof and affects the final estimate. The jump of the test 
functions at the interface is equal to WH- bh = ITH(bh)- bh. Since bh is H 2 (0, 1), 
for ITH = IH we have 
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TABLE 1 

"lD Structure " "lD Structure" "2D Structure " 
second order operator fourth order operator (Laplace equation) 

Pk 2D "Fluid" 
+ k = 1 optimal k ~ 2 optimal non optimal 

interpolation k > 1 non optimal k > 2 non optimal 
Pk 2D "Fluid" 

+ optimal Vk optimal Vk optimal Vk 
Mortar Method 

That explains why for k ~ 2 the estimates is optimal. On the opposite the integral 
matching (mortar element method) gives for all value of k optimal error estimates. 
We have also studied a linear problem in the case where the displacement is solution 
of a second order equation on the interface (this is the case when the longitudinal 
displacements are taken into account). We can summarise the results in Table 1. 
For more details see [7]. 
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Hash-Storage Techniques for Adaptive Multilevel Solvers 
and Their Domain Decomposition Parallelization 

Michael Griebel and Gerhard Zumbusch 

1. Introduction 

Partial differential equations can be solved efficiently by adaptive multigrid 
methods on a parallel computer. We report on the concepts of hash-table storage 
techniques and space-filling curves to set up such a code. The hash-table storage 
requires substantial less amount of memory and is easier to code than tree data 
structures used in traditional adaptive multigrid codes, already for the sequential 
case. The parallelization takes place by a domain decomposition by space filling 
curves, which are intimately connected to the hash table. The new data structure 
simplifies the parallel version of the code substantially and introduces a cheap way 
to solve the load balancing and mapping problem. 

We study a simple model problem, an elliptic scalar differential equation on a 
two-dimensional domain. A finite difference discretization of the problem leads to 
a linear equation system, which is solved efficiently by a multigrid method. The 
underlying grid is adapted in an iterative refinement procedure. Furthermore, we 
run the code on a parallel computer. In the overall approach we then put all three 
methods (multigrid, adaptivity, parallelism) efficiently together. 

While state-of-the-art computer codes use tree data structures to implement 
such a method, we propose hash tables instead. Hash table addressing gives more 
or less direct access to the data stored (except of the collision cases), i.e. it is 
proven to possess a 0(1) complexity with a moderate constant if a statistical data 
distribution is assumed. Hash tables allow to deal with locally adapted data in 
a simple way. Furthermore, data decomposition techniques based on space-filling 
curves provide a simple and efficient way to partition the data and to balance the 
computational load. 

We demonstrate the concepts of hash-storage and space-filling curves by a sim-
ple example code, using a square shaped two-dimensional domain and finite dif-
ference discretization of the Laplacian. The concepts can also be applied to more 
complicated domains, equations and grids. A finite element discretization on an 
unstructured tetrahedral grid for example requires more data, more complicated 
data structures and more lines of code. However, the concepts presented in this 
article remain attractive even for such a code. 
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node binary hash key 

0 --..( 111010 )4 ... : ......... :::::::=········ 0 --..( ()() 10 00 ) =~:~: 
8 --..( 00 00 01 ) :=:::=:::=::::::::::::::: 

hash funtion = 
space-filling curve + bit shuffle 

FIGURE 1. Storing nodes in a hash table. 

2. Hash Addressing 

2.1. Hash-Storage. Looking for a different way to manage adaptive grids 
than tree data structures, we propose to use hash storage techniques. Hash tables 
are a well established method to store and retrieve large amounts of data, see f.e. 
[8, chap. 6.4]. They are heavily used in database systems, computer language 
interpreters such as 'Perl' and the Unix 'C shell' and in compilers. We propose to 
use hash table for numerics. 

The idea of hashing is to map each entity of data to a hash-key by a hash-
function. The hash-key is used as an address in the hash table. The entity is stored 
and can be retrieved at that address in the hash table, which is implemented as 
a linear vector of cells (buckets) as illustrated in Figure 1. Since there are many 
more possible different entities than different hash-keys, the hash function cannot be 
injective. Algorithms to resolve collisions are needed. Furthermore, some buckets 
in the hash table may be left empty, because no present entity is mapped to that 
key. We use space-filling curves as hash functions, see Chapter 3. 

In general, access to a specific entry in the hash table can be performed in 
constant time, which is cheaper than random access in a sorted list or a tree. 
However, this is only true if the hash function scatters the entries broad enough 
and there are enough different cells in the hash table. 

The hash table code does not need additional storage overhead for logical con-
nectivities like tree-type data structures which are usually used in adaptive finite 
element codes [9]. Furthermore, and this is an additional advantage of the hash 
table methodology, it allows relatively easy coding and parallelization with simple 
load balancing. 

2.2. Finite Difference Discretization. We take a strictly node-based ap-
proach. The nodes are stored in a hash table. Each interior node represents one 
unknown. Neither elements nor edges are stored. We use a one-irregular grid with 
'hanging' nodes, see Figure 2, whose values are determined by interpolation. This 
is equivalent to the property that there is at most one 'hanging' node per edge. 
The one-irregular condition is a kind of a geometric smoothness condition for the 
adaptive grid. Additionally we consider only square shaped elements. 

The partial differential equation is discretized by finite differences. We set up 
the operator as a set of difference stencils from one node to its neighboring nodes 
in the grid, which can be easily determined: Given a node, its neighbors can be 
only on a limited number of level, or one level up or down. The distance to the 
neighbor is determined by the level they share. 
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FIGURE 2. A Sequence of adaptively refined grids mapped onto 
four processors. 

So pure geometric information is sufficient to apply the finite difference oper-
ator to some vector. We avoid the storage of the stiffness matrix or any related 
information. For the iterative solution of the equation system, we have to imple-
ment matrix multiplication, which is to apply the operator to a given vector. A 
loop over all nodes in the hash table is required for this purpose. 

2.3. Multilevel Preconditioner. We use an additive version of the multigrid 
method for the solution of the equation system, i.e. the so called BPX precondi-
tioner [5]. 

Bu L L4-j(u,¢{)¢{ 
level j i 

This requires an outer Krylov iterative solver. The BPX preconditioner has the 
advantage of an optimal 0(1) condition number and an implementation of order 
O(n), which is optimal, even in the presence of degenerate grids. Furthermore, 
this additive version of multigrid is also easier to parallelize than multiplicative 
multigrid versions. 

The straightforward implementation is similar to the implementation of a multi-
grid V-cycle. However, the implementation with optimal order is similar to the 
hierarchical basis transformation and requires one auxiliary vector. Two loops over 
all nodes are necessary, one for the restriction operation and one for the prolonga-
tion operation. They can be both implemented as a tree traversal. However, by 
iterating over the nodes in the right order, two ordinary loops over all nodes in the 
hash table are sufficient, one forward and one backward. 

2.4. Adaptive Refinement. In order to create adaptive grids, we have to 
locate areas, where to refine the grid. Applying an error estimator or error indi-
cator gives an error function defined on the grid. With some threshold value, the 
estimated error is converted into a flag field, determining whether grid refinement is 
required in the neighborhood. Then, large error values result in refinement. In the 
next step, new nodes are created. Finally a geometric grid has to be constructed, 
which fulfills the additionally imposed geometric constraints, e.g. one-irregularity. 

3. Space-Filling Curves 

3.1. Space-Filling Curve Enumeration. A domain or data decomposition 
is needed for the parallelization of the code. Usually domain decomposition and 
mapping strategies are difficult and expensive. Adaptive grids require such an 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



274 MICHAEL GRIEBEL AND GERHARD ZUMBUSCH 

•

0 
. 
. 

I 
' . 
I 

FIGURE 3. Hilbert's space-filling curve at different levels of resolu-
tion. It covers the whole domain, say rl = [-1, 1]2 (drawn shaded). 
The nodes are numbered binary from 0 to 4J - 1. Additionally, the 
numbers are used for the hash-keys. 

expensive decomposition several times. Hence we are interested in cheap decompo-
sition heuristics. 

We choose a computational very cheap method based on space-filling curves 
[14]. A space-filling curve is defined recursively by substituting a straight line seg-
ment by a certain pattern of lines, similar to fractals. This recursion is applied 
infinitely times and results in a curve, which fills the whole domain. The curve 
defines a (continuous) mapping from an interval to the whole domain via a scaled 
arc-length. Space-filling curves are often used for theoretical purposes, e.g. for 
complexity bounds. Furthermore, they have been employed in combinatorial opti-
mization [1], in computer graphics [16], in operating systems and routing, and in 
parallel computing as a tool for domain partitioning [4, 12]. 

We use space-filling curves as a way to enumerate and order nodes in the 
computational domain. One can think of such a space-filling curve as passing all 
nodes of a given grid, e.g. an adaptive grid. Because of the boundary nodes, we 
choose a curve which covers a larger domain than the computational domain, see 
Figure 3. We assign the scaled arc length of the curve to each node of the grid, 
called index. The indices imply a total order relation on the nodes. The space-
filling curve is never constructed explicitly, but it is used for the computation of 
the indices. The indices are used for the construction of hash-keys. 

3.2. Space-Filling Curve Partition. Given an ordered list of nodes induced 
by a space-filling curve, we construct a static partition of the grid points and data 
in the following way: We cut the list into p equally sized intervals and map them 
according to this order to processors with increasing numbers. The partition is 
defined by its p - 1 cuts. 

The computational load is balanced exactly, see [18, 13]. The volume of com-
munication depends on the boundaries of the partitions. 

4. Parallel Code 

For the parallelization of the sequential code, all its components such as the 
solution of the linear system, the estimation of errors and the creation of nodes have 
to be done in parallel. Additionally the data has to be distributed to the processors. 
This is done in a load balancing and mapping step right after creating new nodes, a 
step which was not present in the sequential version or for uniform refinement [7]. 
We consider a distributed memory, MIMD, message passing paradigm. This makes 
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the parallelization more involved than it would be on a shared memory computer as 
in [9, 3]. Parallelizing a tree based code is quite complicated and time consuming. 
Here, algorithms must be implemented on sub-trees. Furthermore, algorithms for 
moving and for joining sub-trees must be implemented. Finally all this must be 
done in a consistent and transparent way, as indicated in [19, 17, 2, 15, 10]. 
However, the parallelization of an adaptive code based on hash tables, which we 
consider here, will turn out to be much easier. 

4.1. Partition in Parallel. Using the space filling curve, the partitioning 
problem reduces to a sorting problem. This requires a parallel sort algorithm with 
distributed input and output. We employ a one-stage radix sort algorithm, see 
[8, chap. 5.2.5]. Here we can make use of the assumption that the previous data 
decomposition still guarantees good load-balancing for the parallel sort. 

The result is a new partition of the grid. In total, the space-filling curve load 
balancing is very cheap, because most of the data has been sorted in a previous step. 
It parallelizes very well and thus can be applied in each step of the computation. 

The index of a node induced by the space-filling curve is used for assigning 
the node to a processor and additionally for addressing the node in the local hash 
table of the processor. In case that a copy of a node (a ghost node) is required on 
another processor, the index is also used for addressing the copy in the hash table 
of this processor. Comparing the index of a node to the p- 1 partition cut values, 
it is easy to determine the processor the node originally belongs to. 

4.2. Finite Differences in Parallel. The parallel iterative solution consists 
of several components. The Krylov iterative solver requires matrix multiplications, 
scalar products and the application of the BPX-preconditioner in our case. The 
scalar product can be implemented as ordinary data reduction operations [11] of-
fered by any message passing library. Any modification of a node's value is per-
formed by the processor who owns the node, "owner computes". This implies a 
rule of how the computational work is partitioned to the processors. 

The matrix multiplication requires the update of auxiliary (ghost) values lo-
cated at the boundary of the partition, see [6]. The variables of ghost nodes in 
this region are filled with actual values. Then, the local matrix multiplication can 
take place without any further communication, and only one local nearest neighbor 
communication is necessary. 

4.3. Multilevel Preconditioner in Parallel. The communication pattern 
of the BPX-preconditioner is more dense than pattern for the matrix multiplica-
tion: The local restriction operations can be performed in parallel without any 
communication. The resulting values have to be reduced [11] and distributed. 

The local restriction and prolongation operations are organized as ordinary 
restriction and prolongation, just restricted to the local nodes and ghost nodes on 
a processor. They can be implemented either as tree traversals or as a forward 
and a backward loops on properly ordered nodes, i.e. on the hash table. The 
ghost nodes are determined as set of ghost nodes of grids on all levels. Hence the 
communication takes place between nearest neighbors, where neighbors at all grid 
levels have to be considered. In this sense the communication pattern is between 
all-to-all and a pure local pattern. 

Each node sums up the values of all it's distributed copies. This can be im-
plemented by two consecutive communication steps, fetching and distributing the 
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TABLE 1. Uniform refinement example, timing, levels 6 to 9, 1 to 8 processors. 

time 
processors 

1 2 4 8 
6 0.0580 0.0326 0.0198 0.0473 

(/) 7 0.2345 0.1238 0.0665 0.1861 ~ 
~ 8 1.0000 0.4914 0.2519 0.2350 

9 1.1297 0.6282 

values. Now the restricted values are present on all nodes and ghost nodes. Finally, 
the reverse process of prolongation can take place as local operations again. Thus 
the result is valid on all nodes without the ghost nodes. 

Compared to multiplicative multigrid methods where communication on each 
level takes place separately in the smoothing process, the hierarchical nearest neigh-
bor communication is a great advantage [19]. However, the total volume of data 
to be communicated in the additive and the multiplicative multigrid method are of 
the same order (depending on the number of smoothing steps). This means that 
the additive multigrid has an advantage for computers with high communication 
latency, while for computers with low latency the number of communication steps 
is less important. 

5. Experiments 

We consider the two dimensional Poisson equation -D.u = 0 on n = [-1, 1]2 

with Dirichlet boundary conditions u = 0 on an\ [-1,0)2 and u = 1 on the 
remainder of an. We run our adaptive multilevel finite difference code to solve it. 
The solution possesses two singularities located at the jumps in the boundary data 
(-1,0) and (0,-1). All numbers reported are scaled CPU times measured on a 
cluster of SGI 02 workstations, running MPICH on a fast ethernet network. 

5.1. Uniform Example. In the first test we consider regular grids (uniform 
refinement). Table 1 shows wall clock times for the solution of the equation system 
on a regular grid of different levels using different numbers of processors. 

We observe a scaling of a factor of 4 from one level to the next finer level which 
corresponds to the factor of 4 increase in the amount of unknowns on that level. 
The computing times decay and a scale-up can be seen. However, the 8 processor 
perform efficiently only for sufficiently large problems, i.e. for problems with more 
than 8 levels. 

5.2. Adaptive Example. In the next test we consider adaptive refined grids. 
The grids are refined towards the two singularities. Table 2 depicts times in the 
adaptive case. These numbers give the wall clock times for the solution of the 
equation system again, now on different levels of adaptive grids and on different 
numbers of processors. 

We obtain a scaling of about a factor 4 from one level to the next finer level. 
This is due to an increase of the amount of nodes by a factor of 4, because the grid 
has been adapted already towards the singularities on previous levels. Increasing 
the number of processors speeds up the computation accordingly, at least for two 
and four processors. In order to use seven processor efficiently, the grid has to be 
fine enough, i.e it has to have more than 8 levels. 
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TABLE 2. Adaptive refinement example, timing, levels 7 to 9, 1 to 
7 processors. 

time 
processors 

1 2 4 7 
7 0.0578 0.0321 0.0187 0.0229 

rn 8 0.2291 0.1197 0.0645 0.0572 ~ 
~ 9 1.0000 0.5039 0.2554 0.1711 

TABLE 3. Ratio sorting nodes (partitioning and mapping) to solv-
ing the equation system (multilevel), level 8, 1 to 8 processors. 

sort time processors 
solve time 1 2 4 7/8 

uniform 0 0.0028 0.0079 0.0141 
adaptive 0 0.0066 0.0149 0.2367 

5.3. Load Balancing. Now we compare the time for solving the equation 
system with the time required for sorting the nodes and mapping them to proces-
sors. The ratio indicates how expensive the load balancing and mapping task is in 
comparison to the rest of the code. We give the values in Table 3 for the previous 
uniform and adaptive refinement examples using different numbers of processors. 

In the single processor case, no load balancing is needed, so the sort time to 
solve time ratio is zero. In the uniform grid case the numbers stay below two 
percent. In the adaptive grid case, load balancing generally is more expensive. But 
note that load balancing still is much cheaper than solving the equation systems. 
However, higher number of processors make the mapping relatively slower. 

In the case of uniform refinement, for a refined grid, there are only few nodes 
located at processor boundaries which may have to be moved during the mapping. 
Hence our load balancing is very cheap in this case. Mapping data for adaptive 
refinement requires the movement of a large amount of data because of the overall 
amount of data, even if most of the nodes stay on the processor. Other load 
balancing strategies can be quite expensive for adaptive refinement procedures, see 
[2]. 

6. Conclusion 

We have introduced hash storage techniques for the solution of partial differ-
ential equations by a parallel adaptive multigrid method. Hash tables lead to a 
substantial reduction of memory requirements to store sequences of adaptive grids 
compared to standard tree based implementations. Furthermore, the implementa-
tion of an adaptive code based on hash tables proved to be simpler than the tree 
counterpart. Both properties, low amount of memory and especially the simple 
programming, carried over to the parallelization of the code. Here space filling 
curves were used for data partitioning and at the same time for providing a proper 
hash function. 

The results of our numerical experiments showed that load balancing based 
on space filling curves is indeed cheap. Hence we can in fact afford to use it in 
each grid refinement step. Thus our algorithm operates on load balanced data at 
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any time. This is in contrary to other procedures, which have to be used often in 
connection with more expensive load balancing mechanisms, where load imbalance 
is accumulated for several steps. 
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Non-symmetric Problems 
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1. Introduction 

The Optimized Order 2 (002) method is a non-overlapping domain 
decomposition method with differential interface conditions of order 2 along the 
interfaces which approximate the exact artificial boundary conditions [13, 9]. The 
convergence of Schwarz type methods with these interface conditions is proved in 
[12]. There already exists applications of the 002 method to convection-diffusion 
equation [9] and Helmholtz problem [3]. We first recall the 002 method and present 
numerical results for the convection-diffusion equation discretized by a finite volume 
scheme. The aim of this paper is then to provide an extension of a preconditioning 
technique introduced in [7, 5] based upon a global coarse problem to non-symmetric 
problems like convection-diffusion problems. The goal is to get the independence of 
the convergence upon the number of subdomains. Numerical results on convection-
diffusion equation will illustrate the efficiency of the 002 algorithm with this coarse 
grid preconditioner. 

2. The Optimized Order 2 Method 

We recall the 002 Method in the case of the convection-diffusion problem: 

(1) ou ou 
L(u) = cu + a(x, y) ox + b(x, y) oy - vilu =finn 

C(u) = g on 80 

where n is a bounded open set of lR?, a = (a, b) is the velocity field, 1/ is the 
viscosity, C is a linear operator, c is a constant which could be c = L with Llt a 
time step of a backward-Euler scheme for solving the time dependent convection-
diffusion problem. The method could be applied to other PDE's. 

The 002 method is based on an extension of the additive Schwarz algorithm 
with non-overlapping subdomains : 0= U~ 1 Oi, ni n 0 1 = 0, i =1- j. We denote 
by ri,j the common interface to Oi and 0 1, i =I- j. The outward normal from Oi is 
ni and 'Ti is a tangential unit vector. 
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The additive Schwarz algorithm with non-overlapping subdomains ([11]) is : 

(2) 
L(u~+ 1 ) J, in ni 

Bi(u~+ 1 ) 

C(u~+ 1 ) 

Bi(uj), on ri,j, i -=f. j 

g on ani nan 
where Bi is an interface operator. We recall first the 002 interface operator Bi 
and then the substructuring formulation of the method. 

2.1. 002 interface conditions. In the case of Schwarz type methods, it 
has been proved in [14] that the optimal interface conditions are the exact artificial 
boundary conditions [8]. Unfortunately, these conditions are pseudo-differential 
operators. Then, it has been proposed in [13] to use low wave number differential 
approximations to these optimal interface conditions. Numerical tests on a finite 
difference scheme with overlapping subdomains has shown that the convergence 
was very fast for a velocity field non tangential to the interface, but very slow, even 
impossible, for a velocity field tangential to the interface. So, instead of taking 
low-wave number approximations, it has been proposed in [9] to use differential 
interface conditions of order 2 along the interface which optimize the convergence 
rate of the Schwarz algorithm. These "Optimized Order 2" interface operators are 
defined as follows: 

B a a.nj-J(a.ni)2 + 4cv a a2 
i = - - + C2- - C3-

ani 2v ari arr 
where c2 = c2(a.nh a.ri) and c3 = c3(a.ni, a.ri) minimize the convergence rate 
of the Schwarz algorithm. The analytic analysis in the case of 2 subdomains and 
constant coefficients in (1) reduce the minimization problem to a one parameter 
minimization problem. This technique is extended in the case of variable coefficients 
and an arbitrary decomposition, that is only one parameter is computed, with a 
dichotomy algorithm. With this parameter we get c2 and c3 (see [10]). So the 
002 conditions are easy to use and not costly. The convergence of the Schwarz 
algorithm with the 002 interface conditions is proved for a decomposition in N 
subdomains (strips) using the techniques in [12]. 

2.2. Substructuring formulation. In [14], the non-overlapping algorithm 
(2) is interpreted as a Jacobi algorithm applied to the interface problem 

(3) D>.=b 

where >., restricted to ni' represents the discretization of the term Bi ( Ui) on the 
interface f i,j, i -=f. j. The product D >., restricted to ni, represents the discretization 
of the jump Bi(ui)- Bi(uj) on the interface ri,j, i -=f. j. To accelerate convergence, 
the Jacobi algorithm is replaced by a Krylov type algorithm [16]. 

2.3. Numerical results. The method is applied to a finite volume scheme 
[1] (collaboration with MATRA BAe Dynamics France) with a decomposition inN 
non-overlapping subdomain. The interface problem (3) is solved by a BICG-stab 
algorithm. This involves solving N independent subproblems which can be done in 
parallel. Each subproblem is solved by a direct method. We denote by h the mesh 
size. We compare the results obtained with the 002 interface conditions and the 
Taylor order 0 ([4],[2], [13]) or order 2 interface conditions ([13]). 
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TABLE 1. Number of iterations versus the convection velocity's 
angle: 16 x 1 subdomains, v = l.d - 2, C F L = l.d9, h = 2!1 , 

log 10 (Error) < l.d-6 

convection velocity 002 Taylor order 2 Taylor order 0 
normal velocity to the interface 15 123 141 

a= y, b = 0 
tangential velocity to the interface 20 not 75 

a= 0, b = y convergent 

TABLE 2. Number of iterations versus the mesh size: 16 x 1 
subdomains, a= y, b = 0, v = 0.01, CFL = l.d9, log 10 (Error) < 
l.d- 6 

grid 65 X 65 129 X 129 241 X 241 
002 15 15 15 

Taylor order 2 49 69 123 
Taylor order 0 49 82 141 

TABLE 3. Number of iterations versus the mesh size: 16 x 1 
subdomains, rotating velocity, a = -sin (1r(y- ~))cos ( 1r(x- ~) ), 
b = cos(1r(y- ~))sin(1r(x- ~)) v = l.d- 2, CFL = l.d9, 
log 10 (Error) < l.d-6 

grid 65 X 65 129 X 129 241 X 241 
002 49 48 48 

Taylor order 0 152 265 568 

1. We consider the problem: L( u) = 0, 0 ::; x ::; 1, 0 ::; y ::; 1 
with u(O,y) = ~~(1,y) = 0, 0::; y::; 1, ~~(x, 1) = 0, u(x,O) = 1, 0::; x::; 1. In 
order to observe the influence on the convergence both of the convection velocity 
angle to the interfaces, and of the mesh size, we first take a decomposition in strips. 
The Table 1 shows that the 002 interface conditions give a significantly better 
convergence which is independent of the convection velocity angle to the interfaces. 
One of the advantages is that for a given number of subdomains, the decomposition 
of the domain doesn't affect the convergence. We also observe that the convergence 
for the studied numerical cases is independent of the mesh size (see Table 2 and 
Table 3). 
2. The 002 method was also tested for a convection velocity field issued from 
the velocity field of a Navier-Stokes incompressible flow, with Reynolds number 
Re = 10000, around a cylinder. This velocity field is issued from a computation at 
the aerodynamic department at Matra. The computational domain is defined by 
n = {(x,y) = (rcos(B),rsin(B)), 1::; r::; R, 0::; 8::; 21r} with R > 0 given. 
We consider the problem L(u) = 0 inn with u = 1 on {(x,y) = (cos(B),sin(B)), 
0::; 8 ::; 21r} and u = 0 on {(x,y) = (Rcos(B),Rsin(B)) 0 ::; 8::; 21r}. The 
grid is {(x,y) = (ricos(B1),risin(B1))}, and is refined around the cylinder and in 
the direction of the flow. We note Nmax = (number of points on the boundary 
of a subdomain) x (number of subdomains). The 002 interface conditions give 
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0 5 10 15 

X 

FIGURE 1. !so-values of the solution u, v = I.d - 4, C F L = l.d9 

TABLE 4. Number of iterations versus the viscosity; 4 x 2 
subdomains, CFL = l.d9, log 10 (Error) < l.d- 6 

002 Taylor order 2 Taylor order 0 
v = l.d- 5 56 41 119 
v = l.d- 4 43 121 374 
v = l.d- 3 32 Nmax = 768 Nmax = 768 

logw(Error) = -5.52 logw(Error) = -2.44 

also significantly better convergence in that case. Numerically the convergence is 
practically independent of the viscosity v (see Table 4). 

3. Extension of a coarse grid preconditioner to non-symmetric 
problems 

Numerically, the convergence ratio of the method is nearly linear upon the 
number of subdomains in one direction of space. To tackle this problem, the aim 
of this paper is to extend a coarse grid preconditioner introduced in [7], [5] to 
non-symmetric problems like convection-diffusion problems. This preconditioning 
technique has been introduced for the FETI method, in linear elasticity, when local 
Neumann problems are used and are ill posed (see [7]). It has been extended for 
plate or shell problems, to tackle the singularities at interface cross-points ([6], [5], 
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[15]). In that case, this preconditioner is a projection for (D., .)2 on the space 
orthogonal to a coarse grid space which contain the corner modes. This consists 
in constraining the Lagrange multiplier to generate local displacement fields which 
are continuous at interface cross-points. The independence upon the number of 
subdomains has been proved. 

In this paper we extend this preconditioner by considering a (D., D.)2 
projection on the space orthogonal to a coarse grid space. The goal is to filter 
the low frequency phenomena, in order to get the independence of the convergence 
upon the number of subdomains. So the coarse grid space, denoted W, is a set of 
functions called "coarse modes" which are defined on the interfaces by : 

• Preconditioner M1 : the "coarse modes" are the fields with unit value on 
one interface and 0 on the others. 

• Preconditioner M2 : the "coarse modes" in a subdomain Oi are on one 
interface the restriction of Kiui where Ui = 1 E oi and Ki is the stiffness 
matrix, and 0 on the others. 

Then, at each iteration, ).P satisfies the continuity requirement of associated field 
uP at interface : 

(DW)~(D>..P- b)= 0 Vi 

That is, if we introduce the projector P on W _L for (D., D. )2, the projected gradient 
of the condensed interface problem is: 

(4) 

and verify 

(5) 

With (4), the condition (5) can be written as the coarse problem : 

(DW)t(DW)8 = -(DW)tgp 
So the method has two level : at each iteration of the Krylov method at the fine 
level, an additional problem has to be solved at the coarse grid level. 

3.1. Numerical results. The preconditioned 002 method is applied to 
problem (1) discretized by the finite volume scheme with non-overlapping 
subdomains. The interface problem (3) is solved by a projected GCR algorithm, 
that is the iterations of GCR are in the (D., D.)2 orthogonal to the coarse grid 
space. Each subproblem is solved by a direct method. We compare the results 
obtained with the preconditioners M1 and M2. 

1. We consider the problem: L( u) = 0, 0 :S x :S 1, 0 :S y :S 1 with 
~~(1,y) = O,u(O,y) = 1, 0 :S y :S 1 and ~~(x,1) = O,u(x,O) = 1, 0 :S x :S 1. The 
convection velocity is a= y, b = 0. In that case, the solution is constant in all the 
domain : u = 1 in [0, 1 F. Table 5 justify the choice of the preconditioner M2. In 
fact, in that case the field >.. associated to the solution on the interfaces is in the 
coarse grid space of preconditioner M2. 

2. We consider the problem: L(u) = 0, 0 :S x :S 1, 0 < y :S 1 with 
~~(1,y) = u(O,y) = 0, 0 :S y :S 1 and ~~(x,1) = O,u(x,O) 1, 0 :S x :S 1, 
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TABLE 5. Number of iterations, 8 x 1 subdomains a = y, b 
0, v = l.d- 2, CF L = 1.d9, h = 1 ~ 9 , 1og10 (Error) < l.d- 6 
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FIGURE 2. Preconditioner M1: Decomposition in N x N 
subdomains (N = 2,4,8); rotating velocity, v = l.d- 2, CFL = 
1.d9, h = 2!1 

with a rotating convection velocity: a= -sin(n(y- ~))cos(n(x- ~))and b = 
cos(n(y- ~))sin(n(x- ~)).Different methods have been developed to solve this 
problem (see for example [17]). Here we want to observe the behavior of the precon-
ditioner on this problem. Figure 3 shows that the convergence of the 002 method 
with the preconditioner M2 is nearly independent of the number of subdomains. 
The convergence is better with preconditioner M2 than preconditioner Ml (figure 
2). 

4. Conclusion 

The 002 method appears to be a very efficient method, applied to convection-
diffusion problems. With the coarse grid preconditioner, the convergence ratio is 
numerically nearly independent of the number of subdomains. 
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On the Interaction of Architecture and Algorithm in the 
Domain-based Parallelization of an Unstructured-grid 

Incompressible Flow Code 

Dinesh K. Kaushik, David E. Keyes, and Barry F. Smith 

1. Introduction 

The convergence rates and, therefore, the overall parallel efficiencies of addi-
tive Schwarz methods are often notoriously dependent on subdomain granularity. 
Except when effective coarse-grid operators and intergrid transfer operators are 
known, so that optimal multilevel preconditioners can be constructed, the number 
of iterations to convergence and the communication overhead per iteration tend 
to increase with granularity for elliptically-controlled problems, for either fixed or 
memory-scaled problem sizes. 

In practical large-scale applications, however, the convergence rate degrada-
tion of fine-grained single-level additive Schwarz is sometimes not as serious as the 
scalar, linear elliptic theory would suggest. Its effects are mitigated by several 
factors, including pseudo-transient nonlinear continuation and dominant intercom-
ponent coupling that can be captured exactly in a point-block ILU preconditioner. 
We illustrate these claims with encouraging scalabilities for a legacy unstructured-
grid Euler flow application code, parallelized with the pseudo-transient Newton-
Krylov-Schwarz algorithm using the PETSc library. We note some impacts on 
performance of the horizontal (distributed) and vertical (hierarchical) aspects of 
the memory system and consider architecturally motivated algorithmic variations 
for their amelioration. 

2. Newton-Krylov-Schwarz 

The discrete framework for an implicit PDE solution algorithm, with pseudo-
timestepping to advance towards an assumed steady state, has the form: ( ~1te )u£ + 
f(u£) = (~ 1te )u£-I, where b..ti ---+ oo as C---+ oo. Each member of the sequence of 
nonlinear problems, C = 1, 2, ... , is solved with an inexact Newton method. The 
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resulting Jacobian systems for the Newton corrections are solved with a Krylov 
method, relying only on matrix-vector multiplications. The Krylov method needs 
to be preconditioned for acceptable inner iteration convergence rates, and the pre-
conditioning is the "make-or-break" aspect of an implicit code. The other phases 
parallelize well already, being made up of vector updates, inner products, and sparse 
matrix-vector products. 

The job of the preconditioner is to approximate the action of the Jacobian 
inverse in a way that does not make it the dominant consumer of memory or cy-
cles in the overall algorithm. The true inverse of the Jacobian is usually dense, 
reflecting the global Green's function of the continuous linearized PDE operator 
it approximates. A good preconditioner saves time and space by permitting fewer 
iterations in the Krylov loop and smaller storage for the Krylov subspace. An ad-
ditive Schwarz preconditioner [4] accomplishes this in a localized manner, with an 
approximate solve in each subdomain of a partitioning of the global PDE domain. 
Applying any preconditioner in an additive Schwarz manner tends to increases flop 
rates over the same preconditioner applied globally, since the smaller subdomain 
blocks maintain better cache residency. Combining a Schwarz preconditioner with 
a Krylov iteration method inside an inexact Newton method leads to a synergis-
tic parallelizable nonlinear boundary value problem solver with a classical name: 
Newton-Krylov-Schwarz (NKS) [5, 8]. 

When nested within a pseudo-transient continuation scheme to globalize the 
Newton method [11], the implicit framework (called \liNKS) has four levels: 

do 1 = 1, n_time 
SELECT TIME-STEP 
do k = 1, n_Newton 

compute nonlinear residual and Jacobian 
do j = 1, n_Krylov 

do i = 1, n_Precon 
solve subdomain problems concurrently 

enddo 
perform Jacobian-vector product 
ENFORCE KRYLOV BASIS CONDITIONS 
update optimal coefficients 
CHECK LINEAR CONVERGENCE 

enddo 
perform vector update 
CHECK NONLINEAR CONVERGENCE 

enddo 
enddo 

The operations written in uppercase customarily involve global synchronizations. 
We have experimented with a number of Schwarz preconditioners, with varying 

overlap and varying degrees of subdomain fill-in, including the new, communication-
efficient, Restricted Additive Schwarz (RAS) method [6]. For the cases studied 
herein, we find the degenerate block Jacobi form with block ILU(O) on the subdo-
mains is adequate for near scalable convergence rates. 
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3. Parallel Implementation Using PETSc 

The parallelization paradigm we employ in approaching a legacy code is a 
compromise between the "compiler does all" and the "hand-coded by expert" ap-
proaches. We employ the "Portable, Extensible Toolkit for Scientific Computing" 
(PETSc) [2, 3], a library that attempts to handle through a uniform interface, in a 
highly efficient way, the low-level details of the distributed memory hierarchy. Ex-
amples of such details include striking the right balance between buffering messages 
and minimizing buffer copies, overlapping communication and computation, orga-
nizing node code for strong cache locality, preallocating memory in sizable chunks 
rather than incrementally, and separating tasks into one-time and every-time sub-
tasks using the inspector/executor paradigm. The benefits to be gained from these 
and from other numerically neutral but architecturally sensitive techniques are so 
significant that it is efficient in both the programmer-time and execution-time senses 
to express them in general purpose code. 

PETSc is a large and versatile package integrating distributed vectors, dis-
tributed matrices in several sparse storage formats, Krylov subspace methods, pre-
conditioners, and Newton-like nonlinear methods with built-in trust region or line-
search strategies and continuation for robustness. It has been designed to provide 
the numerical infrastructure for application codes involving the implicit numerical 
solution of PDEs, and it sits atop MPI for portability to most parallel machines. 
The PETSc library is written in C, but may be accessed from user codes written 
inC, FORTRAN, and C++. PETSc version 2, first released in June 1995, has been 
downloaded thousands of times by users worldwide. PETSc has features relevant 
to computational fluid dynamicists, including matrix-free Krylov methods, blocked 
forms of parallel preconditioners, and various types of time-stepping. 

A diagram of the calling tree of a typical \liNKS application appears below. 
The arrows represent calls that cross the boundary between application-specific 
code and PETSc library code; all internal details of both are suppressed. The top-
level user routine performs I/0 related to initialization, restart, and post-processing 
and calls PETSc subroutines to create data structures for vectors and matrices and 
to initiate the nonlinear solver. PETSc calls user routines for function evaluations 
f(u) and (approximate) Jacobian evaluations f'(u) at given vectors u representing 
the discrete state of the flow. Auxiliary information required for the evaluation 
off and f'(u) that is not carried as part of u is communicated through PETSc 
via a user-defined "context" that encapsulates application-specific data. (Such 
information typically includes dimensioning data, grid data, physical parameters, 
and quantities that could be derived from the state u, but are most conveniently 
stored instead of recalculated, such as constitutive quantities.) 

4. Parallel Port of an NKS-based CFD Code 

We consider parallel performance results for a NASA unstructured grid CFD 
code that is used to study the high-lift, low-speed behavior of aircraft in take-off and 
landing configurations. FUN3D [1] is a tetrahedral vertex-centered unstructured 
grid code developed by W. K. Anderson of the NASA Langley Research Center for 
compressible and incompressible Euler and Navier-Stokes equations. FUN3D uses 
a control volume discretization with variable-order Roe schemes for approximat-
ing the convective fluxes and a Galerkin discretization for the viscous terms. Our 
parallel experience with FUN3D is with the incompressible Euler subset thus far, 
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Main Routine 

FIGURE 1. Coarsened calling tree of the FUN3D-PETSc code, 
showing the user-supplied main program and callback routines for 
providing the initial nonlinear iterate, computing the nonlinear 
residual vector at a PETSc-requested state, and evaluating the 
Jacobian (preconditioner) matrix. 

but nothing in the solution algorithms or software changes for the other cases. Of 
course, convergence rate will vary with conditioning, as determined by Mach and 
Reynolds numbers and the correspondingly induced grid adaptivity. Furthermore, 
robustness becomes more of an issue in problems admitting shocks or making use of 
turbulence models. The lack of nonlinear robustness is a fact of life that is largely 
outside of the domain of parallel scalability. In fact, when nonlinear robustness 
is restored in the usual manner, through pseudo-transient continuation, the condi-
tioning of the linear inner iterations is enhanced, and parallel scalability may be 
improved. In some sense, the Euler code, with its smaller number of flops per point 
per iteration and its aggressive trajectory towards the steady state limit may be a 
more, not less, severe test of scalability. 

We employ \liNKS with point-block ILU(O) on the subdomains. The original 
code possesses a pseudo-transient Newton-Krylov solver already. Our reformulation 
of the global point-block ILU(O) of the original FUN3D into the Schwarz framework 
of the PETSc version is the primary source of additional concurrency. The timestep 
grows from an initial CFL of 10 towards infinity according to the switched evolu-
tion/relaxation (SER) heuristic of Van Leer & Mulder [12]. In the present tests, 
the maximum CFL is 105 . The solver operates in a matrix-free, split-discretization 
mode, whereby the Jacobian-vector operations required by the GMRES [13] Krylov 
method are approximated by finite-differenced Fnkhet derivatives of the nonlinear 
residual vector. The action of the Jacobian is therefore always "fresh." However, the 
submatrices used to construct the point-block ILU(O) factors on the subdomains as 
part of the Schwarz preconditioning are based on a lower-order discretization than 
the one used in the residual vector, itself. This is a common approach in practical 
codes, and the requisite distinctions within the residual and Jacobian subroutine 
calling sequences are available in the legacy FUN3D version. 
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TABLE 1. Cray T3E parallel performance (357,900 vertices) 

Efficiency 
procs its time speedup 'TJalg TJimpl TJoverall 

16 77 2587.95s 1.00 1.00 1.00 1.00 
32 75 1262.01s 2.05 1.03 1.00 1.03 
64 75 662.06s 3.91 1.03 0.95 0.98 

128 82 382.30s 6.77 0.94 0.90 0.85 

4.1. Parallel Scaling Results. We excerpt from a fuller report to appear 
elsewhere [10] tables for a 1.4-million degree-of-freedom (DOF) problem, converged 
with a relative steady-state residual reduction of 10-10 in approximately 6.5 min-
utes using approximately 1600 global fine-grid flux balance operations (or "work 
units" in the multigrid sense), on 128 processors of a T3E; and for an 11.0-million 
DOF problem, converged in approximately 30 minutes on 512 processors. Relative 
efficiencies in excess of 80% are obtained over relevant ranges of processor number 
in both cases. Similar results are presented in [10] for the IBM SP. The minimum 
relevant number of processors is (for our purposes) the smallest power of 2 that can 
house a problem completely in distributed DRAM. In practice, using fewer than 
this holds high performance resources captive to paging off of slow disks (and dra-
matically inflates subsequent parallel speedups!). The maximum relevant number 
is the maximum number available or the largest power of 2 that allows enough 
volumetric work per processor to cover the surfacial overhead. In practice, tying 
up more processors than this for long runs can be construed as wasting DRAM. 

The physical configuration is a three-dimensional ONERA M6 wing up against 
a symmetry plane (see Fig. 2) an extensively studied standard case. Our tetra-
hedral Euler grids were generated by D. Mavriplis of ICASE. We use a maximum 
Krylov dimension of 20 vectors per pseudo-timestep. The pseudo-timestepping is a 
nontrivial feature of the algorithm, since the norm of the steady state residual does 
not decrease monotonically in the larger grid cases. (In production, we would em-
ploy mesh sequencing so that the largest grid case is initialized from the converged 
solution on a coarser grid. In the limit, such sequencing permits the finer grid 
simulation to be initialized within the domain of convergence of Newton's method.) 

Table 1 shows a relative efficiency of 85% over the relevant range for a problem 
of 4 x 357,900 DOFs. Each iteration represents one pseudo-timestep, including one 
Newton correction, and up to 20 Schwarz-preconditioned GMRES steps. Conver-
gence is defined as a relative reduction in the norm of the steady-state nonlinear 
residual of the conservation laws by a factor of 10-10 . The convergence rate typ-
ically degrades slightly as number of processors is increased, due to introduction 
of increased concurrency in the preconditioner, which is partition-dependent, in 
general. 

The overall efficiency, TJoveral!, is the speedup divided by the processor ratio. 
The algorithmic efficiency, TJalg, is the ratio of iterations to convergence, as proces-
sor number varies. The implementation efficiency, TJimpl, the quotient of TJoverall and 
TJalg, therefore represents the efficiency on a per iteration basis, isolated from the 
slight but still significant algorithmic degradation. TJimpl is useful in the quantita-
tive understanding of parallel overhead that arises from communication, redundant 
computation, and synchronization. 
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FIGURE 2. The surface triangulation of the M6 wing, the symme-
try root plane, and the farfield bounding surface are shown for a 
relatively coarse grid. 

TABLE 2. Cray T3E parallel performance (2,761,774 vertices) 

Efficiency 
procs its time speedup 'T/alg TJimpl TJoverall Gfiopjs 

128 164 6,048.37s 1.00 1.00 1.00 1.00 8.5 
256 166 3,242.10s 1.87 0.99 0.94 0.93 16.6 
512 171 1,811.13s 3.34 0.96 0.87 0.83 32.1 

Table 2 shows a relative efficiency of 83% over the relevant range for a problem 
of 4 x 2, 761,774 DOFs. Each iteration represents up to 45 preconditioned GMRES 
iterations (with restarting every 16 iterations). This grid is the largest yet generated 
by our colleagues at NASA Langley for an implicit wing computation. Coordinate 
and index data (including 18 million edges) alone occupy an 857 MByte file. 

The 32.1 Gfiop/s achieved on 512 nodes for this sparse unstructured compu-
tation is 12% of the best possible rate of 265 Gfiopjs for the dense LINPACK 
benchmark on a matrix of order 79,744 (with 6.36 billion nonzeros) on the identical 
configuration [7]. The principal "slow" routines (at present) are orthogonalization 
in the Krylov method and subdomain Jacobian preconditioner formation (soon to 
be addressed), together accounting for about 20-23% of execution time and running 
at only 20% of the overall sustained Gfiop/s rate. 

It is interesting to note the source of the degradation of TJimpl in going from 
128 to 512 processors, since much finer granularities will be required in ASCI-
scale computations. The maximum over all processors of the time spent at global 
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TABLE 3. Cray T3E parallel performance- Gustafson scaling 

vert I procs I vert/proc I its I time I time/it 
357,900 80 4474 78 559.93s 7.18s 
53,961 12 4497 36 265.72s 7.38s 
9,428 2 4714 19 131.07s 6.89s 

synchronization points (reductions- mostly inner products and norms) is 12% of 
the maximum over all processors of the wall-clock execution time. This is almost 
entirely idle time arising from load imbalance, not actual communication time, as 
demonstrated by inserting barriers before the global reductions and noting that the 
resulting fraction of wall-clock time for global reductions drops below 1%. Closer 
examination of partitioning and profiling data shows that although the distribution 
of "owned" vertices is nearly perfectly balanced, and with it the "useful" work, the 
distribution of ghosted nodes can be very imbalanced, and with it, the overhead 
work and the local communication requirements. In other words, the partitioning 
objective of minimizing total edges cut while equidistributing vertices does not, in 
general, equidistribute the execution time between synchronization points, mainly 
due to the skew among the processors in ghost vertex responsibilities. This example 
of the necessity of supporting multiple objectives (or multiple constraints) in mesh 
partitioning has been communicated to the authors of major partitioning packages, 
who have been hearing it from other sources, as well. For PDE codes amenable to 
per-iteration communication and computation work estimates that are not data-
dependent, it is plausible to approximately balance multiple distinct phases in an 
a priori partitioning. More generally, partitionings may need to be rebalanced 
dynamically, on the basis of real-time measurements rather than models. This 
will require integration of load balancing routines with the solution routines in 
parallel. We expect that a similar computation after such higher level needs are 
accommodated in the partitioner will achieve close to 95% overall efficiency on 512 
nodes. 

Since we possess a sequence of unstructured Euler grids for the same wing, we 
can perform a Gustafson-style scalability study by varying the number of processors 
and the discrete problem dimension in proportion. We note that the concept of 
Gustafson-style scalability does not extend perfectly cleanly to nonlinear PDEs, 
since added resolution brings out added physics and (generally) poorer conditioning, 
which may cause a shift in the "market basket" of kernel operations as the work in 
the nonlinear and linear phases varies. However, our shockless Euler simulation is 
a reasonably clean setting for this study, if corrected for iteration count. Table 3 
shows three computations on the T3E over a range of 40 in problem and processor 
size, while maintaining approximately 4,500 vertices per processor. 

The good news in this experiment is contained in the final column, which shows 
the average time per parallelized pseudo-transient NKS outer iteration for problems 
with similarly sized local workingsets. Less than a 7% variation in performance 
occurs over a factor of nearly 40 in scale. 

4.2. Serial Cache Optimization Results. From a processor perspective we 
have so far looked outward rather than inward. Since the aggregate computational 
rate is a product of the concurrency and the rate at which computation occurs in 
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TABLE 4. IBM P2SC cache performance in serial (22,677 vertices) 

Enhancements Results 
Field Structural Edge impr. 

Interlacing Blocking Reordering its time time/it ratio 
1 28 2905s 103.8s -

2 X 25 1147s 45.9s 2.26 
3 X X 25 SOls 32.0s 3.24 
4 X X 25 673s 26.9s 3.86 
5 X X X 25 373s 14.9s 6.97 

a single active thread, we briefly discuss the per-node performance of the legacy 
and the PETSc ported codes. Table 4 shows the effect, individually or in var-
ious combinations, of three cache-related performance enhancements, relative to 
the original vector-oriented code, whose performance is given in row 1. Since the 
number of iterations differs slightly in the independent implementations, we nor-
malize the execution time by the number of iterations for the comparisons in the 
final column. These optimizations are described in more detail in [9]. We observe 
certain synergisms in cache locality; for instance, adding structural blocking to 
the interlaced code without edge-reordering provides a factor of 1.43, while adding 
structural blocking to the edge-reordered code provides a factor of 1.81. Similarly, 
adding edge-reordering to a code without structural blocking provides a factor of 
1.71, while adding structural edge-reordering to the blocked code provides a fac-
tor of 2.15. Including the iteration count benefit, the cache-oriented serial code 
executes 7. 79 times faster than the original, before parallelization. 

5. Conclusions 

We have demonstrated very respectable scaling behavior for a \liNKS version of 
a 3D unstructured CFD code. We began with a legacy vector-oriented code known 
to be algorithmically competitive with multigrid in 2D, improved its performance 
as far as we could for a sequential cache orientation, and then parallelized it with 
minimal impact on the sequential convergence rate. The parallel version can be 
scaled to accommodate very rich grids. 

Profiling the highest granularity runs reveals certain tasks that need additional 
performance tuning - load balancing being the least expected. With respect to 
the interaction of algorithms with applications we believe that the ripest remaining 
advances are interdisciplinary: ordering, partitioning, and coarsening must adapt to 
coefficients (and thus grid spacing, flow magnitude, and flow direction) for conver-
gence rate improvement. Trade-offs between grid sequencing, pseudo-time iteration, 
nonlinear iteration, linear iteration, and preconditioner iteration must be further 
understood and exploited. 
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Additive Domain Decomposition Algorithms for a Class of 
Mixed Finite Element Methods 

Axel Klawonn 

1. Introduction 

We discuss three different domain decomposition methods for saddle point prob-
lems with a penalty term. All of them are based on the overlapping additive Schwarz 
method. In particular, we present results for a mixed formulation from linear elas-
ticity which is well suited for almost incompressible materials. The saddle point 
problems are discretized by mixed finite elements; this results in the solution of 
large, indefinite linear systems. These linear systems are solved by appropriate 
Krylov space methods in combination with domain decomposition preconditioners. 
First, we discuss an indefinite preconditioner which can be formulated as an over-
lapping Schwarz method analogous to the methods for symmetric positive definite 
problems proposed and analyzed by Dryja and Widlund [3]. The second approach 
can be interpreted as an inexact, overlapping additive Schwarz method, i.e. a do-
main decomposition method with inexact subdomain solves. This preconditioner is 
symmetric positive definite and can be analyzed as a block-diagonal preconditioner, 
cf. [5]. Our third method is based on a block-triangular formulation, cf. [4, 7], it 
uses an overlapping additive Schwarz method for each of the block solvers. Nu-
merical results indicate that all of our methods are scalable. For brevity, for a list 
of references to other domain decomposition approaches for saddle point problems, 
we refer to Klawonn and Pavarino [6]. There are several other approaches to solve 
saddle point problems iteratively, for a list of references we refer to [5], [4], and [8]. 

The results in this paper have been obtained in joint work with Luca F. Pavarino 
from the University of Pavia, Italy. 

The outline of this paper is as follows. In Section 2, we introduce the saddle 
point problem and a suitable finite element discretization. In Section 3, we present 
our preconditioner for saddle point problems with a penalty term. In Section 4, 
computational results are given. 
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2. A mixed formulation of linear elasticity 

Let 0 c R d, d = 2, 3 be a polygonal (resp. polyhedral) domain. We consider 
a linear elastic material and denote by A and J.L the Lame constants. The linear 
strain tensor e is defined by Eij := ~ ( ~~; + ~). The material is assumed to be 
fixed along the part of the boundary ro c an, to be subject to a surface force h 
along r 1 := 80\ro, and to an external force f 0 . Other parameters often used in the 
literature are Young's modulus E and the Poisson ratio v. They are related to the 
Lame constants by v = 2 (.x~l'l and E = 1-'(~.x::"). It is known that the displacement 
method of linear elasticity in combination with low order conforming finite elements 
is not suitable for almost incompressible materials. These are materials where the 
Poisson ratio v approaches 1/2, or, in terms of the Lame constants, where A>> J.L· 

This failure is called Poisson locking. One approach to avoid the locking effect 
is based on a mixed formulation, cf. Brezzi and Fortin [2] for a more detailed 
discussion. We consider 

(1) 
-2J.Lfoe(u):e(v)dc + fodivvpdc fo!ovm+fr

1
bvds 

fo divuqdc t fo pqdc 0 

Vv E V, Vq E M, where V := {v E (H1(0))d : v = 0 on ro} and M := L2(0). 
Here, u denotes the displacement vector and p the Lagrange multiplier or pressure. 

Let us now consider a formal framework for saddle point problems with a 
penalty term. Let V and M be two Hilbert spaces with inner products(·, ·)v, (·, ·)M 
and denote by 11·11 v, 11·11 M the induced norms. Furthermore, let a(·, ·) : V x V -+ R, 
b( ·, ·) : V x M -+ R, and c( ·, ·) : M x M -+ be bilinear forms. Then, we consider 
the abstract problem 

Find (u,p) E V x M, s.t. 

a(u,v) + b(v,p) 
b( u, q) - t2 c(p, q) (2) < F,v > Vv E V 

<G,q> VqEM, tE[0,1], 

where FE V' and GEM'. 
Problem (2) is well-posed under some assumptions on the bilinear forms. Let 

a(·,·) be a continuous, symmetric, and V -elliptic bilinear form, i.e. ::Ja > 0, s.t. 
a(v,v);::: allvll~ Vv E V, let b(·,·) be a continuous bilinear form satisfying an 
inf-sup condition, i.e. ::l,Bo > 0, s.t. infqEM supvEV llv~Svli~liM ;::: ,Bo, and let c(·, ·) 
be a continuous, symmetric and positive semi-definite bilinear form. Under these 
assumptions, the operator associated with Problem (2) is uniformly bounded with 
respect to the penalty term t. Note that these are not the most general assumptions 
for (2) to be uniquely solvable. For a proof and further discussions, see e.g. Braess 
[1]. This result also holds for suitable mixed finite elements, cf. [1]. The mixed 
formulation of linear elasticity clearly satisfies the assumptions made in the abstract 
formulation. Thus, (1) is a well-posed problem. 

We discretize the saddle point problem (1) by a variant of the Taylor-Hood 
element, i.e. the P1 (h) - P1 ( 2h) element. This element uses continuous, piecewise 
linear functions on a triangular mesh Th with the typical meshsize h for the dis-
placement u and continuous, linear functions on a triangular mesh r2h with the 
meshsize 2h for the pressure p. Thus, the finite element spaces Vh c V and 
Mh c Mare given by Vh := {vh E (C(O))d n V : vh E P1 on T E rh} and 
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Mh := {qh E C(n) n M : Qh E P1 on T E T2h}· This results in a stable finite 
element method, cf. Brezzi and Fortin [2] . Discretizing (2) by P1(h)- P1(2h) 
elements, we obtain a linear system of algebraic equations 

(3) Ax=F, 

where 

A:= ( ~ 

3. Additive domain decomposition algorithms 

We discuss three different additive domain decomposition methods. In order to 
keep our presentation simple, we consider for the rest of the paper the discrete prob-
lem using matrices and vectors instead of operators and functions. For simplicity, 
we also always have in mind the concrete problem of mixed linear elasticity. 

Let TH be a coarse finite element triangulation of n into N subdomains ni with 
the characteristic diameter H. By refinement of TH, we obtain a fine triangulation 
Th with the typical mesh size h. We denote by H / h the size of a subdomain without 
overlap. From the given overlapping domain decomposition {ni}~ 1 , we construct 
an overlapping partition of n by extension of each ni to a larger subregion n: 
consisting of all elements of Th within a distance {j > 0 from ni. 

An important ingredient for the construction of our preconditioners are restric-
tion matrices Ri, i = 1, ... , N which, applied to a vector of the global space, return 
the degrees of freedom associated with the interior of n:. For the description of the 
coarse part, we need an extra restriction matrix R6 constructed by interpolation 
from the degrees of freedom of the coarse to the fine triangulation. With respect to 
the partition of our saddle point problem into displacement and Lagrange multiplier 
(or hydrostatic pressure) variables, we can always assume an associated part ion of 
our restriction matrices, i.e. Ri = (Ri,u Ri,p), i = 0, ... , N. 

3.1. An exact overlapping additive Schwarz method. Our first method 
can be formulated as an additive Schwarz method in the general Schwarz frame-
work now well-known for the construction of preconditioners for symmetric positive 
definite problems, cf. Smith, Bj0rstad, and Gropp [9]. It has the form 

N 

(4) B- 1 = R& A01 Ro + L R~ Ai 1 Ri, 
i=l 

where the Ai are local problems associated with the subdomains and Ao is the 
coarse problem stemming from the coarse triangulation, cf. also Klawonn and 
Pavarino [6]. Schwarz methods can also be defined in terms of a space decom-
position of Vh x Mh into a sum of local subspaces and a coarse space 

N 

vh X Mh = Voh X M~ + L-v;_h X Mih• 
i=l 

For the P1 (h) - P1 ( 2h) finite elements, we define local problems with zero Dirichlet 
boundary conditions for both displacement and pressure variables on the internal 
subdomain boundaries an:\ an. Additionally, we impose zero mean value for the 
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pressure on each o;. Then, we obtain the subspaces 

Since we use different mesh sizes for the displacement and pressure triangulation, 
we have a minimal overlap of one pressure node, i.e. b = 2h. Using the restric-
tion matrices Ri, our local problems A are defined by A := Ri AR~. The coarse 
problem Ao := AH is associated with Voh := vH, M~ := MH and m is the usual 
piecewise bilinear interpolation matrix between coarse and fine degrees of freedom. 

Note that B-1 is an indefinite preconditioner, and that it is well-defined since 
Ao and Ai are regular matrices by construction. We are currently working on a 
theoretical analysis of this method. 

3.2. A block-diagonal preconditioner. Our second method is given by 

N 

(5) B- 1 Rt v- 1 R '""Rt v- 1 R D := 0 0 0 + L i i il 
i=1 

where 

V:= ( ~ ~P), 
and Mp denotes the pressure mass matrix associated with the fine triangulation Th· 

Here, we define our restriction matrices Ri, i = 1, ... , N, s.t. the local problems are 
defined with zero Dirichlet boundary conditions for both displacement and pressure 
variables. In this case, we do not need the local mean value of the pressure to be 
zero since we do not have to solve local saddle point problems in this preconditioner. 
Analogous to the first preconditioner, we define the local problems as Vi := Ri V R~ 
and the coarse problem Vo := VH. This approach can be interpreted as an inex-
act additive Schwarz method, where the exact subdomain solves are replaced by 
appropriate matrices. It can also be written as a block-diagonal preconditioner 

"th AA - 1 ·- Rt A- 1 Ro + .,..N Rt A- 1 R d MA - 1 ·- Rt M- 1 R Wl .- O,u 0 ,u L...i=l i,u i i,u an p .- O,p O,p O,p + 
2::~ 1 RtP Mi~p 1 Ri,p· Analogous to the first preconditioner, we define the coarse 
and local problems as Ao := AH, Mo,p := Mp,H and Ai := Ri,u A Rtu, Mi,p := 
Ri,p Mp Rtp· The spaces Vi\ i = 1, ... , N, V0h, and M~ are as in the previous 
subsection. Only the local spaces for the pressure are now of the form Mih := { Qh E 
Mh : Qh = 0 on 0\0} Note that this preconditioner is symmetric positive definite 
and can be used with the preconditioned conjugate residual method (PCR). It can 
be analyzed in the framework of block-diagonal preconditioners for saddle point 
problems with a penalty term, cf. Klawonn [5]. 

3.3. A block-triangular preconditioner. Our third preconditioner is of 
block-triangular form where the block solvers are constructed by using an overlap-
ping additive Schwarz method. This method cannot be directly formulated in the 
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Schwarz terminology. The preconditioner has the form 

(6) 8 -1 ._ ( A 
T .- B 

where A and Mp are defined as in Section 3.2. This preconditioner is indefinite 
and can be analyzed as a block-triangular preconditioner for saddle point problems 
with a penalty term, cf. Klawonn [4] or Klawonn and Starke [7]. 

4. Numerical experiments 

We apply our preconditioners to the problem of planar, linear elasticity, cf. 
Section 2. Without loss of generality, we useE= 1 as the value of Young's modulus. 
As domain, we consider the unit square, i.e. n = (0, 1? and we use homogeneous 
Dirichlet boundary conditions for the displacements on the whole boundary. In this 
case, our problem reduces to 

(7) 
-2J.L k 'Vu 'Vv dr + 

k divuqdr 

k divvpdr 

.x!J.L k pqdr 

cf. Brezzi and Fortin [2], Section VI.l. 

Vv E (HJ(0)) 2 

Vq E L2,o(O), 

We discretize this problem with the P1(h)- P1(2h) elements from Section 2. 
The domain decomposition of n is constructed by dividing the unit square into 
smaller squares with the side length H. All computations were carried out using 
MATLAB. As Krylov space methods, we consider GMRES in combination with the 
preconditioners B-1 and Br 1, and we use the preconditioned conjugate residual 
method (PCR) with the preconditioner B[}. The initial guess is always zero and 
as a stopping criterion, we use lhll2/llroll2 :S 10-6 , where rk is the k- th residual 
of the respective iterative method. In all of our experiments, f is a uniformly 
distributed random vector and we use the minimal overlap 8 = 2h. 

To see if our domain decomposition methods are scalable, we carried out some 
experiments with constant subdomain size H/h = 8, appropriately refined mesh size 
h, and increased number of subdomains N = 1/ H 2 • Our experiments indicate that 
all three domain decomposition methods give a scaled speedup, cf. Figures 1, 2, i.e. 
the number of iterations seems to be bounded independently of hand N. In Figure 
3, we show a comparison of the iteration numbers of the different preconditioners 
for the incompressible limit case. Since we are using two different Krylov space 
methods, in order to have a unified stopping criterion, we ran the experiments 
presented in Figure 3 using the reduction of the relative error iiekil2/lleoll2 :S 10-6 

as a stopping criterion. Here, ek is computed by comparing the k-th iterate with 
the solution obtained by Gaussian elimination. To have a comparison between our 
domain decomposition methods and the best possible block-diagonal and block-
triangular preconditioners (based on inexact solvers for A and Mp), we also include 
a set of experiments with these preconditioners using exact block-solvers for A 
and Mp, cf. Figure 3. From these results, we see that our exact additive Schwarz 
preconditioner has a convergence rate which is comparable to the one of the exact 
block-triangular preconditioner. 
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FIGURE 1. Elasticity problem with P1 (h)- P1 (2h) finite elements: 
iteration counts for GMRES with overlapping additive Schwarz 
preconditioner B-1 
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FIGURE 2. Elasticity problem with P1(h) -P1(2h) finite elements: 
iteration counts for PCR with block-diagonal (DIAG-OAS-PCR) 
and GMRES with block-triangular (TRl-OAS-GMRES) precondi-
tioners using the overlapping additive Schwarz preconditioner as 
block solver. 

5. Conclusions 

301 

From our numerical results we see that the overlapping additive Schwarz ap-
proach is also a powerful way to construct preconditioners for saddle point problems. 
There is strong indication that scalability which is known to hold for symmetric 
positive definite problems also carries over to saddle point problems. Moreover, the 
exact overlapping additive Schwarz method gives results that are comparable to 
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.-B----B-----<>----t> DIAG~OAS~PCR 

~e---B----B------£> TRI~OAS~GMRES 

~>------£J DIAG~EX~PCR 

OL--~20~--~30----4~0----SL0----6~0---~70---~80 

1/h 

FIGURE 3. Elasticity problem with P1(h) - P1(2h) finite el~ 
ements: iteration counts for different preconditioners; OAS~ 
EX~GMRES=GMRES with overlapping additive Schwarz and 
exact subdomain solvers, DIAG-OAS-PCR=PCR with block-
diagonal preconditioner and overlapping additive Schwarz as 
block solvers, TRI-OAS-GMRES=GMRES with block-triangular 
preconditioner and overlapping additive Schwarz as subdomain 
solvers, DIAG-EX-PCR=PCR with block-diagonal preconditioner 
and exact block solvers, and TRI-EX-GMRES=GMRES with 
block-triangular preconditioner and exact block solvers. 

those obtained under best of circumstances by the block-triangular preconditioner. 
The convergence rates of the exact additive Schwarz method are significantly faster 
than those obtained by the domain decomposition methods based on the block-
diagonal and block-triangular approaches. We are currently working with Luca F. 
Pavarino on a more detailed comparison, taking into account also the complexity 
of the different preconditioners. 
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Non-conforming Domain Decomposition Method for Plate 
and Shell Problems 

Catherine Lacour 

1. Introduction 

The mortar element method is an optimal domain decomposition method for 
the approximation of partial differential equations on non-matching grids. There 
already exists applications of the mortar method to Navier-Stokes, elasticity, and 
Maxwell problems. The aim of this paper is to provide an extension of the mortar 
method to plates and shells problems. We first recall the Discrete Kirchhoff Trian-
gles element method (D.K.T.) to approximate the plate and shell equations. The 
aim of this paper is then to explain what has to be changed in the definition of the 
D.K.T. method when the triangulation is nonconforming. Numerical results will 
illustrate the optimality of the mortar element method extended to shell problems 
and the efficiency of the FETI solution algorithm. 

2. Recalling the D.K.T. method 

We recall that the Koiter equations are deduced from the Naghdi equations 
(whose unknowns are the displacement of the mean surface i1 = ( u1, u2, w) and the 
rotations[}_= ([}_1 , [}_2 ) in the plane tangential to 0) by imposing the Kirchhoff-Love 
relations, [1], given in (1), between the rotations [}_ and the components of the 
displacement 

(1) (}_01 + W,n + b~u;., = 0, where 

b~ =a;.,~"bn'" 

and where we denote by a;..'" the first fundamental form, by b01'" the second fun-
damental form and by Cn(3 the third fundamental form of the mean plane. The 
covariant derivatives are represented by a vertical bar and the usual derivatives by 
a comma. We use Greek letters for the indices in {1, 2} and Latin letters for the 
indices in {1, 2, 3}. 
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2.1. Formulation of the problem. We consider a shell which is 
• clamped along r 0 c r = an 
• loaded by a body force p 
e loaded by a surface force applied to the part f 1 = f - f 0 X j - ~; ~ [ of its lateral 
surface, where e is the thickness. 

We shall consider the following problem. 
Find ( i1, f!_) E Z such that 

(2) a[(u,f!_); (v,~)] = l(v,§_) \:l(v,§_) E Z 
with 

a[(u,f!_); (v,Q:)] L eEaf3A!Lbaf3(i1hA!L(v) + ~~Xaf3(i1,f!_)xA!L(v,§_)]vads 1 ds 2 

r foJvads 1ds2 + r (Nv- Ma§_a)d"f 

Xaf3(v,~) 

Va 

lo lr1 
E (aaAa!3!L + aa!La!3A + ~aa{3aA!L) 

2(1 + v) 1- v 
1 
2(valf3 + Vf31a)- baf3W 

1 1 A A 
2(§_alf3 + §_f31a)- 2(bavAI!3 + b{3vAia) + Caf3W 

J det(aaf3) 

and N the resulting force on f 1 , M = Eaf3Mf3aa the resulting moment on f 1 and 
Z the space of the displacements/rotations which satisfy the Kirchhoff constraints 
and the boundary conditions. 

The Discrete Kirchhoff Triangle method consists in defining a space of 
approximation zh given by 

(3) 

zh {(vh,~h); Vha E V/:l,~ha E v;:l,Vhawo = 0, a= 1,2; 

Wh E V/:2; Whwo = 0 \:IT E Th; ~h clamped 
( vh, ~h)T satisfy the discrete Kirchhoff constraints given in [1]} 

such that V/:1 is the space of P2-Lagrange elements and V/:2 the space of P~-Hermite 
elements, h standing for a discretization parameter. 

REMARK 1. The Kirchhoff relations are not satisfied at all the points in n and 
therefore the discrete space Zh is not included in Z. This means that we have a 
non-conforming approximation of the Koiter equations. 

3. The mortar element method for the D.K.T. approximation 

Our purpose is to explain what has to be changed in the definition of the D.K.T. 
method when the triangulation is nonconforming. We recall that in order to match 
interface fields, we associate to the nonoverlapping decomposition of the domain n 
the skeleton of the decomposition and we choose the mortar and nonmortar sides [3]. 
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For the shell equation, many functions have to be matched. First, we have 
the tangential displacements Vha and then the transversal displacement wh. We 
have to match also the rotations (}_h associated with the displacement. For the first 
two components of the displacement, the matching is easy since these functions are 
independent and are involved in a second order equation. Their natural space 
is H 1 (0) and the standard mortar method for piecewise parabolic elements is 
used. We recall that it involves the space of traces Wh 1 of functions of Vt1 on 
the nonmortar sides and the subspace whl of whl of functions that are linear on 
the first and last (1D) element of the triangulation of this nonmortar side. 

Let us state the matching across one particular non-mortar 1* and denote by + 
the mortar (master) side and by- the nonmortar (slave) side of the decomposition. 
Then, for any function Vha, a= 1, 2, we impose 

(4) 

The space Vh1 of approximation for the global tangential components of the 
displacements is thus given by 

(5) 
Vhl = {vh E £ 2 (0), vhiflk E Vtl and 

satisfies (4) along any non-mortar 1*}. 

The originality in the matching presented in this paper lies in the treatment 
of the out of plane displacement and the associated rotations. We recall that the 
D.K.T. condition is a relation between the displacements and the rotations, see 
formula (1). The nonmortar side values are recovered from the mortar side in the 
following two steps. 

l D.K.T. 

I!.+ (1) 

l 

We start from w+ given on the master side of the mortar, and then obtain(}_+ 
by using the D.K.T. condition. 

Step (1) 
We match ;r and (3+ by the mortar relations. These are different for the 
normal and-the tangential components (normal and tangential with respect to 
the interface). First, we match the tangential rotation (Jt- by defining a relation 
between two piecewise second order polynomials. The relation is naturally the same 
as for the displacements Vha, a= 1, 2. We then impose 
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(6) 

Let us turn now to the normal rotations. We note first that from the D.K.T. 
conditions, the normal rotations are piecewise linear on the mortar side, [2] . Since 
we want to preserve, as much as possible, the Kirchhoff conditions, we shall glue the 
normal rotations as piecewise linear finite element functions. To do this, we define 
Who as being the set of continuous piecewise linear functions on 1* (provided with 
the nonmortar triangulation) and Who as the subset of those functions of Who that 
are constant on the first and last segment of the (nonmortar) triangulation. We 
then impose the following relation between the (piecewise linear) normal rotations. 

(7) 

Step (2) 
Now that the rotations are completely glued together and are uniquely defined over 
the interface from the corner values of rr and all nodal values of (3+ (themselves 
derived from v;t, w+), we specify the ~elations that define w-. The first set of 
constraints is to satisfy "inverse D.K.T. conditions" i.e. to match the values of w-
with the rotations !}_-. We impose that 

• the tangential derivatives of w coincide with (3t- + v;; at any Lagrange node 
(vertex and middle point). This allows us to defi~e a piecewise P2 function on the 
nonmortar elements of 1* and 
• the normal derivative of w coincides with (3n- at each vertex of the triangulation 
of 1*. -
Since !}_n- is piecewise linear, the D.K.T. condition is automatically satisfied at 
the middle node of each element . Futhermore, since !}_t- is piecewise quadratic, it 
coincides with the tangential derivative of w- not only at the nodal points but also 
on the whole interface 1*. Since the tangential derivative of w- is determined, it 
suffices to impose the value of w- at one of the endpoints of 1* to determine the 
value of w- entirely. We impose, w!th 1* = (p1, p2], 

(8) 

(9) 
(10) 

V'ljJ E Who, 1 (w-- w+)'l/Jh dr = 0 
-y• 

w-(Pl) = w+(Pl) 

w-(P2) = w+(P2) 

which can be seen as the relations that determine the nodal values of w- that are 
lacking. We insist on the fact that this construction leads to finite element functions 
that satisfy the D.K.T. conditions on each interface. This allows us to define the 
global space vh2 of transversal displacements as follows. 

Vh2 = {wh E L2 (n) WhjOk E Vt2 and satisfy (6), (7), 
(11) (9), (8) and (10)} 
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FIGURE 1. Plate configuration 

FIGURE 2. Deformation of the plate 

4. Numerical results 

Description of the problem. 
We consider the plate, given in Figure 1, with the following properties. 

Thickness 
Length 
Width 

Properties 
Boundary conditions 

Loading force 

1. Matching results. 

e = 0.05 m 

L=1m 

w=1m 

E = 1.0E7 Pa and v = 0.25 
AB and AC clamped 
on D : Fz = -1.0 N 

The deformation of the plate loaded at the point D is shown in Figure 2. 
The plate is now decomposed as in Figure 3 with non matching grids on the 
interfaces. The first results, given in Figures 4 and 5, show the good matching 
of the transversal displacement on the section C F and of the normal derivative of 
the transversal displacement. 
2. Scalability results. 
The discretization leads to an algebraic saddle-point problem that can be solved 
by the FETI method introduced in [4] and [6] . The FETI method presented here 
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FIGURE 3. Example of decomposition and mesh 
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FIGURE 4. Transversal displacement on CF 

FIGURE 5. Normal derivative of the transversal displacement on CF 

results in a scalable substructuring algorithm for solving this saddle point problem 
iteratively. 
For this plate problem approximated by the D.K.T. finite element method, we 
observe that for a fixed local mesh, the number of iterations is independent of the 
number of subdomains. Thus, the parallel implementation exhibits good scalability 
when the right preconditioner is used [5], cf. Table 1. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



310 CATHERINE LACOUR 

TABLE 1. Scalability results 

Number of sub domains Iterations Residual 
4 (2 X 2) 49 7.10E-004 
8 (4 X 2) 76 8.202E-004 
16 (4 X 4) 77 7.835E-004 
32 (8 X 4) 96 7.166E-004 

Without preconditioner. 
Number of sub domains Iterations Residual 

4 (2 X 2) 14 5.256E-004 
8 (4 X 2) 16 7.566E-004 
16 (4 X 4) 16 8.966E-004 
32 (8 X 4) 16 9.662E-004 
64 (8 X 8) 16 8.662E-004 

With preconditioner. 

5. Conclusion 

Analysis of the application of the D.K.T. method extended to nonconforming 
domain decomposition to shell problem illustrate the optimality of the mortar 
element method and the efficiency of the FETI solution algorithm. 
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Solutions of Boundary Element Equations by a Flexible 
Elimination Process 

Choi-Hong Lai and Ke Chen 

1. Introduction 

Field methods such as finite difference, finite volume or finite element methods 
are usually applied to solve partial differential equations. Such methods reduce 
either linear partial differential equations or linearized partial differential equations 
to a large sparse set of linear equations. However for certain kinds of boundary 
value problems, boundary element methods have proven to be effective alternatives, 
especially when dealing with exterior problems. One well-known advantage of 
boundary element methods is that the dimension of the original problem is reduced 
by one. The reason is because a differential problem in a domain 0 c Rm can 
be reformulated as an integral equation problem [2] over the underlying boundary 
r = 80 c Rm- 1. A number of approximations can then be applied that may lead 
to boundary element equations. 

This paper has two objectives. Firstly, a brief description is given of the 
sequential boundary element method followed by a possible conversion and its 
requirements to a distributed algorithm. Secondly, a flexible elimination method 
[10] is used with the distributed algorithm to solve the set of boundary element 
equations. Such an elimination method has the advantage of not following the 
usual ordering of the system of equations in a classical elimination procedure such 
as Gaussian elimination. The technique greatly enhances the intrinsic parallelism of 
solving dense linear systems of equations. This paper also compares the accuracy of 
the flexible elimination method with the classical Gauss-Jordan elimination method 
for two potential flow problems and provides some timing results of the flexible 
elimination method on a network of SUN workstations using MPI as distribution 
directives. The paper concludes with an extension of the algorithm to complex 
systems of linear equations. 
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2. Boundary Element Methods 

For certain kinds of boundary value problems such as Laplace's equation, the 
Helmholtz equation and the linear diffusion equation, boundary element methods 
have proved to be effective alternatives to field methods. It is particularly true for 
exterior problems. One typical technique similar to the boundary element method 
known as the p ... nel element method [5], which is a well established practice in 
aeronautical engineering industry for the design of steady and unsteady subsonic 
compressible flows over airfoils and other airframe structures, is proved to be a 
successful tool for engineers. 

Consider the exterior Neumann problem in two dimensions using a simple layer 
logarithmic potential [6]. Let an denote the surface of a body which is sufficiently 
smooth and n denote the exterior of the body where a harmonic function is defined 
in it. Suppose the outward normal derivative ¢' along an is known, then the 
solution can be written as 

(1) ¢(p) = r ln IP- qla(q)ds ' pEn u an 
lan 

Suppose the source density a is distributed on an, then it must satisfies the integral 

(2) 

where ni is the outward normal at Qi· Suppose now the boundary an is subdivided 
into elements ani' i = 1' ... ' n, the above integral can be approximated by 

(3) n 1 a L aj -ln lqi - qj Ids + nai = ¢~ 
j=l ani ani 

where aJ = a(qJ) and¢~ = <P'(qi)· The discretized replacement results in the set 
of dense linear equations AQ: = Q where Q: = [ai · · · an]T and Q = [¢~ · · · ¢~]T. It 
involves far fewer unknowns than any field method such as finite difference or finite 
volume methods. Hence a direct method such as Gaussian elimination is usually 
sufficient for moderate n. 

For large n, a direct method can be expensive. Our work here will be a 
good starting point towards achieving speed up. Iterative methods are alternative 
approaches that have achieved a varied level of success. That is, efficient iterative 
solvers can be problem-dependent and preconditioners dependent; refer to [1]. 

2.1. Sequential Algorithm. It is clear that a sequential boundary element 
method involves two computational functionals, namely, (a) the construction of 
the dense matrix A and (b) the solution of AQ: = Q, which cannot be computed 
concurrently. However, one can easily parallelize functional (a) because of the 
intrinsic parallelism existing in ( 3). Early work in the parallelization of these 
integrals can be found in [3, 8] and the references therein. The parallelization 
essentially involves the sharing of the computation of the above integrals amongst 
a number of processors within a distributed environment. Then functional (b) 
may be started once functional (a) is completed. There are a large number 
of literatures on parallel solvers for dense matrices. However on some parallel 
machines Gauss-Jordan elimination is preferred. One common feature of these 
parallel implementations is that they primarily rely on the extraction of parallelism 
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to Gaussian or Gauss-Jordan elimination. The intrinsic sequential behaviour of the 
two functionals has not been removed to suit modern days distributed computing. 

Suppose ta and Ta denote the sequential and parallel times respectively for 
computing the integrals and t 8 and T8 denote the sequential and parallel times 
respectively for solving AQ: = !!., then the total sequential computing time, t, is 
given by 

(4) 
and the corresponding parallel computing time, tp, is given by 

( 5) tp = Ta + Ts. 

2.2. A Distributed Algorithm. Divided and conquer type algorithms are 
usually used to tackle discretized problems in distributed and/or parallel computing 
environments. There are notably three major classes of divide and conquer type 
of algorithms, namely, domain decomposition [7], problem partitioning [9] and 
functional decomposition [4]. The first two type of algorithms concern geometric 
partitioning of computational domains according to either load balancing or regional 
physical/numerical behaviour and the latter concerns parallelism in computational 
functionals. For the present problem, if functionals (a) and (b) could be performed 
concurrently, then it is possible to achieve 

(6) 
It is certainly true that tp > td. Hence the key requirement of a new dense matrix 
solver is that it does not rely on the natural ordering of the equations as required 
by the classical Gaussian elimination. In other words, the matrix solver should 
be able to eliminate any equations that have been constructed by the parallel or 
distributed processing of functional (a) and are made available to the matrix solver 
in a random ordering. It is important that such distributed algorithm should not 
affect the accuracy of the solution compared to that obtained by means of the 
classical Gaussian elimination. 

Now suppose the obstacle surface is subdivided into np sub-domains such that 
n/np is an integer for simplicity. It is also assumed that each sub-domain is mapped 
to a processor within the distributed computing environment. Then a distributed 
algorithm can be given as follow. 

Algorithm: A distributed boundary element method. 
Notation:- n (number of elements), 80. (shape of the body), 

np (number of processors and njnp is an integer for simplicity), 
ir (maps the local element numbering r to 

the global element numbering), 
gi (denotes the arrival ordering of the equations at sub-task 2). 

sub-task 1 { 
parallel-for p = 1, · · · , np 

for r = 1, · · · , n / np 
Compute row i := ir of matrix A; 
Compute element [!!.]i of the r.h.s. vector!!.; 
Non-blocking send of row i and element [!!.]i; 

end for 
end parallel-for 
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}end sub-task 1 

sub-task 2 { 
fori= 1, · · · , n 

CHOI-HONG LA! AND KE CHEN 

Block receive row gi and [Q] 9 i from sub-task 1; 
Flexible elimination step (see next Section); 

end for 
}end sub-task 2 

end Algorithm 

3. A Flexible Elimination Method 

The method is based on the concept of orthogonality of vectors. Suppose 
the coefficients of the ith equation of the system AQ: = Q, where [A]ij = 
aij, [Q]i = bi and [di = Xi, are written as the augmented vector Ai = 
[ai1ai2 · · · ain - bi]T, i = 1, 2, · · · , n, then a vector V is said to be the 
solution of the system provided that the last component of V is unity and that 
A{V = 0, for all i = 1, 2, .. · , n. Let C = { A1, A2, .. · , An}· Define the 
set c( i) = { c 1' c2' ... 'ci I a selection of i different vectors from C} such that 
c(il = c(i- 1) U{Ci} and the set R(i) as the subspace of dimension n + 1 - i 
which consists of vectors orthogonal to the vectors in c(il, for i = 1, 2, · · · , n. It 
is intuitively obvious that the basis for the (n +I)-dimensional subspace R(O) may 
be chosen as the natural basis, i.e. 

(7) y(O) = {V1(0) := [10 · · · OjT, · · · , V~~ 1 := [0 · · · 01]} 

For each i from 1 to n, linear combinations of a chosen vector from the basis 
y(i-1) and one of the remaining vectors from that basis are performed. Such linear 
combinations are subject to the condition that the resulting vectors are orthogonal 
to Ci. Therefore for any Ci E C \ c(i- 1), it is equivalent to the construction of the 
basis 

(8) y(iJ _ {v.(iJ E R(il 1 v,(il ._ o: v(i-1) + v(i-1) cTv;(iJ _ o} 
- k k .- k s(k) m(k) ' i k -

where 1 ::::; k E N ::::; n + 1 - i, s(k) and m(k) E N and s(k) =1- m(k). 
C(o) = {j)} is empty. It can be easily shown that 

(9) 
cTv(i-1) 

i m(k) 
O:k =- cTv(i-1) 

i s(k) 

Here 

and that the vector Vk(i) is orthogonal to each of the vectors in C(il c C. In order 
to avoid instability of the orthogonalization procedure, the condition C[V 8~i~ 1 ) =1- 0 
must be satisfied. Usually a check may be incorporated in the algorithm to ensure 
the stability of the method. The dimension of the subspace R(n) is 1 and the basis 
y(n) is orthogonal to every vector in C(n) =C. Thus the solution of the system 
AQ: = !! is constructed [10]. It should be noted here that when Ci is chosen as 
Ai and that if s(k) = 1 and m(k) = k + 1 then the method is equivalent to a 
Gauss-Jordan elimination [10]. 

However the choice of s(k) and m(k) can be as flexible as it could be, provided 
that the condition s(k) =1- m(k) is satisfied. From (8), n + 1- i pairs of vectors are 
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chosen from the basis of V( i- 1), such that no two pairs of such vectors are identical, 
in order to perform the linear combinations. Note that the linear combinations are 
performed by using the constant O'.k, as given by (9), which involves the division 
of two floating point numbers. Therefore O'.k will loose accuracy if the two floating 
point numbers are of very different orders of magnitudes. One criterion which 
governs the choice of s(k) and m(k) is to ensure similar order of magnitude of the 
floating point numbers C!V~(~~) and C!Vs~i~ 1 ). This involves some additional 
logical comparison work. It is possible to include tests in an implementation to 
check that either pivoting is needed or redundant equations have occurred. It can 
easily be seen that the data structure of the solution vector, i.e. V1( n), is not affected 
with various choices of s(k) and m(k). It should be mentioned here that pivoting 
is equivalent to suitable choices of s(k) and m(k). Therefore the implication is that 
column pivoting strategy has no effect on the data structure of the solution vector 
and that the same property applies to row pivoting strategy as long as s(k) is not 
the same as m( k). More details of these properties and examples can be found in 
[10]. 

As far as distributed computing is concerned, the flexible choice of s and m 
is not the key ingredient. However, if we consider the choice of C(i), we realize 
that there is no preference in the order of choosing vectors for C(i) from C. In 
fact the order of choosing Ci is not important in the present algorithm. The 
only two criteria governing the choice of Ci is (i) C(i) consists of a selection of 
i different vectors from C and (ii) eqn (9) must be satisfied in order to achieve 
stability of the algorithm. Hence it is possible to choose Ag(i) provided that the 
map g: N --t N is one-to-one and that 1:::; g(i) :::; n, i = 1, · · · , n where g(i) -=f. g(j) 
if i -=f. j. Such mapping of g implies the order of elimination process is not as rigid 
as that in a Gauss-Jordan elimination. At any step i, only Ci E C(i) c C and 
y(i- 1) are required in the computation. Therefore the orthogonalization procedure 
can be completely separated from the knowledge of the set C \ C(i). In terms of 
functionals (a) and (b), the requirement for functional (b) to follow functional (a) in 
a sequential processing is removed. This particular property satisfies the concurrent 
processing of both functionals (a) and (b) as the necessary requirement described 
in the previous Section. In terms of the sub-tasks as described in the previous 
Section, sub-task 2 will be allowed to take and process any equation arriving at its 
door without jeopardizing the data structure and the stability of the elimination 
process. 

One can also easily see that, by choosing s(k) = 1 and m(k) = k + 1, the 
algorithm is particularly suitable for vector calculation and the scalar products 
involved in the algorithm can be optimized to provided faster timings. We shall 
investigate the accuracy of the algorithm by using a random number generator to 
provide a re-ordering function g(i). 

4. Examples 

For simplicity, potential flows past over obstacles at zero angle of attack are 
considered. The two obstacles under consideration are (i) an ellipse described by 

2 
x2 + Y4 = 1 and (ii) the NACA0012 airfoil. It is assumed that the variables in (3) 
are normalized with respect to the far field velocity. 

Test 1. The algorithm is first implemented as a Gauss-Jordan elimination 
method by taking s(k) = 1 and m(k) = k + 1 for the solution of the boundary 
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TABLE 1. Timings in seconds for solving boundary element equations. 

n 
640 
1024 

326 
1320 

232 152.5 
957 814.3 

element equations with the natural ordering of the system. Having solved the 
system of equations for a(q), it is possible to evaluate ¢(q) using (1) and hence 
the tangential velocity V along the surface of the obstacle. Pressure coefficients 
Cp = 1 - IVI2 [5, 6] along the surface of the obstacle can be evaluated. Then a 
random number generator is used to provide a re-ordering function g( i) as described 
above. The re-ordering function serves the same functionality as providing rows of 
matrix coefficients from sub-task 1 to sub-task 2 at a different ordering from the 
natural ordering according to the element numbering. 

Pressure coefficients are obtained for test cases (i) and (ii) by a Gauss-Jordan 
elimination method using the natural ordering of the equations and the re-ordering 
of the equations. The maximum errors that have been recorded for both cases are 
less than 4 decimal places. 

Test 2. The algorithm is also run on a network of Sun SPARC 
Classic workstations at Greenwich. MPI Standard was used to implement the 
communication. Timings for the solutions of 640 and 1024 unknowns were recorded 
for both of the obstacle configurations as a sequential process and distributed 
processes on 4 and 8 workstations. The re-ordering function described above is 
used here. Table 1 shows the timings on the network. However the speedup in this 
test is not good because of the heavily used network. 

5. Extension to Complex Systems of Equations 

Suppose the system AQ. = !!_ is a complex system such that A = A1 + iA2 , 

Q_ = Q.1 + iQ.2 and Q = h + i!!_2 • The complex system can be re-written as the 
following real system 

[ ~~ -A~2] [ ~~ ] = [ ~~ ] 
Since the ordering of the system in the flexible elimination algorithm does not 
affect the solution, once the g( i)th equation is constructed and is made available to 
sub-task 2, the two equations 

[ [Al]g(i) [-A2]9 (i) [-.Ql]g(i) ] 

[ [A2] 9 (i) [Al]9 (i) [-.Q2]g(i) ] 
can be used immediately into the construction of the new basis as described 
previously in (8). 

6. Conclusions 

A distributed algorithm for boundary element methods is discussed. In order to 
introduce concurrency to boundary element methods at the functional level, one has 
to employ a flexible elimination method as described in this paper. The accuracy 
of the flexible elimination method is good and its stability can be ensured easily. 
Early distributive computing tests show that the method is a suitable candidate for 
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solving boundary element equations in a distributive environment. The extension 
to a complex system of equation is straightforward. 
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An Efficient FETI Implementation on Distributed Shared 
Memory Machines with Independent Numbers of 

Subdomains and Processors 

Michel Lesoinne and Kendall Pierson 

1. Introduction 

Until now, many implementations of the FETI method have been designed 
either as sequential codes on a single CPU, or as parallel implementations with 
a One Subdomain per Processor approach. This approach has been particularly 
typical of implementations on distributed memory architectures such as the IBM 
SP2. In the last couple of years, several computer manufacturers have introduced 
new machines with a Distributed Shared Memory (DSM) programming model -e.g. 
SGI Origin 2000, or HP Exemplar. In such architectures, the physical memory is 
distributed among the processors or CPU boards but any memory location can 
be accessed logically by any CPU independently of where the particular memory 
page being accessed has physically been allocated. As more and more machines 
of this type are available with a relatively small number of processors, the interest 
in implementing FETI with an independent number of subdomains and processor 
has increased. We report on such an implementation of FETI and highlight the 
benefits of this feature. We have found that medium size to large problems can be 
solved even on a sequential machine with time and memory requirements that are 
one to two order of magnitude better than a direct solver. 

2. Objectives 

When writing our new FETI code, the main objectives were: 

• Efficient data structures for distributed shared memory 
• Number of subdomains independent of the number of processors 

The second requirement was the most important requirement and, when taken to 
the extreme of a single processor, naturally leads to being able to run the same 
code sequentially 
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3. Overview of FETI 

In order to keep this paper self-contained as much as possible, we begin with 
an overview of the original FETI method [6, 1, 2, 4, 5]. 

The problem to be solved is 

(1) Ku=F 

where K is an n x n symmetric positive semi-definite sparse matrix arising from 
the finite element discretization of a second- or fourth-order elastostatic (or elasto-
dynamic) problem defined over a region 0, and F is a right hand side n-long vector 
representing some generalized forces. If 0 is partitioned into a set of Ns discon-
nected substructures f!(s), the FETI method consists in replacing Eq (1) with the 
equivalent system of substructure equations 

K(s)u(s) p(s) - B(s)T A s 1, ... , Ns 

(2) Ns 

Ll LB(s)U(s) = 0 
s=l 

where K(s) and p(s) are the unassembled restrictions of K and F to substructure 
n<s), A is a vector of Lagrange multipliers introduced for enforcing the constraint 
Ll = 0 on the substructure interface boundary r}sl, and B(s) is a signed Boolean 
matrix that describes the interconnectivity of the substructures. A more elaborate 
derivation of (2) can be found in [6, 3] In general, a mesh partition may contain 
Nt ::::; N 8 floating substructures - that is, substructures without enough essential 
boundary conditions to prevent the substructure matrices K(s) from being singular 
-in which case Nt of the local Neumann problems 

(3) 

are ill-posed. To guarantee the solvability of these problems, we require that 

(4) s = 1, ... , Nt 

and compute the solution of Eq. (3) as 

(5) 

where K(s)+ is a generalized inverse of K(s) that needs not be explicitly computed 
[4], R(s) = Ker (K(s)) is the null space of K(s), and o:(s) is a vector of six or fewer 
constants. The introduction of the additional unknowns o:(s) is compensated by 
the additional equations resulting from ( 4) 

(6) s = 1, ... , Nt 

Substituting Eq. (5) into the second of Eqs. (2) and using Eq. (6) leads after some 
algebraic manipulations to the following FETI interface problem 

(7) 
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where 

(8) 

(9) 

MICHEL LESOINNE AND KENDALL PIERSON 

Ns 
FI L B(s) K(s)+ B(s)T; 

d 

s=1 
[B(1l R(1) 

[ Q:(l)T 

Ns 

B(NJ)B(Nj)l; 

Q:(NJ)T]; 

LB(s)K(s)+ p(s); 

s=1 
[p(1)TB(1) 

K(sl-' if O(s) is not a floating substructure 
a generalized inverse of K(s) if O(s) is a floating substructure 

For structural mechanics and structural dynamics problems, F1 is symmetric be-
cause the substructure matrices K(s) are symmetric. The objective is to solve by 
a PCG algorithm the interface problem (7) instead of the original problem (1). 
The PCG algorithm is modified with a projection enforcing that the iterates >..k 
satisfy (6). Defining the projector P using 

(10) 

the algorithm can be written as: 

(11) 

L Initialize 
0 T 1 >.. = G1 (GI G1)- e 

r 0 = d- F1>..0 

2. Iterate k = 1, 2, ... until convergence 
wk-1 pT rk-1 

zk-1 
yk-1 

(k 
pk 

vk 
>..k 
rk 

p1-1wk-1 
p .zk-1 

yk-1r wk-1 /yk-2rwk-2 ((1 = 0) 
yk-1 + (kpk-1 (p1 =yo) 

yk-1r wk-1 /pkr FIPk 
>..k-1 + vkpk 
rk-1 - vk FIPk 

4. Data organization on DSM computer architecture 

To be able to efficiently organize data for the FETI solver, we need to exam-
ine how the operating system will distribute memory inside the physical memory 
units and how this distribution affects the cost of accessing that memory. Simple 
observations of the impact of the computer architecture will give us guidelines to 
organize the elements involved in the FETI solver. The single distributed shared 
memory model of DSM machines simplifies the writing of parallel codes. However 
programmers must be conscious that the cost of accessing memory pages is not uni-
form and depends on the actual location in hardware of a page being accessed. On 
the SGI Origin 2000 machine, the operating systems distributes pages of memory 
onto physical pages by a first touch rule. This means that if possible, a memory 
page is allocated in the local memory of the first CPU that touches the page. 
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Fortunately, the FETI method, because it is decomposition based, lends itself 
in a natural way to a distribution of data across CPUs that guarantees that most 
of the memory is always accessed by the same CPU. To achieve this, one simply 
applies a distributed memory programming style on a shared memory architecture. 
This means that all operations relative to a subdomain s are always executed by the 
same CPU. This way, such objects as the local stiffness matrix K(s) will be created, 
factored and used for resolution of linear systems always on the same CPU. 

5. Parallel programming paradigm 

One can easily see that the operations involved in the FETI method are mostly 
matrix and vector operations that can be performed subdomain-per-subdomain. 
Such quantities as the residual vector or search direction vectors can be thought of as 
global quantities made of the assembly of subvectors coming from each subdomain. 
Operations on such vectors such as sum or linear combinations can be performed on 
a subdomain per subdomain basis. On the other hand, coefficients such as vk and 
(k are scalar values which are global to the problem. These coefficients ensue mostly 
from dot products. Dot products can be performed by having the dot product of 
the subparts of the vectors performed by each subdomain in parallel, and then all 
the contributions summed up globally. 

Such remarks have led us to write the program with a single thread executing 
the main PCG loop. In that way, only one CPU allocates and computes the global 
variables such as vk and (k. To perform parallel operations, this single thread 
creates logical tasks to be performed by each CPU, and these tasks are distributed 
to as many parallel threads as CPU s being used. Examples of tasks are the assembly 
or factorization of K(s), or the update of the subpart of a vector for subdomain s. 

Because the number of threads is arbitrary and independent of the number of 
tasks to be performed at a given step - i.e. several tasks can be assigned to the 
same thread -, independence between the number of subdomains and the number 
of CPUs is trivially achieved. In the extreme case, all tasks are executed by a single 
thread - the main thread - and the program can run on a sequential machine. 

6. Implementation of the projector P 

The application of the projector P is often referred to as the coarse problem 
because it couples all subdomains together. The application of the projector to a 
vector z can be seen as a three step process: 

• Compute 1 = ct z 
• Solve (GtG)a = 1 
• Compute y = z - Ga 

The first and last operation can be obtained in parallel with a subdomain per 
subdomain operation, since the columns of G (the trace of the rigid body modes) 
are non zero only for one subdomain interface. The second operation however is a 
global operation that couples all subdomains together. 

Past implementations of the projector at the University of Colorado have relied 
on an iterative solution of the second equation of Eqs (6). Though such an approach 
was justified by the fact that these implementations were targeted at distributed 
memory machines, an experimental study of the problem has revealed that on DSM 
machine, it is more economical to solve this system with a direct solver. This direct 
solver can only be parallelized for a low number of CPU before losing performance. 
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FIGURE 1. Finite element models of a lens (left) and a wheel car-
rier (right) 
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FIGURE 2. Number of iterations, solution time and memory re-
quirements vs number of subdomains (Lens problem, 1 CPU) 
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Consequently, it is the least parallelizable part of the FETI solver and sets an upper 
limit to the performance that can be attained by adding CPUs. 

7. Numerical experimentations 

We have run our code on two significant example problems. For each problem 
we made runs with a varying number of subdomains and have recorded both timing 
of the solution and the memory required by the solver. 

7.1. Lens problem. The first problem, shown in Fig. 1 on the left has 40329 
nodes, 35328 brick elements and 120987 degrees of freedom. Solving this prob-
lem sequentially using a skyline solver and renumbered using RCM uses 2.2GB of 
memory and 10,000 seconds of CPU time. By contrast, on the same machine, run-
ning FETI sequentially with 128 subdomains requires 379MB of memory and 183.1 
seconds of CPU. This results dramatically highlights that FETI is an excellent so-
lution method, even on sequential machines. As can be seen on the left of Fig. 2, 
the number of iterations remains stable as the number of subdomains increases. 
The right part of the same figure shows the variation of timings and memory usage 
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with the number of subdomains. It can be noticed that as the number of subdo-
mains increases, the memory required to store all the local stiffness matrices K(s) 

decreases. This is mainly due to the reduction of the bandwidth of the local prob-
lems. Our experimentations show that the optimum decomposition for CPU time 
has 128 subdomains. Such a number would make it impractical for most users to 
use FETI with an implementation that requires one CPU per subdomain. After 
determining the optimum number of subdomains, we ran the same test case with 
an increasing number of processors. The resulting timings show good scalability 
(Fig. 3) 

7.2. Wheel carrier problem. The second problem is a wheel carrier problem 
(see Fig. 1 on the right) with 67768 elements, 17541 nodes and 52623 degrees of 
freedom. The skyline solver requires 576 MB of memory and 800 seconds of CPU 
time. Fig. 4 shows a single CPU performance of FETI with 80 subdomains of 26. 7s. 
On this problem, the memory requirement beyond 40 subdomains is stable around 
88MB but tends to slightly increase as the number of subdomains increases. This 
is explained by the fact that as the number of subdomains increases, the size of the 
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interface increases and the memory required to store larger interface vectors offsets 
the reduction of memory required by the local stiffness matrices K(s). 

8. Conclusions 

We have implemented the FETI method on Distributed Shared Memory ma-
chines. We have achieved independence of the number of subdomains with respect 
to the number of CPUs. This independence has allowed us to explore the use of a 
large number of CPUs for various problems. We have seen from this experimenta-
tion that using a relatively large number of subdomains (around 100) can be very 
beneficial both in solution time and in memory usage. With such a high number 
of subdomains, the FETI method was shown to require CPU times and memory 
usage that are almost two orders of magnitude lower than those of a direct sky-
line solver. This strongly suggests that the FETI method is a viable alternative to 
direct solvers on medium size to very large scale problems. 
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Additive Schwarz Methods with N onreftecting Boundary 
Conditions for the Parallel Computation of Helmholtz 

Problems 

Lois C. Mcinnes, Romeo F. Susan-Resiga, David E. Keyes, 
and Hafiz M. Atassi 

1. Introduction 

Recent advances in discretizations and preconditioners for solving the exterior 
Helmholtz problem are combined in a single code and their benefits evaluated on 
a parameterized model. Motivated by large-scale simulations, we consider iterative 
parallel domain decomposition algorithms of additive Schwarz type. The precondi-
tioning action in such algorithms can be built out of nonoverlapping or overlapping 
subdomain solutions with homogeneous Sommerfeld-type transmission conditions 
on the artificially introduced subdomain interfaces. Generalizing the usual Dirichlet 
Schwarz interface conditions, such Sommerfeld-type conditions avoid the possibil-
ity of resonant modes and thereby assure the uniqueness of the solution in each 
subdomain. 

The physical parameters of wavenumber and scatterer diameter and the numer-
ical parameters of outer boundary diameter, mesh spacing, subdomain diameter, 
subdomain aspect ratio and orientation, subdomain overlap, subdomain solution 
quality (in the preconditioner), and Krylov subspace dimension interact in vari-
ous ways in determining the overall convergence rate. Many of these interactions 
are not yet understood theoretically, thus creating interest in experimental inves-
tigation. Using the linear system solvers from the Portable Extensible Toolkit for 
Scientific Computation (PETSc), we begin to investigate the large parameter space 
and recommend certain effective algorithmic "tunings" that we believe will be valid 
for (at least) two-dimensional problems on distributed-memory parallel machines. 

The external Helmholtz problem is the basic model of farfield propagation of 
waves in the frequency domain. This problem is challenging due to large discretized 
system sizes that arise because the computational grid must be sufficiently refined 
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throughout the entire problem domain to resolve monochromatic waves, which re-
quires approximately 10-20 gridpoints per wavelength for commonly used second-
order discretizations. Moreover, the conventional farfield closure, the Sommerfeld 
radiation condition, is accurate only at large distances from centrally located scat-
terers and must be replaced at the artificial outer boundary by a nonreflecting 
boundary condition to obtain a computational domain of practical size. To this 
end we employ a Dirichlet-to-Neumann (DtN) map on the outer boundary, which 
provides an exact boundary condition at finite distances from the scatterer. The 
DtN map is nonlocal but does not introduce higher order derivatives. 

Although the discretized Helmholtz linear system matrix is sparse, for a large 
number of equations direct methods are inadequate. Moreover, the Helmholtz op-
erator tends to be indefinite for practical values of the wavenumber and the mesh 
parameter, leading to ill-conditioning. As a result conventional iterative methods 
do not converge for all values of the wavenumber, or may converge very slowly. For 
example, resonances can occur when conventional Schwarz-based preconditioners 
are assembled from Dirichlet subdomain problems. In view of these difficulties, 
this work focuses on developing a family of parallel Krylov-Schwarz algorithms for 
Helmholtz problems based on subdomain problems with approximate local trans-
mission boundary conditions. 

It is difficult to do justice to previous work on a century-old problem that has 
been revisited with vigor by specialists in diverse application areas in recent years. 
However, we select a few references that have been of inspirational value to our 
own work. Keller & Givoli [13] and Harari & Hughes [10] employed the global 
Dirichlet-to-Neumann map (a pseudo-differential operator) as a non-reflecting BC 
for the truncated domain (circle or sphere) and also experimented with truncating 
the complexity implied by the full DtN map. Despres in his doctoral disserta-
tion [7] pioneered domain decomposition for Helmholtz problems with first-order 
transmission conditions on nonoverlapping interfaces between subdomains, proving 
convergence to a unique solution. Ghanemi [8] combined nonlocal transmission con-
ditions with Despres-style iteration. She also obtained a better rate of convergence 
through under-relaxation of the nonoverlapping interface conditions. Douglas & 
Meade [12] advocated second-order local transmission conditions for both subdo-
main interfaces and the outer nonrefl.ecting boundary condition and employed un-
derrelaxed iterations. Our colleagues in domain-decomposed Helmholtz research, 
Cai, Casarin, Elliott & Widlund [3] introduced Schwarz-style overlapping, used 
first-order transmission conditions on the overlapped interfaces, calling attention 
to the wavelap parameter, which measures the number of wavelengths in the over-
lap region. They have also noted the importance of a (relatively fine) coarse grid 
component in the Schwarz preconditioner to overcome the elliptic ill conditioning 
that arises asymptotically for small mesh spacing. 

(1) 

2. Mathematical Formulation 

The scalar Helmholtz equation, 
-'V2u- k 2 u = 0, 

is derived by assuming a time-harmonic variation in the solution of the second-
order, constant-coefficient wave equation. A discussion of the hierarchy of models 
that reduce in their purest form to (1) is given in [1]. The parameter k is the 
reduced wavenumber, i.e. 2n /A, where A is the wavelength. In the general case 
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anisotropy and spatially varying coefficients may be present, although in this work 
we restrict attention to a homogeneous isotropic problem. 

We explicitly consider only the external Helmholtz problem, in which the per-
turbation field u is driven by a boundary condition inhomogeneity on a nearfield 
boundary r, subdivided into Dirichlet, rD, and Neumann, rN, segments, one of 
which may be trivial. Scatterer boundary conditions of sufficient generality are 

(2) U = 9D on rD and aujav = 9N On rN. 
The Sommerfeld radiation condition, 

lim r(d-l)/2 (au + iku) = 0, 
r->00 ar 

may be regarded as an expression of causality for the wave equation, in that there 
can be no incoming waves at infinity. Thus this condition acts as a filter that selects 
only the outgoing waves. (The Sommerfeld sign convention depends upon the sign 
convention of the exponent in the time-harmonic factor of the wave equation.) 

The Dirichlet-to-Neumann Map. In finite computations the Sommerfeld 
boundary condition must be applied at finite distance. For B a circle (or a sphere 
in 3D), an integra-differential operator may be derived that maps the values of u 
on the artificial exterior boundary, B, to the normal derivative of u on B [9]. In 
two-dimensional problems this leads to an infinite series involving Hankel functions, 
which may be differentiated in the radial direction and evaluated at r = R to yield 
on B: 

(3) au - k 00 I HA2 )
1 (kR) 1211" I I I 

-a (R,B) = (Mu)(R,B) =-L (2) cosn(B- (} )u(R,B )dB. 
v 7r n=O Hn (kR) o 

This expression defines the Dirichlet-to-Neumann map, M, where the infinite sum 
may be truncated to a finite approximation of N 2 kR terms [10]. 

Finite Element Discretization. We use a Galerkin finite element formulation 
with isoparametric four-noded quadrilateral elements to discretize the problem 
specified by (1), (2), and (3) and thereby form a linear system, 
(4) Au=b. 

Details about this system, as well as elementary properties of its pseudospectrum, 
are given in [14]. The Sommerfeld boundary condition has the effect of pushing 
the portion of the real spectrum that is close to (or at) zero in the Dirichlet case 
away from the origin, in the imaginary direction. 

3. Schwarz-based Solution Algorithms 

Brought into prominence in the current era of cache-based architectures, ad-
ditive Schwarz methods have become the "workhorses" of parallel preconditioners 
for elliptically dominated partial differential equations in the last decade, and have 
recently been applied to Helmholtz problems in [3]. Although a variety of Schwarz-
based techniques have been considered for Helmholtz problems by ourselves and 
others, this chapter focuses on accelerated overlapping iterative methods for the 
solution of the discrete equations ( 4). 

Closely related to the overlapping Krylov-Schwarz method presented herein is a 
nonoverlapping stationary iterative scheme of Resiga and Atassi [16] for solving (1) 
independently in subdomains. This approach, which follows the work of Despres 
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[7] and Ghanemi [8], uses under-relaxed impedance-type boundary conditions on 
subdomain interfaces and the DtN map on the exterior boundary, and features 
concurrent update of all subdomains for parallelism. Details of the scheme are 
presented in [14], where it is compared with the method featured herein. 

We investigate an additive Schwarz preconditioner based on overlapping subdo-
mains, which is accelerated by a Krylov method, such as a complex-valued version 
of GMRES [15]. An overlapping decomposition is defined by splitting the compu-
tational domain n into nonoverlapping subdomains ni, with boundaries ani, and 
extending each except where cut off by r and B to subdomains n; and interfaces 
an;. A (Boolean) restriction operator R; extracts those elements of the global 
vector that are local to extended subdomain i, and a prolongation operator Rf 
(without the ') prolongs elements local to the nonextended subdomain i back to 
the global vector, by extension with zeros. Let Ai1ui denote the action of solving 
in each extended subdomain, 

on an;- an 
on ani nan 

Then a Schwarz projection Mi is defined by Mi = Rf Ai 1 R;A, and a Schwarz-
preconditioned operator is then defined through M = L,i Mi. The system (4) is 
replaced with Mu = L,i Rf Ai 1 R;b. We iterate on this system with a Krylov 
method until convergence. This particular combination of extended restriction and 
unextended prolongation operators is designated "Restricted Additive Schwarz" 
(RAS) [4] and has been found by us and by others to be superior to standard Addi-
tive Schwarz, in which the prolongation is carried out to the extended subdomains. 
We have described the left-preconditioned form of RAS above. In practice, when 
comparing preconditioners as in this paper, we employ right-preconditioning, so 
that the residual norms available as a by-product in GMRES are not scaled by the 
precondi tioner. 

Each interior point of the original domain remains an interior point of at least 
one subdomain, and a standard PDE discretization is applied there. The extended 
interior subdomain interfaces are handled with Sommerfeld-type boundary condi-
tions in the preconditioner only. Except for the use of homogeneous Sommerfeld-
type boundary conditions, this method falls under the indefinite Schwarz theory of 
Cai & Widlund [5, 6]. 

4. A Model Helmholtz Problem 

We use a model problem with a known exact solution to study the trunca-
tion error of this algorithm, along with the algebraic convergence rate. This model 
problem was employed by Givoli and Keller [9] for their demonstration of the ad-
vantages of the DtN map. The geometry and notation are defined in Figure 1. The 
eccentricity of the bounding circles spoils the application on B of simple boundary 
conditions based on normal incidence. 

The explicit analytical solution u* permits tabulation of the pointwise relative 
error in the numerical solution uj at point i after iteration m as follows: 

(5) 
lui- u*(xi)l 

lu*(xi)l 
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• Inner boundary, f: 
circle centered at S = ( -~, 0) 
with radius R1 = 1 

• Outer boundary, B: 
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FIGURE 1. Eccentric annulus model problem domain. 
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FIGURE 2. Relative error distribution of converged solution with 
Sommerfeld (left) and the DtN map (right) exterior boundary con-
ditions (nonoverlapping stationary iterative method, k = 4). 
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On the basis of numerical experiments that are discussed in [14], we have deter-
mined the truncation error "floor" beneath which we need not obtain algebraic 
convergence of ( 4). We have also compared a variety of schemes for attaining 
that level of error. Figure 2 shows a typical plot of the relative error (5) using 
a nonoverlapping stationary scheme for a two-subdomain case with k = 4. This 
picture emphasizes the well known advantage of a perfectly nonreflecting DtN map 
over a Sommerfeld boundary condition. 

5. Numerical Results 

For our numerical simulations of the Helmholtz problem, we employ the Port-
able, Extensible Toolkit for Scientific Computing (PETSc) [2], a library that at-
tempts to handle through a uniform interface, in a highly efficient way, the low-level 
details of the distributed memory hierarchy. One feature that distinguishes it from 
other freely available libraries of iterative methods is the capability of solving sys-
tems defined over the complex numbers. Also, PETSc's preconditioners make it 
routine to vary the number of subdomains in each physical dimension into which 
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TABLE 1. Iteration counts and parallel execution times (in sec-
onds) for different aspect ratio subdomains and different overlaps, 
65 x 256 grid, 32 processors. 

Subdomain Shape Overlap h/2 Overlap 3h/2 Overlap 5h/2 Overlap 9h/2 
Procs Subgnd Its Time Its Time Its Time Its Time 

k = 6.5 
1x32 8:1 131 1.35s 125 1.38s 125 1.46 124 1.77s 
2x16 2:1 137 1.54s 128 1.42s 128 1.89s 126 1.45s 
4x8 1:2 174 1.96s 145 1.54s 138 1.77s 129 1.79s 
8x4 1:8 211 2.98s 169 3.54s 153 2.44s 134 2.57s 

k = 13.0 
1x32 8:1 159 1.92s 152 1.97s 150 1.99s 146 2.13s 
2x16 2:1 182 1.88s 157 1.76s 150 1.83s 147 1.92s 
4x8 1:2 195 1.92s 164 1.73s 157 2.08s 153 2.27s 
8x4 1:8 224 2.84s 190 2.55s 176 2.73s 158 3.01s 

the problem will be partitioned, the amount of overlap between these subdomains, 
and the quality of the solution process employed on each block in the preconditioner. 

5.1. Comparison of Subdomain Shape and Overlap. Like convection 
problems, Helmholtz problems possess "preferred" directions in that there are dom-
inant directions of wave propagation. Unlike convection problems, these directions 
are not manifest in the interior equations, which are locally rotationally invariant, 
but enter through the boundary conditions. It is therefore of interest to study the 
effect of subdomain size and shape on decomposed preconditioners for Helmholtz 
problems. We seek to answer two questions initially for a range of wavenumbers k: 
how does the orientation of the cuts interact with the orientation of the waves, and 
how much does overlap help to "pave over" the cuts? 

Our implementation permits any number of radial and circumferential cuts, 
provided that all subdomains consist of a rectangular subset of the radial and 
circumferential indices. For the purpose of playing with aspect ratio in several 
increments over a large ratio, we select power-of-two size discretizations. Thus, 
we take 64 mesh cells in the radial direction and 256 in the circumferential. To 
satisfy the conservative >..jh 2': 20 in all directions throughout the domain, where 
)... = 27r / k, we consider k = 6.5. We compare this with k = 13.0, in which the 
waves are resolved with only 10 points per wavelength in the worst-resolved part 
of the domain (near (x,y) = (2,0)). The action of Aj 1 is approximated on each 
subdomain by application of 11 U ( 1), with overlap as tabulated across the column 
sets, accelerated by restarted GMRES. Wall-clock execution times are measured on 
32 nodes of an IBM SP with 120MHz quad-issue Power2 nodes with a 10- 1 relative 
residual tolerance. 

We readily observe in Table 1 that cuts along constant angle (which are aligned 
with the dominant radial direction of wave propagation) are preferable over cuts 
along constant radius. Convergence is very much faster with few "bad" cuts than it 
is with many "bad" cuts. Overlap is effective in reducing the number of iterations 
by about 50% in the case of many "bad" cuts, but exhibits a relatively rapid 
law of diminishing returns in all orientations. Since the cost per iteration rises 
approximately linearly in the overlap and the convergence rate benefit saturates, the 
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TABLE 2. Scalability for fixed global problem size, 129 x 512 grid, 
k = 13 

Processors Iterations Time (Sec) Speedup % Efficiency 
1 221 163.01 - -

2 222 81.06 2.0 100 
4 224 37.36 4.4 100 
8 228 19.49 8.4 100 
16 229 10.85 15.0 93 
32 230 6.37 25.6 80 
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experimentally observed optimal overlaps (corresponding to the italicized entries in 
the table) are all relatively modest. 

5.2. Parallel Scalability. There are several measures of parallel scalability. 
Two of the most important are fixed-size scalability, in which more processors are 
employed in solving a problem of constant size, and fixed-memory-per-node (or 
"Gustafson") scalability, in which a problem's dimension and processor granularity 
are scaled in proportion. For the same algorithm, we employ a finer mesh of 128 
cells radially and 512 angularly and we increase the wavenumber to k = 13 for 
this fixed-size problem. As shown in Table 2, we achieve overall efficiencies of 80% 
or better as the number of processors increases from 1 to 32. Convergence rate 
suffers remarkably mildly as preconditioner granularity increases. In this fixed-size 
problem, the algebraic dimension of the dense matrix block corresponding to the 
DtN map is fixed and is equally apportioned among the processors in a sectorial 
decomposition. 

In the Gustafson scaling, in which the overall algebraic dimension of the prob-
lem grows in proportion to the number of processors, the communication involving 
all exterior boundary processors that is needed to enforce the DtN map implicitly 
has a deleterious effect on the scaled performance. We are presently addressing this 
problem by means of a sparsified approximation to the DtN map. The resulting 
operator is still much more accurate than a purely local Sommerfeld condition, but 
less crippling than the full global operator. For present purposes, we present the 
Gustafson scaling for a problem in which the DtN map is not included in the system 
matrix in (4), but split off to an outer iteration. 

Results are shown in Table 3, over a range of three bi-dimensional doublings. 
Over one million grid points are employed in the finest case. As the problem is 
refined, we preserve the distribution of the spectrum by scaling with hk constant 
(fixed number of mesh points per wavelength). It could be argued that to keep 
the dominating phase truncation error term uniform, we should scale with hk312 

constant [11]. This would make k grow less rapidly in Table 3. 
We obtain a reasonable per iteration efficiency, but we suffer a convergence rate 

degradation that is Poisson-like: iteration count grows as /?,where P =number 
of subdomains. To remedy this problem, a (relatively fine) coarse grid [3] should 
be used in the Schwarz preconditioner. 

6. Conclusions and Future Work 

We have presented a parallel algorithm of Additive Schwarz type with Som-
merfeld interface conditions for the wave Helmholtz problem. The benefits of DtN 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



:J32 LOIS C. MCINNES ET AL. 

TABLE 3. Scalability for fixed local problem size using an explicit 
implementation of the DtN map 

Number of Global Time per Iteration 
Processors Dimension k Iters Seconds %Increase 

4 129 X 512 13 250 .077 -
16 257 X 1024 26 479 .084 9 
64 513 X 2048 52 906 .102 32 

vs. Sommerfeld conditions on the exterior boundary are illustrated by comparison 
with analytical solution on model problem. Parallel scalability has been evaluated 
and is customarily good for an additive Schwarz method for a fixed-size problem. 
Relatively small overlaps are sufficient. The implicit DtN map, though highly accu-
rate, intrinsically requires communication among all exterior boundary processors 
and hence is nonscalable, so sparsifications are under investigation. Without a 
global coarse grid, algorithmic scalability deteriorates in a Poisson-like manner as 
the mesh and processor granularity are refined. 

This work is encouraging, but not definitive for parallel Helmholtz solvers. We 
are interested in better preconditioners to address the underlying elliptic conver-
gence problems, and we are interested in higher-order discretizations to increase the 
computational work per grid point and reduce memory requirements for the same 
level of accuracy. Future work will include extensions to three-dimensional prob-
lems on less smooth domains, the addition of coarse grid to preconditioner, and the 
embedding of a Helmholtz solver in a multi physics (Euler /Helmholtz) application 
in aeroacoustics. 
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On the Reuse of Ritz Vectors for the Solution to Nonlinear 
Elasticity Problems by Domain Decomposition Methods 

Franck Risler and Christian Rey 

1. Introduction 

This paper deals with a Rayleigh-Ritz Preconditioner (RRP) that accelerates 
convergence for the iterative solution to a series of symmetric positive definite 
linear systems associated with nonlinear substructured elasticity problems. RRP 
depends upon CG's superconvergent properties and consists of a suitable reuse of 
Ritz vectors. Moreover, the Rayleigh-Ritz paradigm can be wisely associated with 
another acceleration technique, the Generalized Krylov Correction, so as to form 
the SPARKS (Spectral Approach for the Reuse of Krylov Subspaces) algorithm. 
Numerical assessment of both RRP and SPARKS is provided on a large-scale 
poorly-conditioned engineering practice. 

2. Solution to Nonlinear Elasticity Problems 

We consider computation of the equilibrium of bodies made up of compressible 
hyperelastic material and that undergo large deformation. A Lagrangian 
formulation is chosen and all variables are defined in the reference configuration. 
Moreover, n in JR3 and r exhibit the domain occupied by the body and its boundary 
respectively. The equilibrium equations may then be written in a weak form as 
follows 

(1) { 
Find u E {H + uo} such that 

/o ~;(u): '\lvdn = /o f.vdn + h g.vdr 
3 g 

H={vEH1 (0) ,v =Oonfu = r- f 9 } 

Vv E H 

where H denotes the space of kinematically-admissible displacement fields, (:) 
stands for the double contractor operator between two tensors A and B (A : B = 
'IT( AT B)), x are the coordinates of any particle of the domain measured in the 
reference configuration (0) in a fixed orthonormal basis of JR3 , uo is the imposed 
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displacement field on part r u of the domain boundary, v(x) is any admissible 
displacement field in the reference configuration, u(x) is the unknown displacement 
field, F(x) = Id + Vu(x) is the deformation gradient, g(x) is the surface tractions 
on part r g of the domain boundary, complementary tor u in r, f(x) is the density 
of body forces (we assume that external loadings f and g do not depend on the 
displacement field u- dead loading assumption), and <Pis the specific internal elastic 
energy. 

The problem given by Eq.(l) is discretized through a finite element method 
[13] and leads to the solution to a nonlinear problem of the form :F(u) = 0. Such 
a discrete problem is solved by means of Newton-type methods that amount to the 
resolution to a succession of symmetric positive definite linear problems, the right 
hand sides and the matrices of which are to be reactualized. 

The reader may refer to [1] for a complete presentation of nonlinear elasticity 
problems. Moreover, further explanations on Newton-type algorithms can be found 
in [5] or in [6]. 

3. Iterative Solution to a Series of Linear Problems 

3.1. The Substructuring Paradigm. By condensing each linear problem on 
the subdomains interface, non overlapping Domain Decomposition (DD) methods 
(primal [7] or dual [4] approach) enable to solve iteratively with a Conjugate 
Gradient (CG) algorithm the following succession of linear problems, 

(2) k= 1, ... ,m 

where Ak denotes the matrix of Schur complement either in primal or dual form 
depending on the approach chosen, and bk is the associated condensated right hand 
sides. Note that the Ak matrix herein considered is symmetric, positive, definite 
[9]. From now on, we will be focusing on the dual domain-decomposition paradigm. 
The proposed Ritz preconditioner may nevertheless suit to the primal approach, 
though some characteristic properties of the dual interface operator magnify the 
positive effects upon the convergence of this preconditioner. 

3.2. Definition and Fundamental properties. 
3.2.1. CG characterizing Properties. The Conjugate Gradient algorithm 

applied to the solution to the linear problem (Pk) arising from Eq.(2), depends 
on the construction of a set of wf descent directions that are orthogonal for the dot 
product associated with the Ak matrix. The Krylov subspace thus generated may 
be written as 

(3) 

where the subscript rk denotes the dimension of this latter subspace and n exhibits 
the number of unknows of the substructured problem to be solved. 

A characteristic property of CG is given by 

(4) 

where x~ is a given initial field and with llviiAk = (Akv, v). 
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Consequently, by introducing the Ak-orthogonal projector Pfi:k onto the 
Krk (Ak) Krylov subspace, the rk-rank approximation of the solution can be written 

Tk-1 ( k) 
k k Ak(k kk) 'h Ak() ""' X,W; k xrk = x0 + PK,.k b -A x0 w1t PK,.k x = L (Ak k k) W; 

i=O wt 'wt 
(5) 

3.2.2. Ritz Vectors and Values. The Ritz vectors y/rk) E Krk (Ak) and oyk) E 
IR values are defined such that [8] 

(6) 

The convergence of the Ritz values towards a set of rk eigenvalues of the Ak matrix 
exhibits the dominating phenomenon, on which the CG's rate of convergence and 
the so-called superlinear convergence behavior [8, 12] depends. 

4. The Rayleigh-Ritz Preconditioner 

4.1. A Krylov Based Spectral Approach. The purpose of this new 
preconditioner is to utilize spectral information related to the dominating 
eigenvalues arising from Krylov subspaces so as to accelerate the resolution of a 
succession of linear systems of the form given by Eq.(2). The relevance of this 
approach has been analysed in ([11], criterion 2.3) and its validity domain has been 
defined. 

More precisely, we intend herein to very significantly accelerate the convergence 
of a set of p dominating Ritz values to trigger a superconvergent behavior of 
CG. The key to the Ritz approach lies in the so-called effective condition number 
that quantitatively weights the rate of the CG's convergence in the course of the 
resolution process. The effective condition number is defined at the j iteration of 
the CG as the ratio of the largest uncaptured eigenvalue of the A k matrix to its 
smallest eigenvalue. Note that a given>. eigenvalue of the Ak matrix is considered 
captured whenever a Ritz value provides a sufficiently accurate approximation of >. 
so that the corresponding eigenvector no longer participates in the solution process 
[12]. 

Therefore, with the Ritz approach, we seek to drastically reduce the effective 
condition number within the first CG's iterations. Besides, the spectrum of the 
dual interface operator is distinguished by few dominating eigenvalues which are 
not clustered and are well separated from the smaller ones [4]. Consequently, the 
new algorithm is expected to be even more efficient that some of the intrinsic 
spectral properties of the linear problems we deal with, magnify its positive effects 
upon convergence of the dominating Ritz values. 

Let us define a Q E !Rnxp matrix, the columns of which store an approximation 
of p eigenvectors of the current Ak operator. Inasmuch as we are aiming to reduce 
the effective condition number, we will prescribe at the i iteration of the Conjugate 
Gradient algorithm an optional orthogonality constraint that is presented as 

(7) QT g; = 0 Vi 
In terms of Krylov subspaces, that yields 
(8) Krk(Ak) C KerQT = (ImQ)l_ 

Note that this orthogonality constraint is similar to the one associated with a 
new framework that has been recently introduced to speed up convergence of 
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dual substructuring methods [3]. But, while in [3] considerations upon domain 
decomposition method found the algorithm, the Ritz approach depends on a 
spectral analysis of the condensed interface matrix. Consequently, apart from this 
sole formulation similarity, these two methods are based on completely different 
concepts. 

Furthermore, we emphasize the fact that the constraint given by Eq.(7) is 
optional and, for obvious reasons, does not modify the admissible space to which 
the solution belongs. Besides, providing that the constraint is enforced at each CG's 
iteration, it must consequently be verified by the solution to the linear problem. 
Since the residual vector associated with the final solution is theoretically equal to 
zero, the orthogonality condition prescribed by Eq.(7) is thus satisfied. 

Let's now focus on the construction of the Q matrix in the framework of the 
resolving to a series of linear problems. We advocate that the approximation of 
eigenvectors arises from the Ritz vectors associated with the p dominating Ritz 
values originating from the first system (P1 ). Note that the efficiency of the 
conditioning problem depicted in Eq.(7) is submitted to two main assumptions 
([11], Hypothesis 3.1) in (a) the convergence of Ritz vectors, and (b) the 
perturbation of eigendirections among the family {A k }t:::r of matrices. 

Moreover, if the number of linear problems to be solved is high and the columns 
of the Q matrix do not provide a sufficiently accurate approximation of eigenvectors 
related to dominating eigenvalues of a given Aq matrix (1 < q ~ m), the Q 
matrix has to be reactualized. Hence, it requires suspending the prescription of 
the constraint given in Eq.(7) while solving (Pq) and computing the Ritz vector 
associated with the p dominating Ritz values in order to update the Q matrix. The 
Ritz conditioning problem is then restored until another reactualization procedure 
is required. 

4.2. Construction of the Rayleigh-Ritz Preconditioner. For the sake of 
clarity, and since no confusion is possible, the k superscript is herein omitted and 
the Ak matrix is simply noted A. 
In order to prescribe the optional constraint given by Eq.(7), we shall superpose, at 
each iteration i of the Conjugate Gradient algorithm, the field X; and an additional 
field of Lagrange multipliers ~i such that 

(9) Xi ---+ Xi = Xi + ~i = Xi + Qai 
QTgi = 0 with gi = Axi - b 

Substituting the second equation of Eq.(9) into the first one yields 

(10) QT AkQai + QT Akxi- QTbk = 0 

Consequently, a is given by 

(11) 

Then, substituting Eq. (11) into Eq.(9) yields 
Xi =(I_ Q(QT AkQ)-lQT Ak)xi + Q(QT AkQ)-lQTbk 

(12) Xi =(I- Q(QT AkQ)-1QT Ak)xi + xo 
with Xo = Q(QT AkQ)-lQTbk 

Let the projector P be defined by 
(13) P: Xi ---+ Xi - xo with P =(I- Q(QT AkQ)- 1QT Ak) 
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Spectrum of the dual intert'ace operator 
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FIGURE 1. Spectral distribution and residual history with or 
without the RRP (R100) preconditioner 

Since the considered projector Pis not symmetric, the prescription of the Rayleigh-
Ritz Preconditioner (RRP) at each CG iteration has then to be performed in two 
projection steps, by PT and P respectively. 

5. Application 

Numerical efficiency is assessed on a large-scale poorly-conditioned non linear 
problem: a three-dimensional steel-elastomer laminated structure that distinguishes 
with great heterogeneousness and high nonlinearity. The considered structure 
has a parallelepiped geometry and is discretized by hexaedral finite elements (Q1 
elements). Besides, an axial compression loading with an imposed displacement is 
applied. Material behavior is modelled by the Ciarlet-Geymonat specific internal 
energy <I> [2] and the associated equivalent Young modulus and Poisson coefficient 
are (E, v) = (1.3 MPa; 0.49) and (E, v) = (2 x 105 MPa; 0.3) for the elastomer and 
the steel respectively. 

On account of the quadratic convergence of the Newton methods, the stopping 
criterion of Newton iterations (nonlinear iterations) is set to 10-6 while the accuracy 
requirement for solving each linear problem is 10-3 . In all cases, the linear problems 
are also preconditioned by the classical Lumped preconditioner [4] and the spectral 
results have been estimated from the Ritz values for the Krylov space generated 
by the Conjugate Gradient algorithm, when a number of iterations nr (close to the 
dimension n of the problem) is performed. Finally, Ns and N denote from now 
on the number of processors and the number of unknows of the nonlinear problem 
considered respectively. 

5.1. Numerical Performance. In Table 1, is reported the number of 
iteration achieved by the Conjugate Gradient algorithm within the Newton 
iterations and the Figure 1 exhibits the spectral distribution and the residual history 
of the (P2 ) linear problem. In all cases, Classic CG means that RRP is not applied 
and CG with RRP (Rp) indicates that a RRP whose size is p is prescribed. On the 
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TABLE 1. Numerical performances with various preconditioners 

INs II N solver II Newton Iterations I 
Nl I N2 I N3 

15 85680 Classic CG 294 307 367 
15 85680 CG with RRP (R50) 294 254 312 
15 85680 CG with RRP (RlOO) 294 212 272 
15 85680 CGGKC 294 120 71 
15 85680 CG with SPARKS (R50) 294 73 51 

spectral distribution, we observe that, not only the condition number "' of the RRP 
preconditioned matrix is reduced, but also the dominating values are fewer and more 
spread out. It thus paves the way for a fast-convergence of Ritz values towards the 
dominating eigenvalues - and hence a drastic reduction of the effective condition 
number - during the first CG iterations, what is supported by the chart of the 
residual history. On the other hand, this latter curve shows that, in a second phase 
of the resolution process, when Ritz values have converged towards the eigenvalues 
associated with the eigenvectors, an approximation of which is provided by the 
columns of the Q matrix, the rate of convergence is decelerated and becomes close 
to the one of the Classical CG. 

Computational results in terms of CPU time are not addressed in this 
paper since they highly depend on implementation issues and would require 
further explanations. Nonetheless, numerical assessments show that the provided 
acceleration of convergence is not offset against the computational overheads 
involved by the RRP prescription. 

5.2. The SPARKS algorithm. Whereas the Rayleigh-Ritz preconditioner 
is based on a condensation of information related to the upper part of the spectrum, 
the Generalized Krylov Correction[lO] reuses in a broader and a non-selective way 
information originating from previously generated Krylov subspaces. We associate 
those two latter algorithm within an hybrid (RRP-GKC) preconditioner, which we 
will be calling from now on SPARKS (Spectral Approach for the Reuse of Krylov 
Subpaces). 

Numerical experiments show that the RRP has a dominating contribution 
during the first iterations, when the Conjugate Gradient (CG) explores spectral 
subspaces related to the dominating eigenvalues. Afterwards, the rate of 
convergence is mainly ruled by the GKC preconditioner which enables to speed 
up the capture of phenomena associated with lower frequencies. A numerical 
assessment is provided in Table 1 and further validations have shown that the 
very significant acceleration of convergence provided by RRP within the SPARKS 
algorithm goes far beyond the computational overcost generated. Moreover, 
SPARKS distinguishes with an increasing efficiency when the size n of the problem 
grows. 

6. Conclusion 

We have presented in this paper a Raleigh-Ritz preconditioner, that is 
characterized by the reuse of spectral information arising from previous resolution 
processes. Principles and construction of this preconditioner have been addressed 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



340 FRANCK RISLER AND CHRISTIAN REY 

and numerical performance of the Ritz approach has been demonstrated on a large-
scale poorly-conditioned engineering problem. Moreover, a new hybrid Krylov-type 
preconditioner, known as SPARKS, and deriving from both the Rayleigh-Ritz and 
the Generalized Krylov Correction has been introduced and has proved outstanding 
numerical performances. 
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Dual Schur Complement Method for Semi-Definite Problems 

Daniel J. Rixen 

1. Introduction 

Semi-definite problems are encountered in a wide variety of engineering prob-
lems. Most domain decomposition methods efficient for parallel computing are 
based on iterative schemes and rarely address the problem of checking the prob-
lem's singularity and computing the null space. In this paper we present a simple 
and efficient method for checking the singularity of an operator and for computing a 
null space when solving an elliptic structural problem with a dual Schur complement 
approach. 

The engineering community has long been reluctant to use iterative solvers 
mainly because of their lack of robustness. With the advent of parallel computers, 
domain decomposition methods received a lot of attention which resulted in some 
efficient, scalable and robust solvers [3, 6]. The Finite Element Tearing and Inter-
connecting method (FETI) has emerged as one of the most useful techniques and 
is making its way in structural and thermal commercial softwares [1, 4]. 

So far, the issue of semi-definite problems in FETI has not been fully addressed 
although a broad range of engineering problems are singular. For instance, the static 
and vibration analysis of satellites, aircrafts or multi-body structures is governed 
by [5] 

(1) Ax= b 

where A is a symmetric semi-definite positive stiffness matrix, x are the structural 
displacements and b is the vector of external forces. The zero energy modes ui, 
i = 1, ... m, define a null space such that 

(2) i = 1, ... m 

and a solution exists for problem (1) only if 

(3) ufb= 0 i = 1, ... m 

When using direct solvers to solve a singular problem such as (1), the null 
space is obtained as a by-product of the factorization when detecting zero pivots [5]. 
Unfortunately, when iterative solvers are applied, the algorithms do not provide any 
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information on the singularity of the problem and the null space is never computed 
in the iteration process. 

In this paper, a general Conjugate Gradient procedure for testing the singularity 
of an operator and for extracting the null space is presented. Iterative methods for 
computing a null space exist (e.g. singular value decomposition or inverse iteration 
with spectral shifting [5]), but they entail a tremendous computational cost when 
applied to large systems. Here we show how algorithms like Conjugate Gradient 
for solving linear systems can be adapted to check for singularity and to compute a 
null space, thereby adding only a small computational overhead and involving only 
minor alteration to the solution procedure. We will discuss its application to the 
FETI solver. 

2. Finite element tearing and inter-connecting 

2.1. The dual Schur complement formulation. The solution of a prob-
lem of the form (1) where A is a symmetric positive matrix arising from the dis-
cretization of some second- or fourth-order elliptic structural mechanics problem 
on a domain 0, can be obtained by partitioning 0 into Ns substructures O(s), and 
gluing these with discrete Lagrange multipliers A [3]: 
(4) A(s)X(s) + B(s)TA b(s) 8 1, ... , Ns 

s=Ns 

(5) I: s(s)x(s) 0 
s=l 

where the superscript (s) denotes a quantity pertaining to O(s), B(s) is a signed 
Boolean matrix such that B(s)x(s) is the restriction of x(s) to the subdomain inter-
face boundary and A are Lagrange multipliers associated to the interface compati-
bility constraints (5). From Eqs. (4), x(s) can be computed as 

(6) x(s) = A(s)+ (b(s)- B(s)T A)+ R(sla(s) 

where A(s)+ denotes the inverse of A(s) if O(s) is not singular, or a generalized 
inverse of A(s) otherwise. In the latter case, R(s) = Ker(A(s)) stores a basis of the 
null space of A(s) and is obtained during the factorization of A(s), and a(s) stores 
the amplitudes of R(s). If A(s) is singular, (4) requires that 

(7) R(s)T (b(s) -B(s)TA) =0 

From Eqs. (6) and (5), and recalling condition (7), the interface problem can be 
written as [3] 

(8) 

where 

(9) e 

s=Ns L B(s) A(s)+ B(s)T; 

s=l 

[ B(ll R(l) 

[ b(l)T R(l) 

s=Ns 
d = L B(s) A(s)+b(s) 

s=l 

... Q(Ns) T ]T 
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Splitting the Lagrange multipliers as 

.\o +P.\ 

where .\o = GI(GJGI)- 1e 

P =I- GI(GJGI )- 1Gf 
the interface problem (8) is transformed into the semi-definite system 

(13) 
(14) 

(PT F1P) ~ = pT (d- F1.\o) 

a = (GJGI)- 1GJ (d- F1.\) 

Hence, a solution of the original indefinite system of interface equations (8) can 
be obtained by applying a Preconditioned Conjugate Gradient (PCG) algorithm to 
the symmetric semi-definite interface problem (13). Such a procedure can also be 
viewed as a Preconditioned Conjugate Projected Gradient (PCPG) algorithm [3]. 

At every PCPG iteration, the projection steps require the solution of a coarse 
grid problem associated with the subdomain floating modes of the form 

(15) (GJGI)a=Gfw 

These coarse grid problems are solved by second level Conjugate Gradient iterations 
with a projection and re-orthogonalization technique [2, 3] in order to re-use the 
Krylov spaces computed at previous iterations. 

2.2. FETI applied to semi-definite problems. When problem (1) is pos-
itive semi-definite, the null space directions ui verifying (2) also satisfies the sub-
domain-wise null space condition 

(16) A(s)U(s) 
t 0 

Ns 
(17) LB(s)U~s) 0 

s=l 

stating that the null space of the global problem is also a null space for the subdo-
mains and satisfies the interface compatibility. Hence, at the subdomain level, the 
global null space vectors are linear combinations of the local floating modes, i.e 

(18) u~s) = R(s)e~s) 

and computing the null space for the global problem is equivalent to finding the 
amplitudes of the local null space directions such that 

N. 

(19) L B(s) R(s)e~s) = Giei = 0 
s=l 

where ei = [O~l)T ... e~Ns)TJT. Therefore, when m null space vectors Ui exist, 
G 1 is no longer full rank and the coarse grid operator ( Gf G I) has a null space of 
dimension m such that 

(20) i = 1, ... m 

In this case, a solution exists for the dual interface problem (8) only if e is in 
the range of G I, i.e. 

(21) ere =0 i = 1, ... m 
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Expanding this condition further by using definition (9) yields 

Na Ns 

""'e(s)T R(s)T b(s) = ""'u(s)T b(s) = uTb = 0 
~'L ~'t z i = 1, ... m 
s=l s=l 

Thus, a solution exists for the dual interface problem if b is in the range of A in 
the initial problem (1) and in that case a starting value Ao can be computed by 
(11). A solution to the coarse problem (15) can be found by building a generalized 
inverse ( Gf G I)+ if a direct solver is used. For distributed memory machines, an 
iterative algorithm is usually preferred: a non preconditioned Conjugate Gradient 
scheme can still be applied since the successive directions of descent remain in the 
range of ( Gf G I). 

However, it is important that the singularity of the coarse grid be detected 
in the FETI method and that the null space be computed in order to check for 
condition (21), otherwise the FETI iterations could proceed without converging. 

3. Conjugate Gradient iterations for semi-definite problems 

The method for checking the singularity of a symmetric semi-definite positive 
operator and for computing the associated null space consists in applying a Conju-
gate Gradient iteration scheme to 

(22) Ax=Ay 

where Ay ::f 0. 
If the initial guess for x is set to zero, the computed x will be in the range of A 

since the directions of descent of the Conjugate Gradient iteration are combinations 
of the residual of (22). Therefore, if the solution x at convergence is equal to y 
independently on the choice of y, we can state that A is non-singular. Otherwise, 
u = x - y yields a null space vector. In the latter case, the iteration is restarted 
with a new y direction orthogonal to the null space already extracted: x - y is now 
searched for in a deflated space. 

Using a projection and re-orthogonalization technique for solving problems with 
multiple right-hand sides [2], the algorithm can be summarized as in Table 1. In this 
algorithm, the directions of descent stored in X are normalized such that xrw =I, 
W storing the results of AX. Note that the null space of A is usually computed 
with a very high accuracy. Hence the stopping criterion for the Conjugate Gradient 
should be llrkll < t:llbll withE very small. 

Clearly, two major issues remain to be cleared in algorithm 1, namely how to 
set the vectors y and what criterion to apply for the condition x- y ::f 0. Choosing 
y correctly is of crucial importance for the success of the algorithm: on one hand 
it should not be in the null space so that Ay ::f 0, and on the other hand, it should 
contain enough null space components so that x - y = 0 occurs only if all the null 
space vectors have been extracted. It is clear that the choice of y as well as the 
criterion for x - y ::f 0 should be based on an estimate of the condition number of 
A which can be gathered from the Conjugate Gradient coefficients. Nevertheless, 
in the next section we propose a simple and efficient technique for choosing y and 
checking for x - y ::f 0 when algorithm 1 is applied to the coarse grid problem 15 
in FETI for structural problems. 
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TABLE 1. Iterations for extracting the null space of A 

Setup y 
Set b = Ay 
x0 = 0, r0 = b 
Projection if X exists 

x0 = X(XTb) 
r0 = b- W(XTb) 

Iterate for k = 0, ... 

End 

pk = rk- X(WT rk) 
nk = Pkr Apk, vk =Perk /nk 
xk+l = xk + vkpk 
rk+l = rk _ vk Apk 

X= [X, pk/Vnk], W = [W, ApkjJ;k] 

If X- y :f. 0, 
Ui=x-y 
choose a new y 
orthogonalize y with respect to ui, Vi 
restart at b = Ay 

4. Preliminary coarse grid iterations in FETI 

The computational cost of the procedure described in 1 can be significant since 
the number of descent directions for computing the entire null space with a good 
accuracy can be large. For instance, if applied to the iterative solution of the non 
decomposed problem (1), the singularity check would cost more than the actual 
computation of the solution. 

As explained in section 2.2, the singularity issue for FETI appears in the coarse 
grid problem which dimension is very small compared to the dimension of u. More-
over, for the coarse grid problem, the complete Krylov space is needed anyway 
during the FETI iterations. Hence, solving a set of preliminary coarse grid prob-
lems of the form ( Gf G I )x = ( Gf G I )y for finding the null space of ( Gf G I) entails 
only a small overhead cost. 

Note that for the primal Schur complement approach [6], algorithm 1 can be 
applied to the assembled Schur complement. This would however induce an unac-
ceptable computational cost since it would amount to solving the entire interface 
problem several times. If however the balancing method version of the primal Schur 
method is used [7, 6], the singularity check can be performed at a low cost on the 
coarse grid operator associated to the Neumann preconditioner in a way similar to 
what is presented here for FETI. 

Null vector criterion. To define a criterion for x- y :f. 0 in algorithm 1, we 
decompose y into 

m 

(23) y =y+ LOif'1i 
i=l 

where y is the component of y in the range of ( Gf G I). Since by construction the 
solution xis in the range of (GjGI), x- y ~ "LBdJi. We then assume that the 
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successive starting vectors y are chosen to ensure a good representation of the null 
space, i.e. so that 

m 

(24) II L Bi/3ill > IIYII/N ifm # 0 
i=l 

when the dimension N of the coarse grid is not trivially small. Hence we state that 
x-y;i:Oif 

(25) llx- Yll > IIYII/N 
Choosing the starting vectors. Let us remind that G I is the restriction 

of the local null spaces to the interface boundary and the columns of R(s) are 
usually orthonormalized so that they represent the rigid translational modes and 
the rotation modes around the nodal geometric centers (or around the center of 
gravity if the orthogonality is enforced with respect to the mass matrix). Since 
G IY represents the interface displacement jumps for local rigid body displacements 
of amplitude y, choosing 

(26) Y1 = [diag(GfGI)r 1 [ 1 1 1 1 ... ( 

all local translational and rotational modes around the local centers are included, 
and therefore the resulting displacement field is not compatible on the interface: 
G IYl # 0. The initial vector Y1 in (26) is scaled by the diagonal of ( Gf G I) in order 
to account for the fact that subdomains may have very different sizes thus different 
boundary displacements for the rotational modes. 

Since Y1 is non-zero for all local rigid body modes, condition (24) is satisfied in 
practice. Based on similar mechanical considerations, the next initial vectors y are 
then chosen as follows 

(27) Y2 [diag(GfGI)r 1 [ 1 0 1 0 

[diag(Gfci)r 1 [ 1 o o 1 
The technique proposed in this paper for the FETI method has been imple-

mented in the finite element analysis code SAMCEF and several free-free structures 
have been analyzed using this technique. In the next section we describe some of 
the test results. 

5. Application examples 

Free-free plane stress example. To illustrate the robustness of the proposed 
technique, let us first consider a square plane stress structural model decomposed 
into 8 x 8 square subdomains, each subdomain containing 10 x 10 finite elements 
(Fig. 1). No Dirichlet boundary conditions are applied to this two-dimensional 
problem so that every subdomain has 3 rigid body modes, the coarse grid problem 
is of dimension 192 and there are 3 global rigid body modes (m = 3). 

Applying the iteration scheme 1 to the coarse grid operator ( Gf G I) with a 
tolerance for the Conjugate Gradient iterations of f = 10-14 yields the correct 
three global rigid body modes. The convergence of the scheme for extracting the 
successive ()i is described in Fig. 1. The convergence curves show that the number 
of iterations decrease every time a new null space component is searched for due to 
the projection and re-orthogonalization steps. Let us remind the reader that the di-
rections computed and stored in this pre-processing step are used later on when the 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



DUAL SCHUR COMPLEMENT METHOD FOR SEMI-DEFINITE PROBLEMS 347 

' ' ' ' ' 
last '. 

sing. check 
' 

10 - 15 o':----1:'c:0--2=':oc----::':3o=--~4o=-----=s'::-o--=s=o--:7=':0c----::':so=----=go=------=-'1oo 

Iteration number k 

FIGURE 1. A free-free plane stress example 

fixed 
boundary 

y 

FIGURE 2. Decomposition of a blade model with 3 rigid body modes 

linear system is actually solved by applying a projection and re-orthogonalization 
technique. 

Analysis of a blade. We now present an example representing a realistic tur-
bine blade modeled by brick elements. The model is decomposed into 6 subdomains 
and the displacements are fixed in the vertical direction on a curved edge at the base 
of the blade (Fig. 2). Note that because the fixed boundary is curved and belongs 
to the ( z, y) plane, the vertical constraints not only restrain the vertical translation 
and the rotation about the x axis, but they also restrain the rigid rotation about 
the y axis. Hence only 3 global rigid body modes exist. 

Since the fixed boundary is only slightly curved, the problem of detecting the 
local floating modes for the constrained substructure is badly conditioned. However 
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this does not affect the conditioning of the coarse grid problem. Applying algorithm 
1, we found the exact 3 rigid body modes. Note that if the operator A of the entire 
structure would have been factorized, detecting the global rigid body modes would 
have been much more difficult. 

6. Conclusion 

In this paper we have addressed the problem of checking the singularity of a 
problem and computing the associated null space within the iterative solution pro-
cedure of a linear system. The method has been adapted to the FETI method in 
structural mechanics. A simple, low cost and robust technique has been proposed. 
It requires only preliminary iterations on the coarse grid problem associated to 
the subdomain null spaces and uses existing FETI technology. Hence our method 
entails only small modifications to the FETI algorithm and minor computational 
costs. The effectiveness of the procedure was demonstrated on some relevant ex-
amples. Equipped with this important singularity check, the FETI method can be 
used as an efficient solver in general static and free vibration analysis. 
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Two-level Algebraic Multigrid for the Helmholtz Problem 

Petr Vanek, Jan Mandel, and Marian Brezina 

1. Introduction 

An algebraic multigrid method with two levels is applied to the solution of the 
Helmholtz equation in a first order least squares formulation, discretized by Ql 
finite elements with reduced integration. Smoothed plane waves in a fixed set of 
directions are used as coarse level basis functions. The method is used to investigate 
numerically the sensitivity of the scattering problem to a change of the shape of 
the scatterer. 

Multigrid methods for the solution of the Helmholtz equation of scattering are 
known in the literature. A common disadvantage of multigrid methods is that the 
coarsest level must be fine enough to capture the wave character of the problem, or 
the iterations diverge [6, 7, 10]. One way to overcome this limitation is to use coarse 
basis functions derived from plane waves [8]. However, manipulating such functions 
becomes expensive since the cost does not decrease with the number of variables 
on the coarse levels. It should be noted that functions derived from plane waves 
can also be used as basis functions for the discretization of the Helmholtz equation 
itself; such methods are known under the names of the Micro local Discretization [5], 
Partition of Unity Finite Element Method [1], or the Finite Element Ray Method 
[11]. 

We propose a two-level method with coarse space basis functions defined as 
a plane waves within an aggregate of nodes, zero outside the aggregate, and 
then smoothed by a Chebyshev type iteration using the original fine level matrix. 
This results in a method with good computational complexity and scalability. 
This method falls under the abstract framework of black-box two-level iterative 
methods based on the concept of smoothed aggregations [16]. The objective of the 
smoothing of the coarse basis functions is to reduce their energy [9, 15, 16]. For a 
related theoretical analysis of such two-level methods with high order polynomial 
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smoothing of coarse basis functions, see [3], where a convergence result uniform 
both with respect to coarse and fine level meshsize was proved for second order 
eliptic problems discretized on unstructured meshes. 

2. Problem Formulation and Discretization 

In this section, we describe the first order least squares formulation and the 
discretization of the two-dimensional scattering problem on a bounded domain. 

Denote by Hdiv the space of all vector functions with divergence in L 2 . Let 
0 c n be an obstacle in a domain n c IR? that is sufficiently large with respect to 
the size of 0. To be more precise, n is assumed large enough to allow the scatteded 
field to be almost radial near an. 

We seek a complex pressure p E H 1(n \ 0) and its (complex) gradient 
u E Hdiv(n \ 0) minimizing the convex functional 

(1) 

F(p, u) = Wt r IIY'p- ull 2 + W2 r ldiv(u) + k2pl 2 + w3 r lu. r- ikpl2 ' 
ln\O ln\0 Jan 

where Wt, w2, W3 are positive constants and r E IR? is the normalized radiusvector 
of the point X E an, i.e. r = xj llxll· The pressure p is subject to the Dirichlet 
boundary condition on the boundary of the obstacle, 

p(x) =- exp(ikd · x/lldll), xEaO, 

where d E IR? is the direction of the incident wave. The first two integrals are a 
first order least square formulation corresponding to the Helmholtz equation 

b..p + k2p = 0, 

and the boundary integral enforces the radiation boundary condition 

ap 'k !':In - = z p on uH. ar 
Hence, all the integrals in (1) vanish for the minimizer of F and the soh:1tion 
of the minimization problem ( 1) is independent of the weights Wt, w2, W3. We 
choose the uniform Ql finite elements for the discretization of the continuous 
minimization problem, and minimize the functional over the finite element space. 
As the derivatives of the gradient of a Ql-function are not Q1-functions themselves, 
the discretization of the integrals in ( 1) creates an undesirable "artificial viscosity" 
resulting in a damping of the numerical solution. In fact, it is easy to see on a 
one-dimensional example, that the restriction of a plane wave on the mesh is not 
a solution of the discrete problem. To avoid this, the volume integrals have been 
discretized by the one point quadrature formula with the node in the middle of each 
element. This restores the property that the discrete system allows plane waves as 
solutions. Such inexact integration is frequently used to eliminate locking caused by 
similar integrals in plate and shell finite elements. Since u = V'p satisfies V' xu= 0, 
adding the term 

(2) 1 IV' x ul2 
f!\0 

to the functional Fin (1), as suggested in [4, 8], does not change the solution and 
makes the functional F coercive in certain cases. 
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In the discrete case, adding the integral (2) to F changes the discrete solution 
and may make it more accurate. We have not found an advantage to adding the 
integral (2) in our experiments. The results with reduced integration alone were 
satisfactory. Also, in the discrete case, the solution is no longer independent of the 
weights w1 , w2 , w3 . Based on our computations, we found no significant advantage 
to other than unit weights, which are used in all computations reported here. 

The discretization described above results in a Hermitian matrix with 3 complex 
degrees of freedom per node. Because we wanted to take advantage of an existing 
real code, our implementation treated the real and imaginary parts of the solution 
as real unknowns, resulting in a real symmetric problem with 6 real degrees of 
freedom per node. Further efficiency could be gained by an implementation in the 
complex arithmetics. 

3. Algebraic Multigrid 

In this section, we describe the algebraic method used for solving the discretized 
scattering problem. It is a variant of the method introduced in [3, 16]. We will 
present the method as a variant of the multiplicative Schwarz method [2, 12], and 
write it in terms of matrices. 

3.1. The Multiplicative Schwarz Method. Let A be a symmetric, positive 
definite n x n matrix, and N1, j = 0, ... m, be full rank matrices with n rows. 
Consider the following iterative method for the solution of the linear algebraic 
system Ax= f: 

(3) z f- xi 

(4) z f- z + Ni ( NF ANi) -l NF ( f - Az), i = 1, ... ,m 

(5) z f- z + No(NJ ANo)- 1 NJ(f- Az), 

(6) z f- z + Ni(NF ANi)-1 NF(r- Az), i =m, ... ,1 
(7) xi+ I f- z 

Since (3)-(7) is a consistent stationary iterative method for the system Ax = f, 
it can be written as xi+ 1 = xi + N(f- Axi). We use the operator N, that is, 
the output of (3)-(7) with xi = 0, as a preconditioner in the method of conjugate 
gradients. The operator N is symmetric and positive definite, since [2, 12] 

(8) N A= (I- Ill)··· (I- IIm)(J- IIo)(I- IIm) ···(I- Ill), 

where IIi is the A-orthogonal projection onto the range of Ni. 

3.2. Two-level Algebraic Multigrid by Smoothed Aggregation. It 
remains to specify the matrices Ni. We first construct the matrix No. This matrix 
is denoted No = P and called the prolongator. The prolongator is constructed 
in two steps. In the first step, we construct a tentative prolongator capturing 
precisely a selected set of functions (in the same sense as, for example, P1 finite 
elements capture linear functions). In the second step, we suppress high-energy 
components in the range of the tentative prolongator by smoothing it using a proper 
prolongator smoother. The matrices Ni, i =/:. 0, are injections that correspond to 
overlapping blocks of unknowns. The blocks are derived from the nonzero structure 
of the smoothed prolongator. As a prolongator smoother we use a properly chosen 
polynomial in the stiffness matrix A. The degree of the prolongator smoother 
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determines the smoothness of the coarse space as well as the amount of overlaps of 
the blocks in the overlapping Schwarz method. 

To construct the prolongator P, we first decompose the set of all nodes, where 
an essential boundary condition is not imposed, into a disjoint covering 

m 

(9) {1, ... , n} = U A, An Aj = 0 fori=!= j. 
i==1 

We use a simple greedy algorithm that chooses aggregates of nodes that are 
connected via nonzero terms of A, whenever possible, cf. [13, 16]. 

Let us consider the set of functions {fi} ~~ 1 we want to be captured by the coarse 
space functions. These functions should approximate the kernel of the constrained 
problem well (e.g., constants in the case of Poisson equation, 6 rigid body modes 
in the case of 3D elasticity). For solving the scattering problem here, our choice of 
the set of functions {r} ~~ 1 are the plane waves 

frl(x) = e-ikx·d/lldll, 

where x E IR2 is the position and d E IR2 is the direction of the plane wave. We 
choose a finite subset of plane waves; the numerical experiments in this paper are 
performed with a coarse space built from plane waves in the nk = 8 directions 
d = (1,0), (-1,0), (0,1), (0,-1), (1,1), (-1,-1), (-1,1), (1,-1). Since plane 
waves are not contained in the fine level space exactly, the vectors {fi}~~ 1 are 
constructed as grid interpolations of the functions frl and their gradients. 

For each function Ji, let f'i be its discrete representation in the finite element 
basis. Each node has 6 degrees of freedom, namely, the real and imaginary parts 
of p, 8xp, and 8yP· The decomposition (9) induces a decomposition of the degrees 
of freedom into disjoint sets 

m 

{1, 0 0 0 'nd} = u vi, 
i==l 

where Vi is the set of all degrees of freedom associated with the nodes of Ai. We 
then construct a tentative prolongator as the block matrix 

(10) 

where the j-th row of the block column Pi equals to the j-th row of f'i if j E Vi, 
and is zero otherwise. The prolongator P is then defined by 

P = s(A)P, 

where s is the polynomial of given degree d such that s(O) 1 and 
maxo::;>.::::pls(.\)2 .\I is minimal, with p an easily computable upper bound on the 
spectral radius of A. It is easy to show [14] that pis a shifted and scaled Chebyshev 
polynomial, equal to 

e ( 2br ) rk = 2 1 - cos 2n + 1 . 

This construction of P attempts to minimize the energy of the columns of P. 
Indeed, any column of the prolongator P is s(A)p, where p is a column of the 
tentative prolongator P, and its squared energy norm is 

lls(A)f>ll~ = (s(A)pf A(s(A)p) = f>T s2 (A)Ap. 
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TABLE 1. Model problem for performance experiments 

Computational domain: 
Obstacle: 
Dir. of the inc. wave: 
k 
Mesh: 
Num. of dofs: 

[-2,2] X [-2,2] 
[ -0.3, 0.3] X [ -0.3, -0.3] 
d=(l,l) 
varying 
regular 400 x 400 square mesh 
964,806 

If the columns of P have bounded euclidean norm (which they do here), the 
construction above gives an optimal bound on the energy of the columns of P, 
uniform in the choice of P. See [3, 14] for more details, and [9] for a more direct 
approach to minimizing the energy of the columns of P. 

The iteration (5) has now the interpretation of a coarse grid correction, in terms 
of multigrid methods. It remains to choose the matrices Ni in the pre-smoothing 
(4) and post-smoothing (6). Our choice is equivalent to a multiplicative overlapping 
Schwarz method. The overlapping blocks are derived from the nonzero structure 
of the prolongator P by choosing Ni to consist of those columns j of the nd by nd 

identity matrix, for which the j-the row of the block column Pi from (10) is not 
zero. The iterations (4) and (6) are now simply block relaxation with overlapping 
blocks, with block i consisting of all variables that may become nonzero in the 
range of the prolongator block column Pi· 

3.3. Parallel Implementation. The smoothing iterations (4) and (6) are 
parallelized using a generalization of the well known red-black ordering for Gauss-
Seidel iteration. First, observe that if N'[ ANi = 0, then the projections IIi and IIj 
from (8) commute, and so the iteration steps i and j in (4) or (6) are independent 
and can be performed concurrently. 

The method proceeds as follows. In the setup phase, a coloring of the adjacency 
graph of the matrix (N'[ ANj)i,j is found by a simple greedy algorithm. (Of 
course, the graph is constructed by performing symbolic matrix multiplication only.) 
Then NF ANJ = 0 for all indices i and j assigned the same color. The smothing 
iteration (4) is then reordered so that all iteration steps with the same color are 
done concurrently. Then the pre-smoothing ( 4) becomes 

z +-- z + ( L Ni(N'[ ANi)- 1 N'[) (f- Az), k = 1, ... , nc, 
lECk 

where nc the number of colors and Ck is the set of all indices of color k. The post-
smoothing (6) is same except that the colors are processed in the reverse order. 

4. Performance Results 

All experiments reported in this section have been carried out on a SGI ORIGIN 
2000 with 64 RlOOOO processors and 4GB of memory. As the stopping condition, 
we have used 

(APri Ari)l/2 < w-5 (APro Aro)I/2 
' - cond ' ' 

where Pis the preconditioner, cond is a condition number estimate computed from 
the conjugate gradient coefficients, and ri is the residual after the i-th iteration. In 
order to illustrate the effect of this stopping condition, we provide achieved relative 
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TABLE 2. Performance of the method with varying k. H denotes 
the side of the aggregates (squares). Mesh 400 x 400 elements. 
Number of degrees of freedom 964,806. Number of processors 16. 
Hjh = 30. 

els./wave H/wave con d. achieved rei. setup time [s] iter. time [s] 
length length residual CPU/WALL CPU/WALL 

251.327 5 6.0 6.565 2.447 X 10 -!i 49/64 115/131 
125.663 10 3,0 15.63 1.670 X 10 -o 48/63 117/118 
83.7758 15 2.0 31.67 1.729 X 10 -!i 52/71 169/171 
62.8318 20 1.5 60.70 1.112 X 10 -o 53/73 243/246 
50.2654 25 1.2 103.9 8.939 x 10-7 48/64 330/333 
41.8879 30 1.0 170.9 7.271 X 10 50/65 446/451 

TABLE 3. Performance of the method depending on the size H of 
the aggregates. Fixed k = 125.6637. Mesh 400 x 400 elements. 
Number of degrees of freedom 964,806. Number of processors 8. 

H/h H/wave con d. memory setup [s] iter [s] 
(els) length [MB] CPU/WALL CPU/WALL 
10 1.0 36.63 1,245 232/248 332/335 
15 1.5 26.80 1,088 91/108 210/213 
20 2.0 20.98 1,077 74/87 169/171 
25 2.5 17.18 1,055 75/88 155/155 
30 3.0 15.63 1,106 71/86 155/157 
35 3.5 13.88 1,140 77/92 144/145 
40 4.0 12.48 1,204 93/108 155/154 
45 4.5 11.06 1,237 90/106 136/138 
50 5.0 10.32 1,298 104/119 140/142 

residuals (mesured in Euclidean norm) in Table 2. In all experiments presented 
here we used a prolongator smoother of degree 4. 

Three different types of experiments were done: testing the method in the case 
of varying k, varying the coarse space size, i.e. the size of the aggregates Ai, and 
parallel scalability. In all experiments, we have used the scattering model problem 
described in Table 1. 

Due to the regular geometry of our testing problem, we were able to use a system 
of square aggregates. The size of the side of those squares is denoted by H. 

Our results are summarized in Tables 2 and 3, and graphs in Figures 1 
and 2. In all the experiments, the actual iteration history was well characterized 
by the condition number of the preconditioned matrix (we observed no spectral 
clustering). In other words, the error was being reduced by the factor of about 
( J cond - 1) / ( J cond + 1) per iteration. The runtime condition number estimates 
are reported. 

We observe that the condition number of the preconditioned problem depends 
on H/>.k, the ratio of the subdomain size to the wavelength Ak = 21rjk. The 
condition number decreases with this ratio increasing (due either to increasing the 
frequency or to enlarging the sub domain size). We offer the following heuristic 
explanation: In the case of Helmholtz equation, the low-energy functions are waves 
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FIGURE 1. Parallel scalability of the iteration phase. k = 125.6637, H = 30h. 
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FIGURE 2. Parallel scalability of the method (setup+iter). k = 125.6637, H = 30h. 

with wavelength close to the parameter Ak· For the problem with Ak small compared 
to the subdomain size, the direct subdomain solvers (playing the role of a smoother) 
are capable of approximating such functions well. 

The performance tests have shown that using 8 processors, we gain parallel 
speedup of about 4 times, and the effect of adding more processors seems to 
be decreasing. We believe that this scalability issue reflects the early stage of 
parallelization of the code at the time of writing. 
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Methods for Shallow Water Equations 

Arnt H. Veenstra, Hai Xiang Lin, and Edwin A.H. Vollebregt 

1. Introduction 

The scalability of the iterative methods Jacobi, SOR, CG and AMS-CG will be 
analyzed for the solution of systems of equations with symmetric positive definite 
matrices, arising from the shallow water equations. For the parallel solution of 
these systems domain decomposition is applied and each subdomain is computed 
by a processor. The AMS-CG (Approximate Multi-Subdomain CG) method is a 
relatively new CG-type method specially designed for parallel computation. We 
will show that it compares favorably in our experiments to the other methods with 
respect to speedup, communication overhead, convergence rate and scalability. 

In order to predict the water movement and the dispersion of dissolved sub-
stances for the management of coastal seas and estuaries, computer simulations are 
performed which comprises the numerical solution of a.o. the shallow water equa-
tions. The shallow water equations are a set of coupled nonlinear partial differential 
equations which describe a 3-dimensional flow in shallow water [3]. The SWE are 
derived from the incompressible Navier Stokes equations by assuming a hydrostatic 
pressure distribution. In this way the pressure is eliminated and replaced by the 
unknown water level (. Practical simulation requires an accurate solution using a 
fine grid and a small time step. Thus, computation time becomes very important. 
In this paper we consider parallel solution in order to reduce computation time. 

The partial differential equations are discretized using a staggered grid, see e.g. 
[7], and a two stage time splitting method [3]. This leads to a nonlinear pentadiago-
nal system of equations to be solved in each time step. These nonlinear systems are 
solved by linearization [3] and by using iterative methods for the resulting systems, 
which are symmetric positive definite. For the parallel solution of these systems 
domain decomposition is applied and each subdomain is computed by a separate 
processor. We analyze and evaluate the performance and scalability of different 
iterative methods for solving these systems: Jacobi, CG, SOR and AMS-CG [6]. 

The AMS-CG (Approximate Multi-Subdomain-CG) method is a relatively new 
CG-type method. The method is specially designed for (massively) parallel com-
putation. Unlike CG, it only requires communication between neighboring subdo-
mains and the unknowns in each subdomain are approximated with an independent 

1991 Mathematics Subject Classification. Primary 65Fl0; Secondary 65Y05, 76B15. 

@1998 American Mathematical Society 

357 

http://dx.doi.org/10.1090/conm/218/03029

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



358 ARNT H. VEENSTRA ET AL. 

search direction. It is known that the overhead of global communications, such as 
inner product computations in CG, can strongly affect the parallel performance 
and scalability on massively parallel processors. AMS-CG eliminates the global 
communication and therefore should have a better scalability. 

We applied the following preconditioners for CG and AMS-CG: ILU [5], MILU 
[4] and FSAI [2]. Each of them is applied with overlapping subdomains and non-
overlapping subdomains and with varying internal boundary conditions. We com-
pare the above mentioned iterative methods combined with domain decomposition 
from the experimental results on a Cray T3D. The speedup, communication over-
head, convergence rate, and scalability of the different methods are discussed. 

2. Problem formulation 

The application problem in our study is a 3-dimensional hydrodynamic sea 
model: A simplified form of the shallow water equations. These equations describe 
the motion and the elevation of the water: 

(1) au = fv - g a( + _!_ ~ (J.L au) 
at ax h2 aa aa 

(2) 

(3) a( a ( 11 
) a ( 11 

) at = - ax ho uda - ay ho vda 

The equations have been transformed in the vertical direction into depth-
following coordinates (a) by the so-called sigma transformation: a = ~~( . The 
boundary conditions at the sea surface (a=O) and at the bottom (a=1) are: 

(4) ( au) h ( ov) h J.L- =--Wfcos(¢), v- =--WJsin(¢) aa a==O p aa a==O p 

(5) 

W =wind force, ¢=direction of wind force and ud and Vd velocities near the 
bottom. In the horizontal direction a staggered grid is used , see e.g. [7] for more 
information about the use and advantages of staggered grids. In the vertical direc-
tion the grid is divided into a few equidistant layers. The variable ( is discretized 
as Z, which is the water level compared to a horizontal plane of reference. The 
spatial derivatives are discretized using second-order central differences. The time 
integration is performed by a two-stage time splitting method [3]. The time step 
is split in two stages: t = n to t = n + 1/2 and t = n + 1/2 to t = n + 1. At 
the first stage the equations describing the vertical diffusion are treated implicitly. 
Each vertical line of grid points corresponds to a separate tridiagonal system of 
equations. 

At the second stage the equations describing the propagation of the surface 
waves are treated implicitly. This pentadiagonal system of equations describes the 
water level related to the water level in 4 neighboring grid points: 
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(1 )zn+1 zn+1 zn+1 zn+1 zn+1 - zn+l/2 + C1 + C2 + C3 + C4 · · - C1 ·+1 · - C2 ·-1 · - C3 · ·+1 - C4 · ·-1 - · · t,J t ,J t ,) t,J t,J t,) 

Z'+l is the water level in grid point ( i,j) at time t=n+ 1. The coefficients ci are 
t,] 

functions depending on the water level Z. This equation can be put in the form: 

A (zn+l) zn+l = zn+l/2 

The equations are first linearized before applying an iterative solution method by: 

A (Xm) xm+l = zn+l/2 

Here X0 =zn+l/2 and A is symmetric positive definite. These systems are linear 
in xm+l. The iterative methods are used to compute xm+l. Thus there are 
two iteration processes: The outer iteration process updates A (xm) and continues 
untiliiXm+l- xmll < c and the inner iteration process solves each xm+l. Both 
processes are executed until convergence. In our experiments we compare the results 
of the iterative methods for the entire two iteration processes in the second stage. 

3. Approximate Multi-Subdomain-CG 

Starting with a basic form of CG without any optimizations, we can derive 
the Multi Subdomain CG (MS-CG) method by splitting the global search direction 
into local search directions, one for each subdomain. The local search direction 
Pd for subdomain d is a vector with zero entries for variables corresponding to 
positions outside subdomain d. Each iteration a Pd for each subdomain must be 
determined. The pis are put in the columns of a matrix P. Instead of the scalars 
a and {3 in the CG method, a and {3 are vectors with a separate entry for each 
subdomain. We require that p~ = z~-l + {3k pk-l is conjugate to all previous p~ 
with j <k. This is satisfied by computing {3 from ck- 1 {3k = -( Qk- 1 f zk-1. In order 
to minimize llx-xkiiA = (x-xk,b-Axk), a is computed by Ckak=(Pkfrk-1, 

where Ck=( Qkf pk. It can be proven that the errors llx- xk IIA are non-increasing 
[6]. The preconditioned MS-CG method can be derived from PCG. 

Algorithm: Multi-Subdomain CG 
x0 = initial guess, k = 0, r0 = b - Ax0 

while 'not converged' 

end 

solve M z~ = r~ 
k=k+l 
if(k=l) 

for each subdomain d : p~ = z~ 
else 

ck-l{3k = -(Qk-1fzk-1 

for each subdomain d: p~ = z~- 1 + {3k pk-1 
end 
Qk = APk 
ck = (Qkfpk 
Ckak = (Pkf rk-1 
xk = xk-1 + pkak 
rk = rk-1 _ Qkak 
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The matrix M has to be a symmetric positive definite preconditioning matrix. 
p~=O outside subdomain i. The matrix C is symmetric positive definite when the 
matrix A is. The CG method has the disadvantage that for each iteration 2 dot 
products are computed. Instead of these dot products the MS-CG method requires 
2 matrix equations with the matrix C to be solved. The matrix C is symmetrical 
positive definite in our problem. The idea of the Approximate MS-CG (AMS-CG) 
method is to approximate the 2 equations with the matrix C by a few Jacobi iter-
ations. The matrix C is relatively small: l x l, where l = number of subdomains. 
The Jacobi method only requires local communication. The convergence of the 
Jacobi iterations is not tested, because we don't want to introduce global commu-
nication. Usually a small fixed number of Jacobi iterations (2 to 4) is sufficient. The 
AMS-CG method requires no global communication, except to check convergence. 
This convergence check can be done once after performing a number of iterations. 

4. Preconditioning 

In this section we describe several preconditioners for the CG-method and the 
AMS-CG method. ILU preconditioning [5] is well known. It is derived from the 
LU-decomposition. The LU-decomposition generates full matrices. The ILU(O) al-
gorithm allows no fill in, ie: An entry in L and U is zero whenever the corresponding 
entry in the matrix A is zero. 

Gustafsson [4] proposed the MILU (Modified ILU) method. The components 
which are disregarded in IL U are added to the main diagonal. Therefore the row 
sum of LU is equal to the row sum of A. In our experiments the MILU precondi-
tioner performed much better than the ILU preconditioner. Therefore most exper-
iments with preconditioning were done with MILU. 

The ILU and MILU preconditioners have to be uncoupled in order to compute 
different subdomains in parallel. There are a few possibilities: We can simply dis-
regard the coupling, we can impose boundary conditions on the internal boundaries 
or we can use a Schur complement method. We did. not use a Schur complement 
method, however. This would have resulted in more communication, while we tried 
to precondition without communication or with very little communication. Con-
sequently we found an increasing number of iterations for an increasing number 
of subdomains. With a Schur complement method the number of iterations will 
almost certainly be roughly the same for different numbers of subdomains. 

The FSAI (Factorised Sparse Approximate Inverse) preconditioner [2] uses the 
following approximate inverse of A: cr n- 1G, where D=diag( G) and 9iJ = 0 when 
a;j = 0, ( GA)ij = D;j when a;j i- 0. This preconditioner can be applied to different 
numbers of subdomains without any problem. This only requires some local com-
munication between neighboring processors. These preconditioners are constructed 
with non-overlapping or overlapping subdomains. 

5. Numerical results 

The test problem used is that of de Goede [3, p. 63]. We simulate a rectangular 
basin of 400 km x 800 km. The bottom is inclined in x-direction with a depth of 
20m at one end and a depth of 340m at the other end. The grid used is 100 x 100 
points with 5 vertical layers. Simulations are carried out with time steps equal to: 
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TABLE 1. Amount of computation per iteration 

Method Computations 

Jacobi 6n multiplications 
SOR 6n multiplications 
CG 10n multiplications 

CG+MILD 14n multiplications + 2n divisions 
AMS-CG 12n multiplications 

AMS-CG+ MILD 16n multiplications + 2n divisions 

5 10 15 20 25 30 
number of processors 

FIGURE 1. Average execution time per time step plotted against 
the number of processors 

600 s, 1200 s and 2400s. We simulate a period of 4 hours and use a wind force of 
1.0 N /m2 in x-direction. For the AMS-CG method we take a number of 3 Jacobi 
iterations. 

Convergence. A good indication of the convergence properties of an iterative 
method is the average number of iterations required per time step. The convergence 
properties of AMS-CG are just as good as the convergence properties of CG in 
our experiments. This holds with and without preconditioning. As expected the 
convergence properties of Jacobi are bad, especially for larger time steps. The 
convergence of the SOR method is better than the convergence of CG and AMS-
CG when the right relaxation parameter is chosen. The convergence of the MILD-
preconditioned CG and AMS-CG is best of all. To give an indication: With a time 
step of 1200 s and 6 x 5 subdomains the number of iterations for Jacobi is 1008, 
for CG/AMS-CG: 202, for SOR: 125, for CG+MILD/AMS-CG+MILD: 55. 

Convergence of MILD-preconditioned CG or AMS-CG becomes worse as do-
main numbers increase. The largest difference is between 1 global domain (1 x 1) 
and 2 subdomains (2 x 1) . We tried to improve this situation, but the number of 
iterations remained largely the same with overlapping or non-overlapping subdo-
mains and with different internal boundary conditions. The convergence of FSAI-
preconditioned AMS-CG is worse than the convergence of MILD-preconditioned 
AMS-CG. Therefore, in case of preconditioning, we will only present results with 
MILU using non-overlapping subdomains. 

Execution time. For n grid points, the amount of computation per iteration 
for the different methods is shown in Table 1. CG and AMS-CG require more 
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AMS-CG 

5 10 15 20 25 30 
number of processors 

FIGURE 2. Average execution time per time step plotted against 
the number of processors 

5 10 15 20 25 30 
number of processors 

FIGURE 3. Average execution time per time step plotted against 
the number of processors 

computations per iteration, with or without preconditioning. However, the number 
of iterations is less for CG and AMS-CG. This results in a better overall performance 
of CG and AMS-CG for a complete time step. Figure 1, 2 and 3 show the average 
execution time per time step plotted against the number of processors. Figure 1 
shows that the average execution time of AMS-CG lies just between the execution 
time of Jacobi and SOR. Figure 2 shows that AMS-CG is worse than CG and 
CG+ MIL U on a small number of processors. If the number of processors increases 
AMS-CG becomes better than CG and CG+ MIL U. Figure 3 shows that the average 
execution time of AMS-CG+MILU is better then the execution time of AMS-CG. 
The execution time of AMS-CG+MILU is also better than the execution time of 
SOR. 

Optimization. The convergence check implies that for every iteration a global 
dot product must be computed. Therefore it is advantageous not to check the con-
vergence every iteration. In our experiments we choose to perform the convergence 
check only every 10 iterations. This reduces global communication considerably. 
For the standard CG method it is not relevant to do this, because one of the 2 dot 
products required per iteration is also used for the convergence check. 

Speedup and scalability. Figure 4 shows the relative speedup compared to 
the execution time of the respective method on 2 processors with 2 x 1 subdomains. 
The figure is clear: The global communication of CG and CG+MILU results in a 
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6 

5 

4 

3 

AMS-CG+MILU 
---:::::~:...-- AMS-CG 

2 CG+~:::::::::::=::::::::::::::::::::===----===-CG 
CG 

1 CG+MILU 

10 20 30 40 50 
number of processors 

FIGURE 4. Relative speedup compared to the execution time on 2 
processors (2 x 1 subdomains) of the respective method 

TABLE 2. The ratio between the execution time on 30 processors 
(6 x 5 subdomains) and on 1 processor (1 x 1 subdomain) 

method I time step 600 s I 1200 s I 2400 s I 
Jacobi 20.0 - -
SOR 6.3 11.4 11.3 
CG 16.3 16.6 16.9 

CG+MILU 8.5 11.0 15.7 
AMS-CG 10.0 9.9 8.4 

AMS-CG+ MIL U 4.4 7.3 15.8 

very bad speedup. A slowdown has been observed for larger number of processors. 
AMS-CG and AMS-CG+MILU have roughly the same speedup as Jacobi and SOR, 
which are known to be well parallelizable. For the evaluation of the scalability we 
kept the size of each subdomain constant. Each subdomain consisted of 50 x 50 
grid points. The parallel execution times are compared with the execution time 
for a problem equal to 1 subdomain. Table 2 shows the execution time for 6 x 5 
subdomains using 30 processors divided by the execution time for 1 x 1 subdomain 
using 1 processor. Note that the problem size grows proportionally with the number 
of subdomains. Thus, with the same number of processors, the execution time of 
6 x 5 subdomains will be at least 30 times that of 1 x 1 subdomain. With perfect 
scalability, the ratio between the execution time for 6 x 5 subdomains using 30 
processors and the execution time for 1 x 1 subdomain using 1 processor should 
be equal to 1. But in practice this ratio will be generally larger than 1, due to the 
increased number of iterations and the communication overhead. 

The execution time of the Jacobi method with increasing number of subdomains 
grows fast. This is caused by the slow convergence of this method when the problem 
size increases. The SOR method does quite well in this case but its performance 
soon worsens as the time step increases (e.g. with an integration step of 1200 s 
the execution time ratio becomes 11.4). The CG and CG+MILU methods are not 
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good scalable because of the fast increase of the overhead of global communication. 
The AMS-CG+MILU has the best scalability for small integration time steps, but 
it becomes worse for large integration time steps. The reason for this is that the 
preconditioning is then less effective. The performance of the AMS-CG method is 
in between and its convergence is insensitive to the integration time step. 

6. Conclusions 

We compared the iterative methods Jacobi, SOR, CG and AMS-CG on the 
solution of a system of equations which describes wave propagation. The matrix 
associated with the system of equations is sparse (pentadiagonal). This results 
in few computations and relatively more communication. The (preconditioned) 
AMS-CG method is well suited for a parallel solution of this application problem in 
combination with domain decomposition. In this case the method has convergence 
properties comparable to (preconditioned) CG. The speedup of AMS-CG is much 
better than the speedup of CG. This is due to the fact that AMS-CG requires only 
local communication. MILU preconditioning results in better convergence. 

It is remarkable that the number of iterations of the preconditioned AMS-CG 
makes a big jump from 1 subdomain to 2 subdomains, while this is not observed for 
AMS-CG. The number of iterations increases only slightly from 2 subdomains to 3 
subdomains and more. Future research should analyze the preconditioner and pos-
sibilities to improve it. An interesting topic is to implement a Schur complement 
preconditioner and compare the convergence and scalability. The Schur comple-
ment preconditioner generally has a faster convergence [1], but it requires more 
communication. 

Also interesting is to apply the AMS-CG method to other type of problems. It 
is still an open question if the AMS-CG method is a suitable parallel method for 
the solution of systems of equations arising from other applications. 
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A Nonoverlapping Subdomain Algorithm with Lagrange 
Multipliers and its Object Oriented Implementation for 

Interface Problems 

Daoqi Yang 

1. Introduction 

A parallel nonoverlapping subdomain Schwarz alternating algorithm with La-
grange multipliers and interface relaxation is proposed for linear elliptic interface 
problems with discontinuities in the solution, its derivatives, and the coefficients. 
New features of the algorithm include that Lagrange multipliers are introduced on 
the interface and that it is used to solve equations with discontinuous solution. 
These equations have important applications to alloy solidification problems [1] 
and immiscible flow of fluids with different densities and viscosities and surface 
tension. They do not fit into the Schwarz preconditioning and Schur complement 
frameworks since the solution is not in H 1(0.), but is piecewise in H 1(0.), where 
0. is the physical domain on which the differential equations are defined. An ex-
pression for the optimal interface relaxation parameters is also given. Numerical 
experiments are conducted for a piecewise linear triangular finite element discretiza-
tion in object oriented paradigm using C++. In this implementation, the class for 
subdomain solvers inherits from the class for grid triangulation and contains type 
bound procedures for forming stiffness matrices and solving linear systems. From 
software engineering point of view, features like encapsulation, inheritance, poly-
morphism and dynamic binding, make such domain decomposition algorithms an 
ideal application area of object oriented programming. 

The organization of this work is as follows. In Section 2, the domain decom-
position method is described for general elliptic interface problems. In Section 3, 
a finite element approximation with Lagrange multipliers is considered. Then in 
Section 4, some implementation issues using object oriented techniques in C++ 
are discussed. Finally in Section 5, numerical examples are provided to check the 
performance of the method. 
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2. The Domain Decomposition Method 

Let n be a smooth bounded two-dimensional domain or a convex polygon with 
boundary an. Assume that n is the union of two nonoverlapping subdomains D1 

and n2 with interface r; that is, 0 = 01 u 02, n1 n n2 = 0, and r = an1 n an2. 
When D1 and D2 are disconnected, the decomposition can actually contain more 
than two subdomains. 

Consider the following elliptic interface problem: find u1 E H1 (D1) and u2 E 
H 1 (D2 ) such that 

(1) 
(2) 
(3) 

(4) 

where fork= 1, 2, 

LkUk = fin nk, k = 1,2, 
Uk = g On ank nan, k = 1, 2, 
u 1 - u2 = J.l on r' 
au1 au2 
-a 1 + -a 2 = 'TJ on r, 

ZIA ZIA 

2 
au - "' (k) au k 
avk - ~ aij ax . IIi ' 

A i,j=1 J 

vk = {vf,vn is the outward normal unit vector to ank. I assume that f E L2(D) 
and g E H 112 (an), and that J.L(x) and ry(x) are given regular functions on r. That 
is, the solution of (1)-(4) is sought with specified strength of discontinuity, and so 
is its co normal derivative. I also assume that the coefficients { a~7)} are symmetric, 
uniformly positive definite, and bounded on nk, and b(k) 2: 0 on nk. 

Equations of type (1)-(4) need be solved at each time step for the two-phase 
generalized Stephan problems as encountered in alloy solidification processes [1, 
pages 8, 15]. They have applications in many wave propagation and fluid flow 
problems [1, 5]. In some cases, the interface conditions (3) and (4) are nonlinear 
[1]. 

Schwarz overlapping and substructuring domain decomposition methods have 
been analyzed for the special linear case (1)-(4) in which J.l = 0 and 'TJ = 0. It is 
not clear that any of these methods applies directly to the general case with J.l =I- 0 
and 'TJ =/=- 0, since the solution is not in the space H 1 (D), although its restriction 
to nk is in the space H 1(Dk)· Finite element methods on the whole domain n 
without domain decomposition do not seem to apply. In [5], a special kind of finite 
difference method without domain decomposition was considered for the problem 
(1)-(4). 

I now define formally the following domain decomposition method for problem 
(1)-(4): Choose uZ E H 1(Dk) satisfying uZinnrh = g, k = 1, 2. For n = 0, 1, 2, · · · , 
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the sequence uk E H 1(0k) with ukl&on&ok = g is constructed such that 

(5) 

(6) 

(7) 

(8) 

where a, (3 E (0, 1) are relaxation parameters that will be determined to ensure and 
accelerate the convergence of the iterative procedure. This algorithm is motivated 
by the ones proposed by Funaro, Quarteroni, and Zanolli [4], Marini and Quarteroni 
[7, 8], Lions [6], Despres [2], Rice, Vavalis, and Yang [10], Quarteroni [9], Douglas 
and Yang [3], and Yang [11, 12], where regular problems with f-l = 0 and TJ = 0 
were considered. 

This algorithm is different from others in that Dirichlet and Neumann subdo-
main problems were solved at the same iteration levels but on different subdomains 
in [4, 7, 8, 11] and Robin subdomain problems were solved in [6, 2, 12]. For prob-
lems with continuous solution and coefficients, this algorithm reduces to [10, 3], 
where convergence results for general coefficients were not provided. In [13], a de-
tailed analysis for the algorithm will be made at the differential and discrete levels 
and numerical tests using finite difference methods will be conducted. 

3. Finite Element Approximation with Lagrange Multipliers 

In this section, I reformulate the algorithm (5)-(8) by introducing Lagrange 
multipliers on the interface to replace conormal derivatives. Finite elment dis-
cretization is then applied to subdomain problems. Although Lagrange multipliers 
have been used in other contexts, it does not appear that they have been employed 
to (5)-(8) before. I first introduce some notation. Denote the Hilbert spaces 

and let 'Yo be the trace operator from Vk onto H~b 2 (f). Define the bilinear forms: 

(9) k = 1,2, 

(10) 

For convenience I use the following norms in V1 and V2, 

(11) llwll% = ak(w, w), 't/w E Vk, k = 1, 2. 
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Then the variational formulation of the scheme (5)-(8) can be written as: 

fork = 1, 2. Here (-,-) denotes the inner product over the interface r, or the duality 
between H66 2 (r) and its dual space. 

Replacing the conormal derivatives ~u~ by the Lagrange multipliers ),~, (12)-
vvA 

(15) becomes 

(16) { al(uin+ 1,w)- (>.in+l,/'oW) = (f,w)J, 't/w E V1, 
uin+l = auin + (1- a)u§n + (1- a)J.L on f; 

(17) { a2(u~n+ 1 ,w)- (>,~n+ 1 ,/'oW) = (f,w)2, 't/w E V2, 
U~n+l = auyn + (1- a)u~n- CYJL On f; 

a1(uin+2,w) 
(18) = (;3>-in+l- (1- ;3)>-~n+l + (1- ;3)7],/'oW) + (f,w)1, 't/w E V1; 

a2(u~n+ 2 ,w) 

(19) = ( -;3>-in+l + (1- ;3)>-~n+l + ;3ry, row)+(!, w)2, 't/w E V2. 

The procedure (16)-(19) is the domain decomposition method with Lagrange 
multipliers at the differential level, a variant of (5)-(8). I now formulate its finite 
element version. Let Th = {T} be a regular triangulation of 0 with no elements 
crossing the interface r. I define finite element spaces, fork= 1, 2, 

where Pr(T) denotes the space of polynomials of degree ::; ron T. Let Z" be the 
space of the restrictions on the interface of the functions in Wf. Note that there 
are two copies of such a space assigned on r, one from 0 1 and the other from 0 2 . I 
denote them by zr and z~' respectively. Let {UJ:' Ak} E Wk' X zr denote the finite 
element approximation of { u~, >.k}. Then, the finite element domain decomposition 
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method with Lagrange multipliers is constructed as follows: 

(21) 

(22) 

{ a1(U?n+I,w)- (Ain+1,')'oW) = (f,w)I, Vw E Wf, 
u?n+I = au[n + (1 - a)Uin + (1- a)J.L on f; 

{ a2(U:}n+I, w)- (A~n+l, ')'oW) = (!, w)2, 
U:}n+ 1 = aUfn + (1- a)Uin- aJ.L on f; 

a1(U?n+2,w) 

Vw E W~, 

(23) = (f3Ain+1 - (1- j3)A~n+ 1 + (1- /3)17, ')'ow)+(!, w)I, Vw E W1h; 
a2(U:}n+2, w) 

(24) = ( -f3Ain+l] + (1 - j3)A~n+ 1 + /317, 'Yow) + (!, w)2, Vw E W~. 

369 

In order to give a convergence result, I introduce two linear operators. Let 
~h = { wlr : w E Wk', k = 1, 2}. Define the extension operators Rk : ¢ E ~h --+ 

{Rl¢,R~¢} E Wk' x zr by 

(25) ak(Rk¢,w)- (R~cj>,w) = 0, Vw E Wk', Rk¢ = ¢ on r. 
Define a and f to be two smallest finite real numbers such that 

(26) IIR~c/>lli _ IIR~¢11~ ::Ih IIR~¢11~ :S (Y, ::Ih IIR~c/>lli :S f. 

The following results will be proved in [13]. 
THEOREM 1. The domain decomposition method {21)-(24) is convergent in the 

energy norm ifmax{O, 1- 7 ~~:~~ 2 } <a< 1 andmax{O, 1- J~~:~ 2 } < j3 < 1. The 
-2-+1 --2+1 

optimal relaxation parameters are a = 7 ; 2 ~ 7 + 2 and j3 = ,.f;+a+2 . Furthermore, 
the convergence is independent of the grid size h. 

4. Object Oriented Implementation 

The finite element domain decomposition algorithm (21)-(24) can be imple-
mented in an elegant way using the object oriented programming paradigm. Fea-
tures such as information hiding, data encapsulation, inheritance, dynamic binding, 
and operator overloading can be employed very nicely in the algorithm. Below I 
give a brief description of my implementation details in the terminology of C++. 

I first define a base class called "grid", which generates a triangular grid in 
a subdomain. Data members like vertices of the triangles and coordinates of the 
vertices are protected members which can only be accessed by its members and 
derived class. Function members like getting the total degrees of freedom and 
printing a Matlab file for representing the triangulation are public that can be 
accessed by any program. Each object of the class grid represents the triangulation 
on each subdomain. The grid on different subdomains may not have to match on 
the interface. However, for simplicity, I apply matching grids on the subdomains. 

Then I define a derived class called "subdomain", which inherits from the class 
grid. The class subdomain contains private member functions for forming the stiff-
ness matrix and for performing the Dirichlet and Neumann sweeps. The stiffness 
matrix forming function can access the triangulation information like triangle ver-
tices and coordinates of vertices, which are protected members of the base class 
grid. In this step, I make use of my linear algebra library (which is built on object 
oriented programming for matrix and vector manipulations) for numerical integra-
tion. A numerical quadrature can be viewed as an inner product of two vectors; 
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using operator overloading, vectors can be multiplied directly, instead of an explicit 
function call like in Fortran or C. The Dirichlet sweep member function first solves 
the subdomain problem with Dirichlet boundary condition by choosing basis func-
tions vanishing on the interface and then finds the Lagrange multipliers by choosing 
basis functions vanishing in the interior of the subdomain. The Neumann sweep 
member function just solves the subdomain problem with Neumann boundary con-
dition on the interface. From these two steps, we see that the finite element method 
with Lagrange multipliers on the interface is easier to implement than finite differ-
ence or finite element methods without Lagrange multiplers [5, 13]. In particular, 
the subdomain finite dimensional problems are symmetric and positive definite in 
our case, as opposed to unsymmetric and indefinite problems in [5]. 

Finally, a friend to the class subdomain is implemented to coordinate the Dirich-
let and Neumann sweeps and check the stopping criterion for the iterative process. 
This friend function takes an array of subdomain objects as arguments and has 
access to protected members of class grid and all members of class subdomain. 

At the linear system solving steps inside the Dirichlet and Neumann sweeps, 
I first define an abstract matrix class that just contains the number of rows of 
the matrix, two pure virtual functions for matrix-vector multiplication and pre-
conditioning, and a function for the preconditioned conjugate gradient method. 
Since the preconditioned conjugate gradient algorithm can be implemented once 
we have a matrix-vector multiplication function and a preconditioning function, it 
is defined in the abstract matrix class and inherited by classes for banded matri-
ces and sparse matrices. With operator overloading (one kind of polymorphism), 
the preconditioned conjugate gradient function can be written in about the same 
number of lines and format as the algorithm (which increases the readability of the 
code) and is defined only once in the abstract class. It then can be called in the 
derived classes for banded matrices and sparse matrices which need to define the 
matrix-vector multiplication and preconditioning functions according to their data 
structures of the matrix storage. However, the banded Gauss elimination function 
has to be defined in every derived class since it can not be performed without 
knowing the structure of the matrix. Note that the banded matrix inherits the 
row number from the abstract matrix class and needs to define a data member for 
the bandwidth. For unsymmetric problems, GMRES instead of conjugate gradient 
method or banded Gauss elimination is used. 

5. Numerical Examples 

In this section, I present some numerical experiments for the iterative procedure 
(21)-(24). In all of my test, I let the domain 0 = {(x,y): 0 < x < 1,0 < y < 
0.5,X 2 y} U {(x,y): 0 <X< 0.5,0 < y < 1,X::; y} and the interface r be the line 
segment {(x, y): x = y, 0::; x::; 0.5}, which divides 0 into 01 = {(x, y) : 0 < x < 
1,0 < y < 0.5,x > y} and 0 2 = {(x,y): 0 < x < 0.5,0 < y < l,x < y}. Piecewise 
linear triangular finite elements are applied on each subdomain. One copy of the 
solution at the interface is kept from each subdomain due to its discontinuity. Note 
that a global finite element solution on the whole domain 0 may not exist. The 
relaxation parameters a and (3 are taken to be 0.5, which leads to fast convergence 
and thus optimal parameters are not used. Initial guess is chosen to be zero in 
all cases. I define iterative errors as the relative errors between the iterates at the 
current and previous iteration levels and true errors as the relative errors between 
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TABLE 1. Iterative and true errors for Example 2. The errors are 
shown in the L 00 -norm. 

Grid size -1J x iiJ Grid size -1o x in_ 
Iteration Iterative error True error Iterative error True error 

1 3.16E-1 2.75E-1 3.25E-1 2.93E-1 
2 3.77E-2 1.05E-2 3.96E-2 3.21E-2 
3 4.97E-3 5.33E-3 5.28E-3 7.55E-3 
4 6.78E-4 6.01E-3 7.49E-4 2.27E-3 
5 9.76E-5 5.91E-3 1.13E-4 3.02E-3 
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the current iterate and the true solution. All norms will be measured in the discrete 
max(II·IILoo(nl), II·IILoc(n2 )) sense, which is different from the discrete L 00 (n) norm 
since there are two different values on the interface from the two subdomains due 
to discontinuity. 

EXAMPLE 2. Let 
a x au1 a au1 1 

--(e -)- -(eY-) + U1 = h, in n1, 
ax ax ay ay 1 + X + y 

a2u2 a2u2 _ f 
- ax2 - ay2 - 2' in n2' 

Uk = gk, On ank nan, k = 1, 2. 

The functions h, h, g1, g2, p,, and 7J are chosen such that the exact solution is 

u1(x,y)=10x+y, inn1, u2(x,y)=sin(x+y), inn2. 

Table 1 shows the results for the iterative and true errors in the maximum 
norm on the whole domain n. 

Now we consider a more difficult problem with convection on one side of the 
interface and general variable coefficients. In the Stephan problem [1], for the case 
of two incompressible phases, one solid and one liquid, with different densities, a 
convective term must be added to the heat-flow equation in the liquid region in 
order for mass to be conserved across phase-change interface. 

EXAMPLE 3. Let 

-\7 · ( [ ~x :y ] Vu1) + [ 1 + ~ + y, 1 + ~ + y] Vu1 + 1 + : 1 + y 

=h(x,y), inn1, 

-\7· ([ ~i~~y) ~i~~y)] Vu2) +(2+sin(x)+cos(y))u2 

= h(x, y), in n2, 
Uk = gk, On ank nan, k = 1, 2. 

The functions h, h, g1, g2, p,, and 7J are chosen such that the exact solution is 

U1(x,y) = exy, in n1, U2(x,y) = 5eXYsin(13x)cos(13y), in n2. 

Table 2 shows the results for the iterative and true errors in the maximum 
norm on the whole domain n. 

Numerical experiments show that the iterative method is insensitive to strong 
discontinuities in the solution and coefficients and leads to accurate approximate 
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TABLE 2. Iterative and true errors for Example 3. The errors are 
shown in the Loc-norm. 

Grid size -ill x frJ Grid size -fu x -J.n 
Iteration Iterative error True error Iterative error True error 

1 1.97E-1 3.84E-1 2.33E-1 5.02E-1 
2 8.77E-3 5.82E-3 1.09E-2 9.56E-3 
3 3.38E-5 3.21E-3 4.16E-5 1.53E-3 
4 1.41E-7 3.18E-3 1.78E-7 1.48E-3 
5 6.27E-10 3.18E-3 8.29E-10 1.48E-3 

solutions. Although the relaxation parameters o: and {3 can be chosen in some 
optimal fashion, the method converges pretty fast with o: = {3 = 1/2 even for 
very complicated problems. It is observed that this method converges faster than 
Lions type methods [6] with a few subdomains which is suitable for most interface 
problems. Also, sharp interfaces of the true solution can be captured fairly easily 
and accurately. In [13], finite difference methods are applied to subdomain problems 
and similar numerical results are obtained. 

To my knowledge, this paper is the first one to apply the Schwarz domain de-
composition methodology to interface problems with discontinuous solution, conor-
mal derivatives, and coefficients. This is a first attempt to solve time-dependent 
generalized Stephan problems such as alloy solidification and immiscible flow with 
surface tension. Applying non-matching grids will make my algorithm more attrac-
tive and suitable for such problems in that finite element grids can be generated 
separately in different subdomains and collaborative PDE solvers can be applied. 
Another salient feature of this algorithm is that symmetrical and positive definite 
linear systems are solved at each iteration for problems like Example 2 which is 
not symmetrical and positive definite in the whole domain. Implementations in 
the object oriented paradigm also make the algorithm easier to code and modify 
to meet the need of more complicated situations. Our future work will try to solve 
two and three dimensional application problems with more complex geometry and 
interface. Mortar elements may also be applied to this kind of problems. 
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A Robin-Robin Preconditioner 
for an Advection-Diffusion Problem 

Yves Achdou and Frederic N ataf 

1. Introduction 

We propose a generalization of the Neumann-Neumann preconditioner for the 
Schur domain decomposition method applied to a advection diffusion equation. 
Solving the preconditioner system consists of solving boundary value problems in 
the subdomains with suitable Robin conditions, instead of Neumann problems. 
Preliminary tests assess the good behavior of the preconditioner. 

The Neumann-Neumann preconditioner is used for the Schur domain decom-
position method applied to symmetric operators, [5]. The goal of this paper is to 
propose its generalization to non symmetric operators. We replace the Neumann 
boundary conditions by suitable Robin boundary conditions which take into ac-
count the non symmetry of the operator. The choice of these conditions comes 
from a Fourier analysis, which is given in Sec. 2. When the operator is symmetric 
the proposed Robin boundary conditions reduce to Neumann boundary conditions. 
Also as in the symmetric case, the proposed preconditioner is exact for two sub-
domains and a uniform velocity. The preconditioner is presented in the case of a 
domain decomposed into non overlapping strips: the case of a more general domain 
decomposition will be treated in a forthcoming work as well as the addition of a 
coarse space solver. 

The paper is organized as follows. In Sec. 2, the method is defined at the 
continuous level. In Sec. 3, the proposed preconditioner is constructed directly at 
the algebraic level. This may be important, if the grid is coarse and if upwind 
methods are used because the preconditioner defined at the continuous level is not 
relevant. In Sec. 4, we propose an extension to the case of nonmatching meshes 
(mortar method) [3] [1]. In Sec. 5, numerical results are shown for both conforming 
and nonconforming domain decompositions (mortar method). 

2. The Continuous Case 

We consider an advection-diffusion equation 

.C(u) = cu + a.\7u- v~u = f inn =]0, L[ X ]0, 'IJ[, 
u = 0 on an. 
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The positive constant c may arise from a time discretization by an Euler implicit 
scheme of the time dependent equation. The equation is solved by a primal Schur 
method. We focus on the case when the domain is decomposed into non overlapping 
vertical strips Ok =]lk, lk+1[x]O,ry[, 1::::; k::::; N. Let rk,k+1 = {lk+r}x]O,ry[. 

REMARK 1. The general case of an arbitrary domain decomposition will be 
treated in a forthcoming work. 

We introduce 

S: (Ht62(]0, ry[))N-1 x L2(0) ~ (H-1/2(]0, ry[))N-1 

1 OVk 0Vk+1 
((ukh95oN-1,f) f-4 (2v( 8nk + onk+l )rk,k+lh95oN-1 

where Vk satisfies 

(1) 
(2) 
(3) 
(4) 

.C(vk) =fin nk, 
Vk = Uk on rk,k+l for 1 ::::; k ::::; N- 1, 

Vk = Uk-1 on rk-1,k for 2::::; k::::; N, 
Vk = 0 on Of2 n Of2k· 

It is clear that U = (urk.k+lh95oN-1 satisfies 

S(U, 0) = -S(O, f). 

At the continuous level, we propose en approximate inverse of S( ., 0) defined by 

T: (H-1/2(]0, ry[))N-1 ~ (Ht62(]0, ry[))N-1' 
1 

(gkh5ok5oN-1 f-4 (2(vk + vk+1)rk.k+l h5ok5oN-1, 

where Vk satisfies 

(5) 
(6) 

(7) 
(8) 

.C(vk) = 0 in nk, 

(v a~k - a.;k )(vk) = gk on rk,k+l for 1::::; k::::; N- 1, 

(v a~k - a.;k )(vk) = gk-1 on fk-1,k for 2::::; k::::; N, 
Vk = 0 OnOf2 n Of2k. 

REMARK 2. Our approach is different from that used in [7] or [4], where the 
interface conditions v-88 - min(a.nk, 0) are used in the framework of Schwarz 

nk 

algorithms. 

The Robin boundary conditions in (6)-(7) are not standard and lead neverthe-
less to a well-posed problem: 

PROPOSITION 3. Let w be an open set of lR2 , f E L2 (w), A E H- 112 (8w), 
a E (C1(w))2 , c E JR s.t. c- ~div(a) 2: a> 0 for some a E JR. Then, there exists a 
unique u E H 1(w) s.t. 

J 1 CVW + (a.Vv)w + vVv.Vw -law a;n vw 

=< .A,w >H-l/2xHI/2 + J 1 fw, Vw E H 1(w). 
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PROOF. When using the Lax-Milgram theorem, the only thing which is not 
obvious is the coercivity of the bilinear form 

(v, w) I-t J l cvw + (a.V'v)w + vV'v.V'w -law a;n vw 

Integrating by parts leads to 

J J cv2 + (aV'v)v + viY'vl2 -law a;n v2 = J f(c- ~div(a))v 2 + viY'vl2 

~min( a, v) llvll~~(w)· 

D 

PROPOSITION 4. In the case where the plane IR2 is decomposed into the left 
(01 =] - oo, 0[ x!R) and right (02 =]0, oo[ xlR) half-planes and where the velocity a 
is uniform, we have that 

To S(., 0) =I d. 

PROOF. A point in JR2 is denoted by (x, y). The vector a is denoted a = 
(ax, ay)· The unit outward normal and tangential vectors to domain Ok are denoted 
by nk and Tk respectively. The proof is based on the Fourier transform in the y 
direction and the Fourier variable is denoted by ~. The inverse Fourier transform 
is denoted by ;:-1 . Let us compute S(u0 ,0) for u0 E H 112 (JR). Let Wk be the 
solution to (1)-(4), with f = 0 and u0 as a Dirichlet data. The Fourier transform 
of (1) w.r.t. y yields 

(c + ax8x + ayi~- v8xx + ve)(wk(x, ~)) = 0 

where i 2 = -1. For a given ~, this equation is an ordinary differential equation in 
x whose solutions have the form ak(~)e>-k(E)Ixl + ~k(OeAk(E)Ixl where 

.\k(~) = -a.nk - J 4vc + (a.nk) 2 + 4ia.f1~v + 4~ 2 v 2 
2v 

and 
:Xk(~) = -a.nk + J4vc + (a.nk) 2 + 4ia.f 1 ~v + 4ev2 

2v 
The solutions Wk must be bounded at infinity so that ~k = 0. The Dirichlet 
boundary conditions at x = 0 give ak(~) = u 0 (~). Finally, we have that Wk = 
;:- 1 (u 0 (~)e>-k(E)Ixl) satisfy (1)-(3). Hence, 

S(uo,O) = ~:F- 1 ( J4vc + (a.nk) 2 + 4ia.f2~v + 4ev2 u 0 (~)). 
In the same way, it is possible to compute T(g) forgE H-112 (JR). Indeed, let v1 

(resp. v2) be the solution to (5)-(7) in domain 01 (resp. 02)· The function Vk may 
be sought in the form Vk = ;:- 1 (ak(~)e>-k(E)Ixl). The boundary conditions (6)-(7) 
give: 
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Hence Vk(O C) = 2 g'(C) and T(g) = .!.(vl(O C)+ v2(0 C)) 
' '<, yf4vc+(ii.iik)2+4iii.7'2Ev+4E2v2 <, 2 '<, '<, 

i.e. 
T(g) = 2F- 1 ( g(~) ). 

J4vc + (ii.nk) 2 + 4iii.f 2 ~v + 4~ 2 v2 
Hence, it is clear that To S( ., 0) = I d. 0 

REMARK 5. The same kind of computation shows that if max(~~~~, L..jf) » 
1, we still have T o S (., 0) ~ I d. This means the preconditioner T remains efficient 
for an arbitrary number of subdomains as long as the advective term is not too 
strong or the viscosity is small enough. Moreover, in the case of simple flows, 
we expect that the preconditioned operator is close to a nilpotent operator whose 
nilpotency is the number of subdomains, [2]. In this case, the convergence does not 
depend on the parameter c and the method works well for large 8t. 

3. The Discrete Case 

We suppose for simplicity that the computational domain is JR2 discretized by 
a Cartesian grid. Let us denote A = (Afj)i,j,k,lEZ the matrix resulting from a 
discretization of the advection-diffusion problem. We suppose that the stencil is 
a 9-point stencil (Afj = 0 for li - kl 2 2 or lj - ll 2 2). This is the case, for 
instance, for a Q1-SUPG method or for a classical finite difference or finite volume 
scheme. We have to solve AU = F where U = ( Uij )i,jEZ is the vector of the 
unknowns. The computational domain is decomposed into two half planes w1 and 
w2 . We introduce .a discretized form Sh of the operator S (we adopt the summation 
convention of Einstein over all repeated indices) 
(9) Sh : JRZ X JRZxZ -+ JRZ 

(10) ((uoj)jEZ, (Fij)i,jEZ) t--t (A 0/ 1 v~ 11 + BJ 1v51 + A6~vi 1 + BJ 1v51 - Foj)jEZ 

where (vij) satisfy 

Af]vki = Fij fori< 0 if m = 1 and i > 0 if m = 2, j E Z, 
vOj = Uoj, for j E Z. 

The coefficients Bj 1 are the contributions of the domain Wm to Ag;, Ag; = BJ 1 + 
BJ 1• For example, if ii = 0, BJ 1 = BJ 1 = A8;/2. For example, for a 1D case with 
a uniform grid and an upwind finite difference scheme (a> 0) and c = 0, 

-1 v a o 2v a 1 v 1 v a 2 v 
Ao = - h2 - h' Ao = h2 + h' Ao = - h2' B = h2 + h and B = h2 . 

Sh(u0 , F) is the residual of the equation on the interface. It is clear that Uo = 
( Uoj) J EZ satisfies 

(11) 
We propose for an approximate inverse of Sh(., 0), 7,. defined by 

(12) 
(13) 

7,. : JRZ -+ JRZ 

(gj)jEZ 1--t ~(v6j + v5j)jEZ, 

where (v}j)i~O,JEZ and (v;jk::o,jEZ satisfy 

(14) 
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and 

(15) 

REMARK 6. For a Neumann-Neumann preconditioner, in place of (14) and 
(15) ld h A -ll 1 Bl 1 1 d All 2 + B2 1 2 _ , we wou ave Oj v_ 11 + j v 01 = gj an ojvll j v 01 - gj. 

REMARK 7. For a constant coefficient operator .C and a uniform grid, a discrete 
Fourier analysis can be performed similarly to that of the previous section. It can 
then be proved that 

7h oSh(.,O) = Idh 

REMARK 8. The last equations of (14) and (15) correspond to the discretization 
of the Robin boundary condition v Zn- ii2fi. Considering the previous 1D example, 
we have 

Ao 1 1 1 1 
-1 1 o 1 Vo - v -l a 1 Vo - v -l a ( 1 1 ) 

h(A0 v_ 1 + 2v0 ) = (v + ah/2) h - 2v_1 = v h - 2 2v_ 1 - v0 , 

and 

(16) 

Another discretization of v Zn - ii2fi would not give (16). This the reason why the 
approximate inverse is directly defined at the algebraic level. The discretization of 
the Robin boundary condition is in some sense adaptive with respect to the dis-
cretization of the operator (SUPG, upwind finite difference scheme or finite volume 
scheme). In the previous 1D example, a straight forward discretization of the Robin 
boundary condition would give for domain 1 

When ah » v, which is usually the case, it is quite different from (14). 

4. Adaption to the Mortar Method 

The mortar method was first introduced by C. Bernardi, Y. Maday and T. Pa-
tera ([3]). It has been extended to advection-diffusion problems by Y. Achdou 
([1]). It enables to take nonmatching grids at the interfaces of the subdomains 
without loss of accuracy compared to matching grids. In our case, the additional 
difficulty lies in the equations (14) and (15) which are no longer defined. Indeed, 
the coefficients A8j are defined only for matching grids where they correspond to 
coefficients of the matrix before the domain decomposition. Only the coefficients 
Bj1 are available. Then, the trick is to take for A8j in (14) and (15), the matrix 
entries at the nearest interior points of the subdomains. Therefore, the equations 
(14) and (15) are replaced by 

A-ll 
A kl 1 0 . 0 . '71 A-ll 1 -lj 1 

ijvkl = , z < ,J E /L.;' oj v-ll + - 2-vol = gj 

and 
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TABLE 1. Number of iterations for different domain decomposi-
tions ( ii = min(300y2, 3) el) 

Precond. 40-20-40 40-40-40 40-60-40 60-60-60 60-60-60(geo) 60-60-60-60-60 

R-R 11 12 13 13 12 11 

v = 0.001 N-N 31 37 38 43 67 60 
- 21 33 37 >100 66 >100 

bt = 0.1 R-R 13 13 12 11 11 10 

v = 0.01 N-N 22 23 25 26 31 33 
- 16 22 24 27 >100 19 

TABLE 2. Number of iterations for different velocity fields, a three-
domain decomposition and 40 points on each interface. 

Precond. normal parallel rotating oblique 

R-R 10 2 11 11 

N-N 25 2 13 27 

- 21 >50 45 12 

5. Numerical Results 

The advection-diffusion is discretized on a Cartesian grid by a Q !-streamline-
diffusion method ([6]). Nonmatching grids at the interfaces are handled by the 
mortar method ([1]). The interface problem (11) is solved by a preconditioned 
GMRES algorithm. The preconditioners are either of the type Robin-Robin (R-R), 
Neumann-Neumann (N-N) or the identity (-). In the test presented below, all the 
subdomains are squares of side 0.5. The figures in Tables 1 and 2 are the number 
of iterations for reducing the initial residual by a factor w-lO 0 

In Table 1, the first five columns correspond to a three-domain decomposition 
and the last one to a five-domains partition. The grid in each subdomain is a N x N 
Cartesian grid, not necessarily uniform. The first line indicates the parameters N. 
For instance 40 - 20 - 40 means that the first and third subdomain have a 40 x 40 
grid whereas the second subdomain has a 20 x 20 grid. In this case, the grids do not 
match at the interfaces. The grids are uniform except for the last but one column: 
in this case, the grid is geometrically refined in the y-direction with a ratio of 1.2. 
The velocity which is not varied, has a boundary layer in the y-direction. 

In Table 2, the velocity field has been varied: 
normal (to the interfaces): ii = min(300 * y2, 3)e1 , parallel (to the interfaces): 

ii = e2, rotating: ii = (y- Yo)el - (x- xo)e2 where (xo, Yo) is the center of the 
computational domain and oblique: ii = 3e1 + e2. The mesh is fixed, the viscosity 
is v = 0.01 and the time step is 8t = ~ = 1. 

Tables 1 and 2 show that the proposed Robin-Robin preconditioner is very 
stable with respect to the mesh refinement, the number of subdomains, the aspect 
ratio of the meshes and the velocity field. More complete tests as well as the 
complete description of the solver will be given in [2]. 
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6. Conclusion 

We have proposed a preconditionner for the non symmetric advection-diffusion 
equation which generalizes the Neumann-Neumann preconditionner [5] in the sense 
that: 

• It is exact for a two-domain decomposition. 
• In the symmetric case, it reduces to the Neumann-Neumann preconditioner. 

The tests have been performed on a decomposition into strips with various veloc-
ities and time steps. The results prove promising. In a forthcoming paper [2], 
we shall consider more general decompositions and the addition of a coarse level 
precondi tioner. 
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A Semi-dual Mode Synthesis Method 
for Plate Bending Vibrations 

Frederic Bourquin and Rabah Namar 

1. Introduction 

Once a structure is decomposed into substructures, mode synthesis is the 
Rayleigh-Ritz approximation of the global eigenvalue problem on the space spanned 
by a few eigenmodes of each substructure and some coupling modes which aim at 
describing the restriction to the interface of the global eigenmodes [7]. These cou-
pling modes are defined here at the continuous level as the eigenfunctions of an ad 
hoc preconditionner of the Poincan~-Steklov operator associated with the interface 
as in [2]. The definition of this preconditionner of Neumann-Neumann type relies 
on suitable extension operators from the boundary of the subdomains to the whole 
interface. This paper concentrates on the definition of such extension operators in 
the case of plate bending and for general domain decompositions with cross-points 
and extends [2]. 

The plate bending problem is posed over a domain w c IR2 which is splitted 
in p substructures wi separated by an interface "Y· Let D, v, and p denote the non-
necessarily constant stiffness, Poisson's ratio and mass density respectively. Greek 
indices take their value in {1, 2} and summation of repeated indices is assumed. 
For u, v E H 2 (w), define : 

(1) 

(u,v)i = l, puv, 

ai(u, v) = i D((1- v)8af3U8af3V + v~u~v) + d(u, v)i, 
' p p 

(u, v) = ~)u, v)i, a(u, v) = I>i(u, v), 
i=l i=l 

where d stands for an arbitrary positive constant and ~ for the Laplacian. Let V 
denote the space of admissible displacements, i.e. the subspace of H 2 (w) satisfying 
the Dirichlet boundary conditions along 8w of the problem, if any. 
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It is well-known that the global eigenvalue problem : 

Find (,\, u) E ~ x V s.t. a(u, v) = ,\(u, v) \::lv E V 

possesses a family (,\k, uk)t~ of solutions. In the same way, for 1 :::; i :::; p set : 

'Yi = 'Y n 8wi, Vi = { Wlw;; WE V} and Vi0 = { v E \li; V = 0 and V'v = 0 on 'Yi}. 

Let ( Aij, Uij) j~ E ~+ x Vi0 denote the family of solutions of the problem : 

Find (,\, u) E (R) x Vi0 s.t. 

ai(u, v) = ,\(u, v)i \::lv E V:0 . 

Mode synthesis uses as test functions the fixed interface modes Uij and coupling 
modes that do not identically vanish on 'Y· 

2. Definition of the coupling modes 

2.1. Basic trace and extension properties. The admissible displacements 

wE H2(w) possess two independent traces along "f, wh and On= (~~)i"P where n 
denotes a unit normal vector along 'Y, that is defined on each edge independently. 

Let us recall a characterization of the space V1 = { wh, ( ~~) h; w E V} : along 

each edge ri, (wh, (~~)h) E H 312(fi) x H 112(fi)· Moreover, compatibility 
conditions hold at every vertex 0 of the interface. Assume that two edges r 1 

and r 2 share a common vertex 0, as in Figure 1, and denote by (w1,Bn,d (resp. 
(w2, Bn,2)) the traces of w along f 1 (resp. f 2). The continuity of wand the H 112-

continuity of V'w must be ensured at 0. Since V'w1r = awa i Ti + Bn i iii if Ti denotes 
z Si ' 

a unit tangential vector along ri, si an associated curvilinear abscissa on ri, and 
iii = nwi' the compatibility conditions write : 

(2) 

for every vertex 0 and every set of edges that cross at 0. If Ne denotes the 
Ne 

number of edges, it turns out that V1 is isomorphic to the subspace of IT H 312 (r i) x 
i=l 

H 112(ri) of pairs satisfying above compatibility conditions as well as the Dirichlet 
boundary conditions along aw, if any. 

(3) 

Let R : V1 ---+ V denote the biharmonic extension operator defined by 

{ 
a(R(v,B),z) = 0 \::lz E V 0 = 0, V:0 , 

8R(v,e) 
R(v, B)= v, an = e along 'Y· 

This problem splits into p independent plate problems. Now, let (wt, Bn,t)~~ denote 
a given dense family in V1 . Then coupling modes will be defined as R(w1, Bn,l) E V. 
The question of chosing a suitable family is addressed in the next section. 
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2.2. A generalized Neumann-Neumann preconditioner. Let us set 
v,i = {(v,B)~ri; (v,B) E v,}, and let pi : v,i ~ v, denote a continuous ex-
tension operator, that is also defined as a continuous operator from L2('yi) x L2('yi) 
to £ 2 ("1) x £ 2 ("1). For any pair of functions (T, M) defined on 'Yi, let wE Vi stand 
for the solution of the well-posed Neumann problem 

1 8z 
ai(w, z) = Tz + M 0 _ Vz E Vi, 

ri n 

and define the mapping Si by Si(T, M) = (whi , 8w0 _ ). This local dual Schur 
nh; 

complement si : v~i ~ v,i is continuous. 
Then the operator S : V~ ~ V,, S = I:f=1 PiSiPt is continuous. It is 

compact over £ 2 ("1) x £ 2 ("1) and symmetric, hence it possesses a family of finite-
dimensional eigenspaces associated with positive decreasing eigenvalues (J-L,t)t:t_ 
and also a possibly infinite-dimensional kernel, ker(S). Since by construction the 
operators Si are isomorphisms, ker(S) = ker(I:f=1 PiPt). Therefore, the family 
chosen of coupling modes naturally splits in two subfamilies : 

- The first one is made of the biharmonic extensions R( w l, B t) of a given number 
N, of independent eigenfunctions (w£, Bt) associated with the largest eigenvalues 
J-L,£. 

- As for the second one, noticing that 
p p p 

ker(L PiPt) = n ker(PiPt) c U ker(PiPt) 
i=l i=l i=l 

we decide to retain the low frequency content of each subspace ker(PiPt), namely 
the Mi first solutions of the auxiliary eigenvalue problem 

(4) 

V ( v, 'ljJ) E H 2 ('y) x H 1 ('y), where E is a small parameter. 
p 

The biharmonic extensions R(wij,Bij) of these M = LMi modes (wij,Bij) 
i=l 

form the second family of coupling modes. The resulting mode synthesis method 
amounts to define the finite-dimensional space 

v N ~ span { ~ ( "'' )j;; 1 U(1<( w', e, nfc-1 ~ ('R.( w,,, o,, ))~ 1 } , 
for some numbers Ni, Mi, N,, 1 :::; i :::; p, and to perform the Galerkin approxi-
mation of the global eigenvalue problem on this space. 

REMARK 1. it is possible to further filter the kernels ker(PiPt) by just solving 
the eigenvalue problem ( 4) again after projection over the solutions of the first solve 
and with E = +oo 

REMARK 2. If the extension operator preserves some locality, this eigenvalue 
problem is posed over a limited set of edges, not on the whole interface. Moreover, 
since Pi only depends on the geometry of the interface and, at the discrete level, 
on the mesh, the auxiliary eigenvalue problem ( 4) does not require any subdomain 
solve, and, in practice, proves very cheap. 
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a 
... ----- ... 

... ... 
' ' 

/ 

' 

I 
I 

/ 

FIGURE 1. The extension operator by reflection for H2 functions. 

REMARK 3. Mode synthesis appears as a non iterative domain decomposition 
method contrary to [5], [6]. The proposed method differs from [1] where the Schur 
complement is used instead of a preconditioner. It also differs from [4] since the 
preconditioner is not used to compute the spectrum of the Schur complement. 

The next section is devoted to the construction of the extension operators Pi. 

3. The extension operators Pi : V -y1 ---t V 'Y 

Let w E Vi denote some given function. Its traces (wi'YP 8wa- ) are to be 
nb; 

extended onto the adjacent edges of the interface. First pick out two edges r 1 and 
r2 of 'Yi that share a common vertex 0, and choose an adjacent edge r3<t/i, as in 
Figure 1. Parametrize rl (resp. r2, r3) by the curvilinear abscissa Sl E [a, OJ (resp. 
s2 E [c, 0), s3 E [0, b)), starting from the vertex 0. As in section 2, let (w1 , On, I) 
(resp. (w2,Bn,2)) stand for the traces ofw along r1 (resp. r2). These traces satisfy 
the compatibility conditions (2). A pair of traces (w3, Bn,3) is sought on r 3 in such 
a way that the compatibility conditions 

= 

(5) at 0 

hold for every possible value of w1 (0), :: (0) and Bn,l (0). The resulting traces 

will then coincide with the traces of a function in H 2 ( w). 
The compatibility conditions (5) lead to 5 scalar equations. This is why the 

proposed extension operator Pi involves 5 parameters to be identified : 
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= rp(s) { ~w1(%s) + fJ13w1eba s) + ~w2(~s) + fJ23w2(¥s)} 
= rp(s) {7J130n,1(%s) +77230n,2(~s)}, 

and where rp denotes some cut-off function whose support forms a neightborhood 
ofO. 

Expressing the compatibility conditions leads to the linear system A 3X 3 = F3, 
where: 

(7) 

with 

and 

1 
IbT3,x 

A3 = 4l>T3,x 

IbT3,y 

4l>T3,y 

1 
2a 
l)T3,x 

0 
2a 
l)T3,y 

0 

0:13 
fJ13 

x3 = f'23 
7]13 
7723 

1 0 
0 C1n3,x 

2c 
/)T3,x C2n3,x 

0 C1n3,y 
2c 
I)T3,y C2n3,y 

1 
T1,x + C1n1,x 

F3 = C2n1,x 
T1,y + C1n1,y 

C2n1,y 

0 
n [C ~+~] 3 ,X 1 n2,x n2,x 

n [C ~-~] 3,x 2 n2 n2 
n [C n1:~ + r1::] 

3·Y 1 n2,x n2,x 

n [C ~-~] 3•Y 2 n2,.r n2,x 

Te,x = fe.x' Te,y = fe.y' ne,x = ne.X' ne,y = ne.y' 1 :::; e:::; 3. 

From symbolic calculus the determinant is equal to 2 abc. This system is solved 
once and for all, thus yielding the parameters of the extension operator. 

This process is repeated for all adjacent edges containing 0, and for all vertices. 
It follows from (6) that compatibility will also hold among all edges onto which the 
original traces are extended. Therefore Pi : V1 , -t V1 is continuous. Moreover, it is 
clear from its definition that Pi: L2 ('yi) x L2 ("Yi) -t L 2('y) x L2 ('y) is also continuous 
see [3] for details. 

4. Numerical tests 

A square plate is decomposed into 9 subdomains and discretized with 15000 
dof. Since we focuss on the coupling strategy, a large number of fixed interface 
modes is used. Notice that only 17 modes of the dual Schur complement and less 
than 3 modes of each kernel ker( PiPt) are sufficient to yield a 1% accuracy on the 
first 20 eigenfrequencies (Fig. 2). 
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(a) (b) 

FIGURE 2. (a): The mesh and a typical subdomain, (b): the ac-
P 

curacy for N 1 = 17 and M = L Mi = 23 
i= l 

(a) (b) 

FIGURE 3. The first mode shape computed with : (a) A global 
F.E.M., and (b) Mode Synthesis for N1 = 17 and M = 23 

The mode shapes are also very accurate and smoothness is achieved, mainly 
because the extension operators are defined at the continuous level (Fig. 3, 4, and 
5) . 

5. Concluding remarks 

A new mode synthesis method is proposed. It can be formulated at the continu-
ous level and at the discrete level. It is based on a generalized Neumann-Neumann 
preconditioner. It yields accurate frequencies and smooth mode shapes with a 
small number of coupling modes even when the interface exhibits cross-points. Its 
numerical analysis remains fairly open. See [3] for details. 
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Overlapping Schwarz Algorithms 
for Solving Helmholtz's Equation 

Xiao-Chuan Cai, Mario A. Casarin, Frank W. Elliott, Jr., 
and Olof B. Widlund 

1. Introduction 

In this paper, we give a progress report on the development of a new fam-
ily of domain decomposition methods for the solution of Helmholtz's equation. 
We present three algorithms based on overlapping Schwarz methods; in our fa-
vorite method we proceed to the continuous finite element approximation of the 
Helmholtz's equation through a sequence of discontinuous iterates. While this is, 
quite possibly, a new type of overlapping Schwarz methods, we have been inspired 
to develop this idea by the thesis of Despres [4]. 

The basic domain decomposition algorithm considered by Despres is defined as 
follows: The given region n is divided into two nonoverlapping subregions 0 1 and 
n2' and the iteration is advanced by simultaneously solving 

-Lluj+1 - k2uj+l = f X E Oj, 

(1) aun+l;anint- iku~+l 
J J -8u~utf8nout- iku~ut X E r, 

8un+1 j8nint - ikun+1 = g X E an, 
J J 

in the two subregions. Here f and g are data given for the original problem, k is 
a real parameter, and r the interface, i.e. the parts common to anl and an2, the 
boundaries of subregions. We note that Sommerfeld-type boundary conditions are 
used and that the subregions themselves can be the union of a number of disjoint 
regions as in the case when n is cut into strips and the strips colored using two 
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colors. The iterates generally have jumps across the interface; the jump will go to 
zero as the iteration converges. 

In his thesis, Despres proves convergence in a relatively weak sense for a quite 
general decomposition into nonoverlapping subregions and also conducts a detailed 
theoretical and numerical study for a rectangular n cut into two. The convergence 
is slow, but it is shown that under-relaxation can lead to an improvement. Despres 
also briefly considers the use of overlap; it is shown that this leads to a considerable 
improvement in the rate of convergence of the iteration for the two subregion case. 

In the limit of increasing domain diameter, the Sommerfeld boundary condition 
provides the correct far-field condition for propagation of waves in the frequency 
domain, but for a bounded region it does not provide perfect transparency. It can 
be argued that an alternative boundary condition, which more closely approximates 
the correct nonlocal non-reflecting boundary condition, would lead to more rapid 
convergence. These ideas have indeed been tested with some success by Ghanemi 
[5] and others. This essentially amounts to replacing the ik terms in the interface 
condition (1) with ikT, where Tis an appropriate nonlocal operator. See also [9] 
for work more closely related to ours. 

In our own work, we have instead attempted to use three ideas that have proven 
successful in studies of other types of problems: We have focused almost exclusively 
on methods based on overlapping decompositions of the region n. In addition, we are 
exploring the possible benefits of a coarse solver as a part of our preconditioner; we 
note that the use of a coarse space correction is required to establish convergence of 
domain decomposition algorithms for a class of nonsymmetric and indefinite elliptic 
problems previously considered by Cai and Widlund [2, 3]. We also take advantage 
of well-known accelerators of the basic iteration schemes, in particular the GMRES 
algorithm. 

We refer to Smith, Bj0rstad, and Gropp [11] for an introduction to domain 
decomposition methods in general, and these ideas in particular. We note that there 
are a number of variants of the Schwarz algorithms: additive, hybrid, restricted, 
etc. In our work, we are now focusing on the classical, multiplicative algorithm. 

2. Differential and Discrete Model Problems 

We consider a Helmholtz model problem given by 

(2) -tJ.u- k2u = f X E f!, 8uj8n- iku = g X E 80, 

where 0 is a bounded two or three-dimensional region. This equation is uniquely 
solvable, and we note that the boundary condition, said to be of Sommerfeld type, 
is essential in the proof of this fact. 

We use Green's formula, and complex conjugation of the test functions, to 
convert (2) into variational form: Find u E H 1 (0) such that, 

b(u,v) r (\lu·\lv-k2uv)dx-ik r uvds 
ln lan 

{ fvdx + { gvds = F(v) 'Vv E H 1 (0). 
Jn lan 

Finite element problems can now be defined straightforwardly by replacing H 1 (0) 
by a suitable conforming finite element space. So far, we have worked mainly with 
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lower order elements but have made progress towards extending our studies and 
numerical experiments to spectral elements. 

Our interest in the spectral element case has been inspired by the work of Ihlen-
burg and Babuska [7, 8, 6] and the thesis by Melenk [10]. They have considered the 
well-posedness of the original problem and different finite element discretizations 
and proven, for a model problem in one dimension, that the basic estimate 

luiHl :::; CkiFIH-1 

holds. In the finite element case, an assumption of hk < 1 is used. The constant C 
is independent of p, the degree of the finite elements. Ihlenburg has also conducted 
extensive numerical experiments which suggest that this bound also holds for prob-
lems in two or three dimensions. Error bounds of the following form are also given 
for p = 1 and kh small enough: 

ierroriHl :::; C1fJ + C2kfJ2 where(}= best H 1-error. 

With oscillatory solutions typical, we can expect (} to be on the order of kh. In 
that case, the second term, which is due to the phase error, will dominate unless 
k2 h is on the order of 1. Larger values of p appear attractive since Ihlenburg and 
Babuska have also shown that 

lerroriHl :::; fJP(C1 + C2fJ2) + C3k(J2P. 

Here (} = hkj2p, and the phase error is now relatively less important. 

3. Overlapping Schwarz Algorithms 

The basic multiplicative, one-level overlapping Schwarz method can be de-
scribed as follows: Let { nj} be a set of open subregions that covers the given 
region n. Just as in the strip case of Section 1, each subregion nj can have many 
disconnected components; it is often profitable to color the subregions of an origi-
nal overlapping decomposition of n using different colors for any pair of subregions 
that intersect. The original set of subregions can then be partitioned into sets of 
subregions, one for each color, effectively reducing the number of subregions. This 
decreases the number of fractional steps of our Schwarz methods and helps make 
the algorithms parallel. The number of colors is denoted by J. 

In many cases, it is appropriate to view a multiplicative Schwarz method as 
follows: A full iteration step proceeds through J fractional steps, 

un+j/J- un+(j-1)/J = Pj(u- un+(j-1)/J), 

where Pj,j = 1, ... , J, is a projection onto a subspace Vj related toni and u is the 
exact finite element solution. Such a fractional step can be more easily understood 
by rewriting it in the form 

(3) bj(un+j/J- un+(i-1)/J, v) = F(v)- b(un+(j-1)/J, v) 'Vv E Vj. 

The choice of the local sesquilinear form bj ( ·, ·) and the space Vj determines the 
projection Pi. We will examine several choices one of which has discontinuous 
iterates, and for it we will need an alternative to formula (3). Introducing a splitting 
of the Helmholtz form with respect to each nj and its complement flj, 
(4) b(u, v) = bj(u, v) + bj(u, v), 
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which we will further describe below, we can replace (3) by 

(5) bj(un+jfJ,v) = F(v)- bj(un+(j-l)/J,v). 

It is also easy to introduce a coarse space correction and a second level into 
the algorithm. An additional fractional step is then used; we choose to make this 
correction prior to the other, local steps. In our experiments, we have so far only 
used the same low order finite element method on a coarser mesh. The space related 
to this mesh and fractional step is denoted by Vo, and we use formula (3) to define 
the related, special update. We note that all the solvers used in the fractional steps 
are smaller, often much smaller, instances of the original problem. 

One difficulty with faithfully implementing a generalization of Despres' algo-
rithm with overlap is the appearance and disappearance of multiple values, i.e. 
jumps, across different parts of the interface r, which is now defined by 

In our first two algorithms, we avoid jumps and use traditional domain decom-
position techniques, but in the third and most successful algorithm jumps in the 
solution are fully accommodated. 

The three algorithms can now be defined in terms of the sesquilinear forms 
bj ( ·, ·) and the subspaces Vj. 
ALGl An update with zero Dirichlet condition on anj \80 is used in the jth frac-

tional step; this preserves the continuity of the iterates. The test functions 
of Vj then vanish at all mesh points in the closure of Oj. The sesquilinear 
form is defined by 

bj(u, v) = r (\lu. \lv- k2uv)dx- ik r uvds. 
J~ knna~ 

We note that for an interior subregion we cannot guarantee solvability of 
the subproblem except by making the diameters of the components of the 
subregion nj small enough. The same preconditioner can also be obtained 
by a matrix splitting based on the diagonal blocks of variables associated 
with the nodes in nj and on an n anj. 

ALG2 The sesquilinear form is chosen as 

bj(u, v) = r (\lu. \lv- k2uv)dx- ik r uvds, 
Jnj lani 

and the elements of the space Vj are now required to vanish at all the nodes 
in the open set Oj. We require that the solution of equation (5) belong to 
the same space. Continuity of the iterates is maintained by overwriting all 
the old values at all the nodes of the closure of nj. 

ALG3 The same Vj and bj(·, ·)are used as in ALG2, but both the old and the new 
values on anj are saved. This will typically produce a jump across this part 
of the interface. At the same time the jump across the interface interior to 
nj is eliminated. Further details will be given; we note that the new features 
of this algorithm have required a redesign of our data structures, and that 
there are consequences of the jumps that need careful scrutiny in order to 
understand ALG3 correctly. 

Since we use completely standard techniques for the coarse grid correction, we 
describe only the fine grid fractional steps of ALG3 in some detail. We must first 
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realize that the lack of continuity across the interface r forces us to use broken 
norms, i.e. to replace integrals over n and the nj by sums of integrals over atomic 
subregions defined by r. We proceed by finding the common refinement of all split-
tings like (4). Let {Aqlq = 1, ... , Q} be the open atoms generated by {01 }, i.e. the 
collection of the largest open sets satisfying Aq ~ n1 or Aq ~ Oj for all j and q. 
We refine (4) by expressing each term as a sum of Helmholtz forms defined on the 
collection of open atoms contained in that region. Thus, 

L b.q(u, v) 
Aq <;;OJ 

bj(u, v) L Qq(u, v). 
Aq<;;!lj 

These are the splittings needed to solve equation (5) in the presence of jumps and 
to represent the solution in atomic form for further steps. The sesquilinear forms 
corresponding to the individual atoms are defined by 

Qq(u, v) = aA (u, v)- ik(u, v)c - ik(u, v)r-- + ik(u, v)r-+ 
q -q q q 

where, 

::.q aAq nan 
ft u{aAqnan1i Oj;2Aq,j=l, ... ,J} 
r; U{aAqn80jl n1 ;2Aq,j=l, ... ,J}. 

For a valid splitting, we have to assume that the boundaries of any two intersecting 
subdomains, ni and nj' must have the same unit normal where they intersect, 
except on sets of measure zero. 

The principal difficulty in implementing a multiplicative Schwarz cycle based 
on (5) is that it requires that multiple values be kept at the atom interfaces r;; 
and ft because continuity is not enforced. Therefore, we represent the solution 
function u as an element in the direct product of finite element spaces, one for 
each atom. At iteration n + j / J of the algorithm, see (5), the right hand side is 
computed atomic subregion by atomic subregion. It is therefore practical to store 
the nodal values of each atom separately. We also note that the test functions v 
are continuous functions in the closure of nand that the solution un+j/J of (5) is 
continuous in the closure of n1. Once it is found, it is scattered to the individual 
atoms of 0 1. The set of nodal values of the iterate is exactly what is required in 
the computation of the contribution from that atom to the next set of right hand 
sides. 

After a full sweep through all the subregions, the residuals interior to each 
atomic subregion are zero, and across any segment of r, the solution is either con-
tinuous or satisfies the flux condition. Then, by Green's formula, the approximate 
solution un satisfies 

b(un, v) = F(v) + ik lr [un]vds Vv E V. 
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In the limit, the jump goes to zero; this conveniently signals convergence. At this 
point of the iteration, the residuals can be computed from the jump directly, but 
also conventionally through its contributions from the atomic subregions. 

4. Theoretical Results 

Optimal convergence has been established for ALG1 and ALG2, with a coarse 
space VH and GMRES acceleration, using essentially only our older theory; see 
[2, 3] or [11, Chapter 5.4]. Our result is also valid for ALG3 in the case when there 
are no cross points. Our current proofs require H 2 -regularity and that k3 H 2 is 
sufficiently small, i.e. the phase error of the coarse space solution is small enough. 
(We believe that the H 2 -regularity can be weakened at the expense of a more 
severe restriction on k and H.) We note that while these types of conditions are 
meaningful asymptotically, since our results show that the number of iterations 
will be independent of h, only experiments can tell if the restriction imposed on 
H makes our results irrelevant for a choice of mesh points that corresponds to a 
realistic number of mesh points per wave length. We also note that our current 
theory fails to explain the quite satisfactory performance that we have observed in 
many of our experiments even without a coarse correction. 

The bound for ALG 1 is independent of k and h while that of ALG 2 deteriorates 
linearly with the number of points per wave length. 

In view of our results and the formulas for the phase error, we have made series 
of experiments with a fixed k3 H 2 as well as k3 h2 . 

5. Numerical Results 

The software used was developed with the PETSc library [1] supplied by Ar-
gonne National laboratories, as well as Matlab (TM), a product of Mathworks, 
Inc. We would like to acknowledge the generous help of the PETSc implementors 
in developing and debugging our code. The platforms for our computations are 
a Silicon Graphics Reality Monster (TM) parallel computer at Argonne National 
Laboratories and local workstations. 

We now describe the geometry and discretization used in our numerical ex-
periments. In all cases n is a unit square discretized with Q1 elements, and the 
subregions nj are built from a decomposition of n into nonoverlapping square sub-
regions with a layer of 8 elements added in all directions. The relevant parameters 
for describing an experiment are: 

• n the number of grid points per side of the square fine mesh and h = 1/ ( n -1) 
with n a unit square; nc and he the analogs for the coarse mesh; 

• k the spatial frequency; 
• nsub the number of subregions; 
• 8 the number of elements across half of the overlap; 
• ppw the number of points per wave length on the fine grid; ppw 

ppwc the analog for the coarse grid. 
The number of points per wavelength is a non-dimensional measure of resolution. 

We first compare the performance of the three algorithms on a 2 x 2 set of 
square subregions without using a coarse grid. Here and below, we say that an 
algorithm has converged at a given iteration if the £2 norm of the preconditioned 
residual is less than 10-6 of that of its original value. In some cases we also discuss 
the relative error at termination of the iteration measured by the £2 norm of the 
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difference between the final iterate and the exact solution of the discrete system 
divided by the £2 norm of the same exact solution. An iteration number given in 
parentheses indicates divergence and the iteration number at which the iteration 
was stopped. 

For ALG1 GMRES acceleration had to be used at all times to obtain conver-
gence; moreover, given n = 97 or 129, 8 = 1, 2, 3, 4, or 5, and ppw = 10 or 20, 
ALG 1 never converges in fewer than 40 iterations. Moreover, the relative error in 
the solution always exceeds 10-4 , possibly reflecting ill-conditioning. 

For ALG2, we obtain convergence provided we use either overlap or GMRES 
acceleration. Given the resolution n = 97 or 129 and ppw = 10, ALG2 diverges 
when 8 = 0 unless GMRES acceleration is applied. Even with acceleration but 
without overlap, ALG2 appears to be worse than ALGl. With the smallest over-
lap, 8 = 1, ALG2 converges without acceleration. The convergence in about 42 
iterations, is similar to that of ALG1, but the error is one tenth of that encoun-
tered in ALG 1, apparently reflecting better conditioning. With acceleration and 
8 = 1, ALG2 converges in 13 iterations for both resolutions. 

ALG3 does not converge at all without overlap, but with overlap it outper-
forms both ALG1 and ALG2. Given ppw = 10 the resolution n = 97 or 129 and 
8 = 1, 2, 3 or 4, ALG3 consistently converges at least twice as fast as ALG2. For 
these parameter values ALG3 always converges in fewer than 10 iterations, and 
the relative error is always less than 10-6 • Given ppw = 20, whether n = 97 or 
n = 129, the results are the same provided that the ratio of 8 to ppw is maintained; 
this indicates that ALG3 has converged with respect to resolution. However, when 
a coarse grid is used, the ratio of 8 to ppw ceases to be an accurate determinant of 
performance. 

In the remaining numerical results we investigate the behavior of ALG3 in the 
case of many subregions. Generally speaking, in the many subregion case ALG3 
needs either GMRES acceleration or a sufficiently fine coarse grid to converge. Table 
1 shows the results of several runs with ALG3. For the two sub-tables, k = 20.11 
and ppw = 20.00 (above) and k = 31.92 and ppw=25.20 (below), and the mesh 
size is 65 x 65 (above) and 129 x 129 (below). The two choices of parameters are 
related by a constant value of k3 h2 . In all cases there are 8 x 8 subregions, and the 
coarse mesh size varies as indicated in the left column. Within each cell to the left 
of the double line are presented the parameters nc (above) and ppwc (below) for 
the row; within each cell to the right of the double line are presented data for the 
unaccelerated algorithm (upper row), the accelerated algorithm (lower row), the 
iteration count (left column), the normalized residual (right column). 

In all the above cases without a coarse grid, GMRES forces convergence in 
18 or fewer iterations. By contrast, the algorithm sometimes fails to converge 
when neither a coarse grid nor GMRES is used. Indeed, other experimental results 
suggest that with a larger number of subregions (> 1, 000) convergence without a 
coarse grid generally requires acceleration. 

In particular for a run not shown in our tables with k=40.21, ppw=40.00, a 
257 x 257 fine grid, no coarse grid, 8 = 1, 2, 3, and a 32 x 32 array of overlapping 
subregions, the accelerated algorithm converges in 49 to 52 iterations, while the un-
accelerated algorithm diverges in two of three cases. For 8 = 2, 3 a crude coarse grid 
correction with PPWc=2.66 grid lowers the iteration count to 28 for the accelerated 
algorithm, but the unaccelerated algorithm still diverges for 8 = 1, 2, 3. 
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TABLE 1. Tables for ALG3 

8 3 2 1 
nc=O; (101) 3.87e-01 31 9.90e-07 20 6.91e-07 
PPWc= 0.00 15 8.97e-07 16 6.84e-07 17 5.75e-07 
nc=9; 54 9.47e-07 (101) 1.15e+01 (34) 5.85e+01 
PPWc= 2.81 14 5.99e-07 14 6.50e-07 15 7.05e-07 
nc=17; 45 9.58e-07 20 9.28e-07 19 9.53e-07 
PPWc= 5.31 13 9.85e-07 12 7.44e-07 11 4.44e-07 
nc=33; 42 9.44e-07 21 7.33e-07 17 7.04e-07 
PPWc=10.31 13 4.17e-07 12 9.41e-07 11 4.28e-07 

8 3 2 1 
nc=O; 18 9.29e-07 21 7.32e-07 24 7.15e-07 
PPWc= 0.00 15 6.19e-07 16 6.38e-07 18 7.98e-07 
nc=17; 19 8.09e-07 (101) 5.49e-03 (30) 2.59e+01 
PPWc= 3.35 13 6.60e-07 14 9.70e-07 17 5.72e-07 
nc=33; 36 9.12e-07 17 7.98e-07 22 8.42e-07 
PPWc= 6.50 13 5.41e-07 13 4.86e-07 13 7.81e-07 
nc=65; 18 9.09e-07 17 6.87e-07 23 8.72e-07 
PPWc=12.79 12 6.20e-07 12 6.58e-07 13 9.02e-07 

Thus far, our highest resolution computations use a 385 x 385 fine grid with a 
24 x 24 array of subregions, k = 42.54, and ppw = 53.33. Even without a coarse 
grid, the unaccelerated algorithm converges in 46 to 59 iterations; with GMRES 
acceleration the algorithm converges in 42 to 44 iterations. With ppwc=4.58 the 
accelerated algorithm requires 16 to 18 iterations, but the unaccelerated algorithm 
diverges. 

In general, when GMRES acceleration is used we always see convergence, even 
without a coarse grid. When a coarse grid is used together with GMRES accelera-
tion, the coarse correction is helpful provided ppwc ;:::: 3. The success of the GMRES 
accelerated version of ALG3 evidently comes from the restriction of the spectrum 
to the right half-plane, which we always observe when using an Arnoldi method 
to estimate the spectrum. This observation would indicate that ALG3 could be 
accelerated using less memory intensive techniques such as QMR or generalized 
conjugate residual acceleration or, even, using Richardson's method with a suitable 
parameter. Certainly, these are some of the possibilities we will investigate. 

References 
1. Satish Balay, William Gropp, Lois Curfman Mcinnes, and Barry F. Smith, PETSc, the 

portable, extensible toolkit for scientific computation, Argonne National Laboratory, 2.0.17 
April 5, 1997 ed. 

2. Xiao-Chuan Cai and Olof Widlund, Domain decomposition algorithms for indefinite elliptic 
problems, SIAM J. Sci. Statist. Comput. 13 (1992), no. 1, 243-258. 

3. __ , Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems, 
SIAM J. Numer. Anal. 30 (1993), no. 4, 936-952. 

4. Bruno Despres, Methodes de decomposition de domaine pour les problemes de propagation 
d'ondes en regime harmonique, Ph.D. thesis, Paris IX Dauphine, October 1991. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



OVERLAPPING SCHWARZ ALGORITHMS FOR HELHOLTZ'S EQUATION 399 

5. Souad Ghanemi, Methode de decomposition de domaine avec conditions de tmnsmissions non 
locales pour des problemes de propagation d'ondes, Ph.D. thesis, Paris IX Dauphine, January 
1996. 

6. Frank Ihlenburg and Ivo Babuska, Dispersion analysis and error estimation of Galerkin finite 
element methods for the Helmholtz equation, Inter. J. Numer. Meth. Eng 38 (1995), 3745-
3774. 

7. ---, Finite element solution of the Helmholtz equation with high wave number, Part I: 
The h-version of the FEM, Computers Math. Applic. 30 (1995), no. 9, 9-37. 

8. ___ , Finite element solution of the Helmholtz equation with high wave number, Part II: 
The h-p-version of the FEM, SIAM J. Numer. Anal. 34 (1997), no. 1, 315-358. 

9. L. C. Mcinnes, R. F. Susan-Resiga, D. E. Keyes, and H. M. Atassi, Additive Schwarz methods 
with nonrefiecting boundary conditions for the pamllel computation of Helmholtz problems, 
Tenth International Symposium on Domain Decomposition Methods for Partial Differential 
Equations (Xiao-Chuan Cai, Charbel Farhat, and Jan Mandel, eds.), AMS, 1997, Submitted. 

10. Jens M. Melenk, On genemlized fininte element methods, Ph.D. thesis, University of Mary-
land, 1995. 

11. Barry F. Smith, Petter E. Bjl'lrstad, and William D. Gropp, Domain decomposition: Pamllel 
multilevel methods for elliptic partial differential equations, Cambridge University Press, 1996. 

XIAO-CHUAN CAl, UNIVERSITY OF 
URL: HTTP:/ jwww.cs.coLORADO.EDU/"-'CAI 

E-mail address: cai!Dcs. colorado. edu 

COLORADO, BOULDER, co 80309. 

MARIO A. CASARIN, IMECC-UNICAMP, CAIXA POSTAL 6065, 13081 - 970 - CAMPINAS -
SP, BRAZIL. URL: HTTP:/ /WWW.IME.UNICAMP.BR/"-'CASARIN 

E-mail address: casarin!Dime. unicamp. br 

FRANK W. ELLIOTT, JR, COURANT INSTITUTE OF MATHEMATICAL SCIENCES, 251 MERCER 
STREET, NEW YORK, N.Y. 10012 

E-mail address: elliott!Dcims .nyu. edu 

0LOF B. WIDLUND, COURANT INSTITUTE OF MATHEMATICAL SCIENCES, 251 MERCER STREET, 
NEW YORK, N.Y. 10012. URL: HTTP:/ /CS.NYU.EDU/CS/FACULTY/WIDLUND/INDEX.HTML 

E-mail address: widlund!Dcs.nyu.edu 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Contemporary Mathematics 
Volume 218, 1998 
B 0-8218-0988-1-03035-1 

Symmetrized Method with Optimized Second-Order 
Conditions for the Helmholtz Equation 

Philippe Chevalier and Frederic Nataf 

1. Introduction 

A schwarz type domain decomposition method for the Helmholtz equation is 
considered. The interface conditions involve second order tangential derivatives 
which are optimized (002, Optimized Order 2) for a fast convergence. The sub-
structured form of the algorithm is symmetrized so that the symmetric-QMR al-
gorithm can be used as an accelerator of the convergence. Numerical results are 
shown. 

(1) 
(2) 

We consider the following type of problem: Find u such that 

.C(u) =finn 
C(u) = g on an 

where .C and Care partial differential operators. We consider Schwarz-type methods 
for the solving of this problem. The original Schwarz algorithm is based on a 
decomposition of the domain n into overlapping subdomains and the solving of 
Dirichlet boundary value problems in the subdomains. It has been proposed in 
[15] to use of more general boundary conditions for the subproblems in order to 
use a nonoverlapping decomposition of the domain. The convergence speed is also 
increased dramatically. 

More precisely, the computational domain n is decomposed into N nonover-
lapping subdomains: 

Let (Bij h5oi,j-5,N be transmission conditions on the interfaces between the subdo-
mains (e.g. Robin BC). What we shall call here a Schwarz type method for the 
problem (1) is its reformulation: Find (uih5oi-5,N such that 

(3) 
(4) 
(5) 

.C(u;) =finn; 
C(ui) = g on ani nan 

Bij(ui) = Bij(uj) on ani n anj 
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The above coupled system may be solved iteratively by a Jacobi algorithm: 

(6) 
(7) 
(8) 

.C(u~+l) =fin ni 
C(u~+l) = g on ani nan 

Bij(u~+ 1 ) = Bij(u'J) on ani n anj 

It is also possible, and indeed preferable, to write the resulting linear system in the 
interface unknowns H = (Bij(ui)h~i,j~N (see [18]) 

(9) AH=G 

( G is some computable right hand side) and to solve it by conjugate gradient type 
methods. 

Let us focus first on the interface conditions Bij. The convergence speed of 
Schwarz-type domain decomposition methods is very sensitive to the choice of these 
transmission conditions. The use of exact artificial (also called absorbing boundary 
conditions) boundary conditions as interface conditions leads to an optimal number 
of iterations, see [12, 18, 11]. Indeed, for a domain decomposed into N strips, the 
number of iterations is N, see [18]. Nevertheless, this approach has some drawbacks: 

1. the explicit form of these boundary conditions is known only for constant 
coefficient operators and simple geometries. 

2. These boundary conditions are pseudodifferential. The cost per iteration 
is high since the corresponding discretization matrix is not sparse for the 
unknowns on the boundaries of the subdomains. 

For this reason, it is usually preferred to use partial differential approximations 
to the exact absorbing boundary conditions. This approximation problem is clas-
sical in the field of computation on unbounded domains since the seminal paper 
of Engquist and Majda [6]. The approximations correspond to "low frequency" 
approximations of the exact absorbing boundary conditions. In domain decom-
position methods, many authors have used them for wave propagation problems 
[3, 5, 14, 4, 2, 16, 1, 19] and in fluid dynamics [17, 21, 10, 9]. Instead of 
using "low frequency" approximations to the exact absorbing boundary conditions, 
it has been proposed to design approximations which minimize the convergence 
rate of the algorithm, see [22]. These approximations are quite different from the 
"low frequency" approximations and increase dramatically the convergence speed 
of the method, see [13] for a convection-diffusion equation. But, in the case of the 
Helmholtz equation, the same optimization procedure cannot be done, see Sec. 4 
below. This is related to the existence of both propagative and evanescent modes 
for the solution of the Helmholtz equation. Roughly speaking, we will choose the 
interface conditions in Sec. 4 so that the convergence rate is small for both modes. 
In a different manner, in [20] overlapping decompositions are considered. In the 
overlapping regions, the partial differential equation is modified smoothly. 

Another important factor is the choice of the linear solver ( CG, GMRES, BICG, 
QMR, etc ... ) used to solve the substructured linear system (9). For such methods, 
the positivity and symmetry of the linear system are important issues [7]. Since 
the Helmholtz operator is not positive, it is unlikely that A is positive (and indeed, 
it is not). But, the Helmholtz operator is symmetric while A is not. By a change 
of unknown on H, we shall rewrite (9) such as to obtain a symmetric formulation. 
It enables us to use the symmetric-QMR algorithm described in [8]. 
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2. Substructuring 

In this section, we write the explicit form of the substructured linear problem 
(9) for the problem below. This section is classical. We want to solve the Helmholtz 
equation: Find u such that 

(~ + w2)(u) =finn =]0, Lx[x]O, Ly[ 

(10) a . 
(an+ zw)(u) = g on {O}x]O, Ly[U{Lx}x]O, Ly[ 

u = 0 on ]O,Lx[x{O}U]O,Lx[x{Ly} 

where i 2 = -1, gn is the outward normal derivative and w is positive. The domain 
is decomposed into N nonoverlapping vertical strips: 

with Lo,I = 0 < L1,2 < ... < LN,N+I = Lx. The transmission condition on the 
interfaces is of the form Bk = J- +iw -TJ ~ 2 

2 where .$- is the tangential derivative 
unk UTk UTk 

on the boundary of ank and TJ E <C will be chosen in the section 4. 
Problem (10) is equivalent to: Find (ukh9~N such that 

(~ + w2)(uk) =fin nk 
Bk(uk) = Bk(uk-1) on ank n ank-1 

(11) Bk(uk) = Bk(uk+l) on ank n ank+1 

(;n + iw)(u) = g on ( {O}x]O, Ly[U{Lx}x]O, Ly[) n ank 

u = 0 on (]O,Lx[x{O}U]O,Lx[x{Ly}) nank 

The continuity of the solution and its derivative on nk n ank+l are ensured by the 
interface conditions Bk and Bk+l· Let ~k,k+l = ank n ank+1• 1 ~ k ~ N. Let us 
define now the vector of unknowns 

H = (B1 (ur)IE 1 , 2 , • • • , Bk(uk)IEk-t,k, Bk(uk)IEk,k+t, · · · , BN(uN )IEN-t,N) 

Let II be the interchange operator on the interfaces, on each interface we have: 

(12) II(O, ... ,O,h~- 1 ,h~+ 1 ,0, ... ,0) = (0, ... ,o,hL 1 ,h~+I•o, ... ,o) 

Let T' be the linear operator defined by: 

(13) T'(h2 hk-1 hk+l hN-1 f ) _ 
1• · .. ' k ' k ' .. ·' N ' ,g -

(B1 ( vr)IE 1 , 2 , ••• , Bk( vk)IEk-l,k, Bk( vk)IEk.k+I' · · · , BN ( VN) IEN-l,N) 

where Bk = - J- + iw - TJ ~ 2 2 and Vk satisfies: 
unk uTk 

(14) (~ + w2 )(vk) =fin nk 
(15) Bk(vk) = h~- 1 on ank n ank-1 
(16) Bk(vk) = h~+ 1 on ank n ankH 

(17) (;n + iw)(vk) = g on ( {O}x]O, Ly[U{Lx}x]O, Ly[) n ank 

Vk = 0 on (]O,Lx[x{O}u]O,Lx[x{Ly}) nank 

It can be shown that 
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LEMMA 1. Finding (ukh<k<N solution to {11} is equivalent to finding H = 
(hi, ... ,h~- 1 ,h~+I, ... ,h~- 1) ;uch that 

(18) (I d - ITT) (H) = ITT' ( 0 , 0 , . . . , 0 , J, g) = G 

where 

(19) 

(20) 

T=T'(., ., ... , .,0,0). 

3. Symmetrization of the substructured system 

The linear system (18) may be solved by a relaxed Jacobi algorithm 

nn+1 = OIIT(Hn) + (1- O)Hn + G, {) E (0, 2) 

It is more efficient to use linear solvers based on Krylov subspaces such as GMRES, 
BICGSTAB or QMR. As mentioned in the introduction, the convergence rate of 
such methods is very sensitive to the positivity and symmetry of the linear sys-
tem. Due to the non-positivity of the Helmholtz operator, it is unlikely that the 
substructured problem (18) be positive. Nevertheless, the Helmholtz equation is 
symmetric. It seems thus possible to obtain a symmetric reformulation of (18). For 
this, we need 

DEFINITION 2. Let 
N-1 

w = II (L2(]0, Ly[) X L2 (]0, Ly[)) 
k=2 

be the space of complex valued traces on the interfaces. An element H E W is 
denoted 

H _ (h2 h1 hk-1 hk+l hN hN-1) 
- 1' 2, ... ' k ' k , ... ' N-1' N 

The space W is endowed with a bilinear operator from W x W to <C 
N-1 L 

va, nEw, (a, H)b = L: r y (gz- 1hz- 1 + gz+ 1 h~+ 1 ) 
k=2 Jo 

Let A be a linear operator from W to W. The transpose of A, denoted AT is the 
linear operator from W to W such that 

1:/G, HEW, (AG,H)b = (G,ATH)b 

An operator A is symmetric iff AT = A. 

The notion of symmetry for complex valued linear operator corresponds to the 
notion of complex symmetric linear systems studied in [8]. It is different from the 
notion of Hermitian operators since we have no conjugation. We have 

LEMMA 3. Let II be defined in {12}. Then, 

ITT = II · II2 = I d 
' 

and the operator II admits symmetric square roots. Let II112 denote one of these. 
LetT be defined in {19}. Then, 

(21) 
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PROOF. As for II, it is enough to consider one interface. The operators II and 
II112 may be represented by the matrices 

rr = ( o 1 ) rr1;2 = ( 1 + ~ 
1 0 ' 1-.!. 2 

1- ~ ) 
1+~ 

As forT the result comes from integration by parts of the Helmholtz operator. D 

This enables us to propose the following symmetrization: 

LEMMA 4. Problem (18} is equivalent to: Find HEW such that 

(22) (Id- rrl/2 Trrl/2)(rr-1/2 H)= rr-1/2c 

Moreover 

(Id-rrl/2Trrl/2)r = (Id-rrl/2Trrl/2) 

and the operators (Id-IT 112 TII112 ) and (Id-ITT) have the same set of eigenvalues. 

Other possibilities for symmetrizing (18) are 

(II- T)(H) =II( G) or (T- TITT)(H) = T(G) 

They don't have the same eigenvalues as the original formulation and thus lead to 
slower convergence, see Figure 2. 

4. Optimization of the interface conditions 

The optimization is performed on the parameter T). The more (I d - ITT) is 
close to the identity, the better the convergence of any iterative method will be. It 
seems then natural to minimize the norm of ITT. Since II is an isometry and does 
not depend on T), this is equivalent to minimize the norm ofT. But we have 

PROPOSITION 5. Let the plane IR? be decomposed into two half-spaces 01 = 
]- oo, O[xiR and 02 =]0, oo[xiR.Forall TJ E <C, 

IITII = 1 

Indeed, a simple Fourier analysis shows that the operator T(., ., 0, 0) may be 
represented as an operator valued matrix: 

T = ( ~ ~) 
where R is a pseudo-differential operator whose symbol is 

(23) 
ivw2 - k2 - iw- T]k2 

p(k, TJ) = ivw2 - k2 + iw + T)k2 

where k is the dual variable of y for the Fourier transform. For k = w, p(w, TJ) = 1 
for all T) E <C. 

It is thus impossible to optimize the spectral radius ofT(.,., 0, 0) as is done in 
[13]. 

Nevertheless, for any value of TJ, lp(O, 17)1 = 0. This indicates that the conver-
gence rate should be good for low frequencies as it is already the case if T) = 0, see 
[3]. It seems thus interesting to use 17 for having a good convergence rate also for 
high frequencies. From (23), it is then enough to consider 1J real. The choice ofT) is 
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TABLE 1. Influence of the number of subdomains 

Number of subdomains 2 3 4 6 10 15 20 
Relaxed Jacobi + Robin BC = 0.5 50 62 75 130 216 406 832 
QMR + Optimized BC 10 18 24 34 59 92 126 

TABLE 2. Nbr of iterations vs. nbr of points per wavelength 

10 pts I lo 20 pts I lo 40 pts llo 
Relaxed Jacobi + Robin BC=0.5 130 195 299 
QMR +Optimized BC 34 38 41 

TABLE 3. Influence of w 

w=6 w = 20 w=60 
Relaxed Jacobi+ Robin BC 130 155 664 
QMR + Optimized BC 34 50 60 

done by minimizing the integral of lp(k, ry)l over the evanescent modes "admissible" 
on the computational grid: 

(24) min 1kmax lp(k, "7)1 dk 
1)EIR w 

where kmax c:::: 1lh and h is the typical mesh size. This is all the more important 
that if '1] = 0, lp(k, O)l = 1 as soon as lkl > w. 

5. Numerical results 

The Helmholtz equation was discretized by a 5-point finite difference scheme. 
Except for Table 3, the number of points per wavelength was between 20 and 25. 
The problems in the subdomains were solved exactly by LU factorization. As for 
the substructured problem, we compared different iterative methods: relaxed Jacobi 
algorithm and the symmetric-QMR method. The symmetric-QMR algorithm was 
chosen since it is adapted to complex symmetric linear systems. We also tested 
various interface conditions: 

13 = an + iw (Robin BC) 

13 =an+ iw + 2 ~ a; (Order 2 BC) 

13 = an + iw - rya; (optimized real '1], cf ( 24)) 

13 =an+ iw + ( 2 ~- ry)a; (Order 2 +optimized real ry, "7 as above) 

The stopping criterion was on the maximum of the error between the converged 
numeric solution and the approximation generated by the algorithm, llelloo < w-5 . 

Figure 1 (w = 6 {:::::::} three wavelengths per subdomain), Table 1, Table 2 and 
Table 3 enable to compare the proposed method with a relaxed Jacobi algorithm. 

In Figure 2, only the formulation of the substructured problem is varied while 
the interface conditions are the same. Table 4 shows the importance of the interface 
conditions. We have used Jacobi's algorithm with different interface conditions. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



406 PHILIPPE CHEVALIER AND FREDERIC NATAF 

Number of iterations 

FIGURE 1. Comparison of the proposed method with a Jacobi-
Robin algorithm 

TABLE 4. Jacobi's algorithm- Influence of the interface conditions 

Robin Order 2 TJ real opt TJ real opt 
+order 2 

Nbr of iterations 195 > 1000 140 51 
Best relaxation's coefficient 0.5 any 0.6 0.9 

Jo' 

Jo' 

10·1 

~ .. ~ 
! .... j .. ~ 

to·•• 

to·•l • 
Number or iteratiOIW 

FIGURE 2. Influence of the substructured formulation 

6. Perspectives 

We have presented a domain decomposition method for the Helmholtz equation 
and a decomposition of the domain into strips. The present method has already 
been extended to the Maxwell operator. We shall consider an arbitrary decompo-
sition of the domain in a forthcoming paper. 
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Non-overlapping Schwarz Method for Systems 
of First Order Equations 

Sebastien Clerc 

1. Introduction 

Implicit time-stepping is often necessary for the simulation of compressible 
fluid dynamics equations. For slow transient or steady-state computations, the 
CFL stability condition of explicit schemes is indeed too stringent. However, one 
must solve at each implicit time step a large linear system, which is generally 
unsymmetric and ill-conditioned. In this context, domain decomposition can be 
used to build efficient preconditioners suited for parallel computers. This goal was 
achieved by [7, 9], among others. 

Still, important theoretical questions remain open to our knowledge, such as: 
estimate of the condition number, optimality of the preconditioner. This aspect 
contrasts with the existing results in structural mechanics, where the subspace 
correction framework allows a complete analysis (see for instance [15] and the 
references therein). This work is a preliminar step towards a better understanding 
of domain decomposition for systems of equations in the context of fluid dynamics. 

To this purpose, we study the steady linearized equations, following the ideas 
of [6] and [11] for instance. In section 2, we present the derivation of these equa-
tions from the time-dependent non-linear hyperbolic systems of conservation laws. 
Symmetrization is also addressed, as well as the nature of the resulting equations. 

A classical well-posedness result is recalled in section 3 for the boundary value 
problem. An energy estimate allows one to prove the convergence of the Schwarz 
iterative method, using the same arguments as [4] for the Helmholtz problem. 
This result generalizes those of [6] for scalar transport equations, and [12] for one-
dimensional systems. 

. In section 4, we emphasize the difference between the purely hyperbolic case 
and the elliptic case, as far as the convergence of the Schwarz method is concerned. 
We also mention the influence of the transmission condition on the convergence for 
a model problem. 

Section 5 deals with the space-discretization of the problem with a finite volume 
method and a first order upwind scheme. We propose two different implementa-
tions: a direct one which can be interpreted as a block-Jacobi preconditioner, and 
a Schur complement formulation. The latter is all the more useful when used in 
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combination with the GMRES [14] algorithm. Numerical results are given for the 
Cauchy-Riemann equations and Saint-Venant's equations of shallow water flow. 

Finally, conclusions are drawn in section 6. 

2. Derivation of the equations 

The equations of compressible fluid dynamics are generally formulated as a 
non-linear system of conservation laws: 

d 

(1) 8tU + L 8aF0 (u) = 0. 
a=l 

Here the solution u is a vector of JRP and the fluxes pa are non-linear vector-valued 
functions of u. The equations are posed in JRd and the index a refers to the direction 
in the physical space. 

Suppose that the solution un(x) at time tn is known. We seek a solution un+l 
at time tn+l = tn + 15t. If the increment 15u = un+l - un is small enough, we can 
write the following linearized implicit equation: 

DuFa being the Jacobian matrix of the flux pa. 
The next step consists in writing the non-conservative form, which is valid if 

un is smooth: 

Finally, we recall that these equations can be symmetrized if the system of 
conservation laws (1) admits a mathematical entropy S (see for instance [8]). We 
multiply system (2) by the Hessian matrix DuuS of the entropy. The resulting 
system takes the following form: 

d 

(3) A0u + L A0 8au = J, 
a=l 

with: 

(4) 

A0 = DuuS(un) · DuF0 (un). 

The matrices Aa are symmetric, but A0 may be any matrix for the moment. 
In the sequel, we will consider boundary value problems for general symmetric 

systems of first order equations of type (3). 
When going from the time-dependent system (1) to the steady system (3), 

the equations may not remain hyperbolic. The scalar case studied by [6, 17] and 
the one-dimensional case studied by [12] are two examples of hyperbolic steady 
equations. 

The linearized steady Euler equations in 2-D are also hyperbolic in the super-
sonic regime, but become partially elliptic in the subsonic regime (see for instance 
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[16]). This aspect dramatically changes the nature of the boundary value prob-
lem. The simplest model exhibiting such behaviour is the time-dependent Cauchy-
Riemann system: 

(5) 

which becomes purely elliptic after an implicit time-discretization. This system 
therefore retains some of the difficulties involved in the computation of subsonic 
flows. 

3. A well-posed boundary value problem 

Let n be a domain of JR.d with a smooth boundary an. If n = ( n 1, ... , nd) 
is the outward normal vector at X E an, we denote by An = 2:: A 0 na the matrix 
of the flux in the direction n. This matrix is real and symmetric, and therefore 
admits a complete set of real eigenvectors. We define A~ = p-l A+ P with A+ = 
diag(max{Ai,O}). Similarly, A;;:= p-lA- P with A-= diag(min{.Xi,O}), so that 
An= A~ +A;;:. 

Next, we introduce a minimal rank positive-negative decomposition of the ma-
trix An· Let A~ 08 (respectively A~eg) be a symmetric positive (resp. negative) 
matrix such that An = A~os + A~eg and rank(A~ 08 ) = rank(A~), rank(A~eg) = 
rank(A;;:). The simplest choice is of course A~os =A~ and A~eg =A;;:: it corre-
sponds to a decomposition with local characteristic variables, which is also the first 
order absorbing boundary condition (cf. [5]). In the scalar case (p = 1), A~eg =A;;: 
is the only possible choice. 

With these notations, we can define a dissipative boundary condition of the 
form: 

(6) on an. 

In the scalar case, this condition amounts to prescribing the boundary data only 
on the inflow boundary. 

With some regularity and positivity assumptions, one can prove the following 
theorem: 

THEOREM 1. Let f E L 2(n)P and g such that fan A~egg · g < oo be given. 
There exists a unique solution u E L 2 (n)v, with I:Aaaau E L 2 (n)v, such that 

(7) 

The solution satisfies the following estimate: 

(8) Co IIUklli2 + { A~osuk · Uk::; ~ llflli2- { A~e 9 g ·g. 
lan vo lan 

Proof: We refer to [10] and [1] for the proof in the case where g = 0. See also 
[6] for the scalar case. The general case (g i=- 0) is addressed in [3]. 

4. The Schwarz algorithm 

For simplicity, we consider a non-overlapping decomposition of the domain n: 
ul<i<N ni = n. We will denote by ri,j = ani n anj the interface between two 
subdomains, when it exists. If n is the normal vector to ri,j, oriented from ni to 
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n 1, we set An= Ai,j· Hence, Ai,j = -Aj,i· We can decompose the global problem 
in n in a set of local problems: 

{ A 0ui + 2: Aaaaui = f in ni 
A~egui = A~e 9 g on an U ani, 

which we supplement with the transmission conditions: 

An~gUi = Anegu)· AnegUi = An~gu)· on ri,J"· 
't,J 't,J J,'l. J,'l. 

We now describe the classical Schwarz algorithm for the solution of these trans-
mission conditions. We make use a vector Uk = ( u1, ... , u~) of local solutions. Let 
U0 be given. If Uk is known, Uk+ 1 is defined by: 

(9) 
f inni 

= A~egg on ann ani, 
_ Aneg k r - · . U· on iJ·· •,J J , 

Inequality (8) shows that the trace of the solution uj satisfies 

'L:A~ 08 Uj · Uj < 00. 
anj 

The trace of uj on ri,j can therefore be used as a boundary condition for u~+l, 
which ensures that the algorithm is well defined. 

The Schwarz method converges if each u~ tends to the restriction of u to ni as 
k tends to infinity. More precisely, we can prove the following theorem: 

THEOREM 2. The algorithm {9) converges in the following sense: 

lle~ll£2 ~ 0, II 'L:Aaaae~ll£2 ~ 0, 

where e~ = u - u~ is the error in subdomain ni. 

Proof: The proof is similar to [4] (see also [11]). See [3] for more details. 

5. Examples 

5.1. Example 1: the scalar case. In the case of decomposition in successive 
slabs following the flow (see Fig. 1), it is easily seen that the Schwarz method 
converges in a finite number of steps. The Schwarz method is thus optimal in this 
case but the parallelization is useless. Indeed, the residual does not decrease until 
the last iteration: the sequential multiplicative algorithm would be as efficient in 
this case. This peculiar behaviour is due to the hyperbolic nature of the equations 
and would also occur for the linearized Euler equations in one dimension and for 
2-D supersonic flows. 

5.2. Example 2: the Cauchy-Riemann equations. Here the convergence 
is not optimal but the error is reduced at each iteration. In the case where the 
domain ~ 2 is decomposed in two half-planes, the convergence ofthe Schwarz method 
can be investigated with a Fourier transform in the direction of the interface, see 
[3]. This computation shows that the Schwarz method behaves similarly for this 
first order elliptic system as for a usual scalar second order elliptic equation. It is 
possible to define an analogue of the Steklov-Poincare operator in this case, which 
is naturally non-local. 
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FIGURE 1. Decomposition of the domain for a transport equation. 
In this case, convergence is reached in exactly N steps, where N is 
the number of subdomains. 

As mentionned in section 3, any decomposition A= A neg+ Apos with minimal 
rank leads to a dissipative boundary condition Anegu = Anegg. For the Cauchy-
Riemann equations (5), there is a one-parameter family of such decompositions. In 
the case where n = (1, 0) for instance, we may take: 

A neg = ( - cosh2 <p -sinh <p cosh <p ) 
- sinh <p cosh <p - sinh 2 r.p ' 

for any real number <p. The computation of the spectrum of the Schwarz method in 
this case shows that the convergence is optimal when <p = 0, i.e. when A neg = A-. 
This case corresponds to the first order absorbing boundary condition [5]. The 
optimality of this kind of transmission conditions has been first recognized by [11] 
in the context of convection-diffusion equations. 

6. Numerical results with a first order implicit finite volume scheme 

6.1. Finite volume discretization. We consider a triangulation of 0. For 
simplicity, we will assume that 0 C IR.2 , but the extension to IR.3 is straightforward. 
If K is a cell of the triangulation, the set of its edges e will be denoted by 8K. IKI 
is the total area of the cell and lei the length of edge e. 

We seek a piecewise constant approximation to (3), UK being the cell-average 
of u in cell K. The finite volume scheme reads: 

(10) IKIAouK + L lei iP~ = IKifK· 
eEBK 

In problems arising from a non-linear system of conservation laws, we use the 
implicit version of Roe's scheme [13], written in the usual non-conservative form: 

(11) iP~(uK,UJ)=A~[UJ-UK], iP:(uK,UJ)=A~[UJ-UK], 

if e is the common edge between K and J, with a normal vector n oriented from K 
to J. The averaged Jacobian matrix An is computed from the preceding time-step 
and must satisfy Roe's condition: 

An(UK, UJ )[uJ- UK]= [Fn(UJ)- Fn(UK )]. 
When this condition holds, the implicit scheme (11) is conservative at steady-state. 

Note that in the linear case with constant coefficients, (11) is equivalent to the 
classical first order upwind scheme: 

iP~ (uK, UJ) = -iP: = A~uJ + A~uK. 
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6.2. Boundary conditions. The boundary conditions defined by local char-
acteristics decomposition, namely A~u =A~ g are naturaly discretized by: 

<l>e = <i>(uK,ge) = A;;-[ge- UK], 

if e is an edge of cell K lying on the boundary. For general dissipative bound-
ary conditions of the type A~egu = A~egg, one can use a different scheme at the 
boundary: this modification is linked to the so-called preconditioning technique, 
see [16, 3] for more details. An alternative will be described in the sequel. 

6.3. The Schwarz method. It is easily seen that the Schwarz method, dis-
cretized by a first order upwind scheme can be interpreted as a block-Jacobi solver 
for the global linear system. The local problems in each subdomain leads to a lo-
cal sub-system, which can be solved with a LU factorization of the corresponding 
matrix block. 

Alternatively, a substructuring approach is possible. In finite element appli-
cations, this approach consists in eliminating all interior unknowns and writing a 
condensed system involving only the unknowns at the interfaces. The resulting 
matrix is the so-called Schur complement. The dimension of the condensed linear 
system is much lower than that of the initial system. This is especially interesting 
with GMRES, as all intermediate vectors of the Krylov subspace have to be stored. 

However, the unknowns at the interfaces do not appear explicitly in the finite 
volume discretization. Rather, they are reconstructed from the interior values. To 
bypass this difficulty, we propose to introduce redundant unknowns at the interface. 
Namely, if e is an edge lying on an interface, we define Ue by: 

(12) 
The flux at the interface is thus: 

<I>~= A;;-[ue- UK], 

Thanks to this formulation, we can solve all the interior unknowns UK in terms of 
the redundant unknowns Ue. 

With the latter formulation, one can easily implement transmission conditions 
of the type A~egu = A~egg: the definition of the interface-based unknowns simply 
becomes: 

A~egUe = A~egUK, A~ 08 Ue = A~ 08 UJ. 

This formulation has been used for the Cauchy-Riemann equations to verify the 
results of the preceding section. 

7. Numerical results 

7.1. Cauchy-Riemann equations. We first present some numerical results 
for the Cauchy-Riemann equations (5). The computationnal domain is the unit 
square [0, 1] x [0, 1], with homogeneous boundary conditions A~ U = 0 on the bound-
aries x = 0 et x = 1, and periodic boundary conditions in the y direction. The 
subdomains consist of parallel slabs [li, li+l] x [0, 1] of constant width. Note that 
a "box" decomposition ([li, li+l] x [£1, LJ+1]) is possible and would lead to similar 
results. 

The value of bt is 102 , and the left hand side is (sin(47rx)cos(47ry),O). The 
meshing is 40 x 40. The stopping criterion for the iterative procedure is an overall 
residual lower than w-Io. The corresponding number of iterations is given in Table 
1. This result shows that the Schwarz method is indeed convergent. The linear 
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TABLE 1. Schwarz method for the Cauchy-Riemann equations. 

Number of Subdomains Iterations 
2 61 
4 63 
5 65 
8 70 
10 76 

to" 

to·' 

to·• 

= to·• 
.... 
"i1) 
=: to·• 

to·10 

f----+ q>= 0 

to·11 ~ q>=0.5 
,.______. q> = t 
G--------8 q> = 2 

to· I• 
5 to t5 20 25 

Iterations 

FIGURE 2. History of the residual, Schwarz method for the 
Cauchy-Riemann equations. The case <p = 0 corresponding to 
the absorbing boundary condition yields the best convergence. 

growth with the number of subdomains is a usual feature of one-level Schwarz 
methods. 

For practical applications, it is preferable to use the Schwarz method as a 
preconditioner for a Krylov subspace method. 

7.2. Acceleration via GMRES. From now on, we use the Schwarz method 
as a preconditioner for GMRES [14]. With this approach, the number of iterations 
required to reach convergence for the Cauchy-Riemann system is typically of the 
order of 20 (see Fig. 2). This contrasts with the 60 iterations needed for the 
Schwarz method alone. 

The main issue now becomes the condition number of the method. As explained 
in the preceding section, the transmission conditions have a significant impact on 
the behaviour of the method. Figure 2 shows the history of the residual for several 
transmission conditions of the type Anegui = AnegUj with two subdomains. The 
best behaviour is clearly obtained with <p = 0, i.e. with the first order absorbing 
boundary condition. 

7.3. Saint-Venant's equations. We now apply the preceding ideas to the 
computation of smooth, non-linear, steady-state flow. The proposed problem is a 
two dimensional shallow water flow over a bump. 
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TABLE 2. Schwarz method, Shallow water problem: iterations for 
several decompositions. 

I Decomposition I Iterations I 
1 X 2 23 
1 X 3 29 
1 X 4 35 
2 X 2 25 
2 X 3 38 
3 X 3 37 

The Saint-Venant equations read: 

8th+ 8x(hu) + 8y(hv) 

8thU + 8x(hu2 + gh2 /2) + 8y(huv) 

8thV + 8x(huv) + 8y(hv2 + gh2 /2) 

0 
-gh8xq 

-gh8yQ· 

Here h is the water depth, (hu, hv)T isthe momentum vector, and q(x, y) is the 
given height of the sea bottom. The equation of the free surface is therefore h + q. 
The construction of Roe's matrix for this problem is classical. The treatment of 
the source term follows the work of [2]: at the discrete level, we simply end up with 
a right hand side in the linear system. 

The test case is a subsonic flow over a circular bump, with a Froude number 
of approximately .42. The computational domain is the unit square and a first 
order absorbing boundary condition is imposed at the boundary. The mesh size 
is 60 x 60 and the time step is such that 8tj8x = 104 . A steady-state solution is 
reached within 5 time steps. 

The Schwarz method is used with GMRES. Table 2 gives the number of it-
erations required to decrease the residual by a factor of w-10 for several decom-
positions of the computational domain. The decomposition referred to as "i x j" 
consists of i subdomains in the x direction and j subdomains in the y direction. For 
instance, 1 x 4 and 2 x 2 refer to a decomposition in 4 slices or boxes respectively. 

These results show the applicability of the method to the solution of compress-
ible flows. The growth of the iterations with the number of subdomains seems 
reasonable. 

8. Conclusion 

We have considered linear systems of first order equations. A Schwarz iterative 
method has been defined and the convergence of the algorithm has been studied. 

Numerically, a first order finite volume discretization of the equations has been 
considered. A Schur complement formulation has been proposed. The influence of 
the number of subdomains and of the transmission condition has been investigated. 

Finally, we have shown the applicability of the algorithm to a non-linear flow 
computation. We have used the linearly implicit version of Roe's scheme for a 
two-dimensional shallow water problem. 

A better preconditioning might however be necessary for problems in 3-D or 
involving a great number of subdomains. For this purpose, a more complete numer-
ical analysis of domain decomposition methods for first order systems is needed. 
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Interface Conditions and Non-overlapping Domain 
Decomposition Methods for a Fluid-Solid Interaction 

Problem 

Xiaobing Feng 

1. Introduction 

We present some non-overlapping domain decomposition methods for an invis-
cid fluid-solid interaction model which was proposed in [8] for modeling elastic wave 
propagation through fluid-filled borehole environments. Mathematically, the model 
is described by the coupled system of the elastic wave equations and the acoustic 
wave equation. First, we give a rigorous mathematical derivation of the interface 
conditions used in the model and to introduce some new variants of the interface 
conditions. The new interface conditions are mathematically equivalent to the orig-
inal interface conditions, however, they can be more conveniently used to construct 
effective non-overlapping domain decomposition methods for the fluid-solid interac-
tion problem. Then, we construct and analyze some parallelizable non-overlapping 
domain decomposition iterative methods for the fluid-solid interaction model based 
on the proposed new interface conditions. 

The problems of wave propagation in composite media have long been subjects 
of both theoretical and practical studies, important applications of such problems 
are found in inverse scattering, elastoacoustics, geosciences, oceanography. For 
some recent developments on modeling, mathematical and numerical analysis, and 
computational simulations, we refer to [2, 3, 8, 7, 10, 12] and the references 
therein. 

The non-overlapping domain decomposition iterative methods developed in 
this paper are based on the idea of using the convex combinations of the inter-
face conditions in place of the original interface conditions to pass the information 
between subdomains, see [9, 1, 4, 6] for the expositions and discussions on this 
approach for uncoupled homogeneous problems. On the other hand, for the het-
erogeneous fluid-solid interaction problem, it is more delicate to employ the idea 
because using straightforward combinations of the original interface conditions as 
the transmission conditions may lead to divergent iterative procedures. So the do-
main decomposition methods of this paper may be regarded as the generalizations 
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418 XIAOBING FENG 

of the methods proposed in [1, 4, 6, 9] to the time-dependent heterogeneous prob-
lems. For more discussions on heterogeneous domain decomposition methods, we 
refer to [11] and the references therein. 

The organization of this paper is as follows. In Section 2, the fluid-solid in-
teraction model is introduced. In Section 3, the interface conditions, which are 
part of the model, are first derived using the physical arguments and then proved 
rigorously using vanishing shear modulus approximation. In Section 4, some paral-
lelizable non-overlapping domain decomposition algorithms are proposed for solv-
ing the fluid-solid interaction problem. It is proved that these algorithms converge 
strongly in the energy spaces of the underlying fluid-solid interaction problem. 

2. Description of the problem 

We consider the propagation of waves in a composite medium 0 which consists 
of a fluid part 0 f and a solid part Os, that is, 0 = 0 funs. n will be identified with 
a domain in IRN for N = 2, 3, and will be taken to be of unit thickness when N = 2. 
Let r = an f n ans denote the interface between two media, and let r f = an f \ r 
and r s = ans \ r. Suppose that the solid is a pure elastic medium and the fluid is 
a pure acoustic media (inviscid fluids). Then the wave propagation is described by 
the following systems of partial differential equations 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

where 

(9) 

~Ptt- D.p = gf, 
Pslltt- div(a(u)) = gs, 

-I!; - PJlltt · ns = 0, 

a(u)ns- pnf = 0, 
1 8p -0 -;;Pt + an1 - , 

PsAsllt + a(u)ns = 0, 
p(x,O) = Po(x), Pt(x,O) = Pl(x), 

u(x,O) = uo(x), Ut(x,O) = u1(x), 

in nf, 
inns, 
on r, 
on r, 
on rf, 
on rs, 
in nf, 
in Os, 

a(u) =As div uJ + 2JLsE(u), 
1 

c(u) = 2[V'u + (V'uf]. 

In the above description, p is the pressure function in n f and u is the displace-
ment vector inns. Pi (i = j, s) denotes the density of Oi, ni (i = j, s) denotes the 
unit outward normal to ani. As > 0 and JLs ~ 0 are the Lame constants of ns. 
Equation (9) is the constitutive relation for Os. I stands for theN x N identity ma-
trix. The boundary conditions in (5) and (6) are the first order absorbing boundary 
conditions for acoustic and the elastic waves, respectively. These boundary condi-
tions are transparent to waves arriving normally at the boundary (cf. [5]). Finally, 
equations (3) and (4) are the interface conditions which describe the interaction 
between the fluid and the solid. 

A derivation of the above model can be found in [8], where a detailed mathe-
matical analysis concerning the existence, uniqueness and regularity of the solutions 
was also presented. The finite element approximations of the model were studied 
in [7], both semi-discrete and fully-discrete finite element methods were proposed 
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and optimal order error estimates were obtained in both cases for the fluid-solid 
interaction model. 

3. Interface conditions 

The purpose of this section is to present a rigorous mathematical justification 
and interpretation for the interface conditions ( 3) and ( 4), which describe the inter-
action between the fluid and the solid. These interface conditions were originally 
derived in [8] using the heuristic physical arguments. For the sake of completeness, 
we start this section with a brief review of the heuristic derivation. 

3.1. Derivation of interface conditions by physical arguments. Since 
an acoustic media can be regarded as an elastic media with zero shear modulus, the 
motion of each part of the composite media is described by a system of the elastic 
wave equations 

(10) 
(11) 

(12) 

Pi( Ui)tt = diva( ui) + gi, in ni, 
a(ui) = Ai divuiJ + 2/Lic(ui), 

1 T c(ui) = 2['\i'ui + (V'ui) ], 

where i = J, s. Ui denotes the displacement vector in ni, and /Lf = 0. Notice that 
the displacement is used as the primitive variable in both fluid and solid region. 

Physically, as a system, the following two conditions must be satisfied on the 
interface between the fluid and the solid (cf. [3] and references therein). 

• No relative movements occur in the normal direction of the interface. 
• The stress must be continuous across the interface. 

Mathematically, these conditions can be formulated as 

(13) 
(14) 

U8 ·ns+Ut·nt=O, 
a(us)ns + a(uJ)nJ = 0, 

on r, 
on r. 

In practice, it is more conveni.ent to use the pressure field in the acoustic 
medium, so it is necessary to rewrite the interface conditions (13) and (14) us-
ing the pressure-displacement formulation. To this end, we introduce the pressure 
of the fluid, p = -AJ div UJ. Since ILJ = 0, (14) can be rewritten as 

a(us)ns = -a(uj )nj = pnf, on r. 
which gives the interface condition (4). To convert (13), differentiating it twice 
with respective tot and using (10) we get 

PJ(Us. ns)tt = -pj(UJ. nf )tt =- div(a(Uj )) . nf = aap ' on r, 
nf 

so we get (13). Here we have used the fact that the source gf vanishes on the 
interface r. 

Finally, to get the full model (1)-(9) we also need to transform the interior 
equation in the fluid region from the displacement formulation into the pressure 
formulation. For a detailed derivation of this transformation, we refer to [8]. 
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3.2. Validation of interface conditions by vanishing shear modulus 
approximation. The goal of this subsection is to show the interface conditions 
(13) and (14) are proper conditions to describe the interaction between the fluid 
region and solid region. In the same time, our derivation also reveals that in what 
sense the conditions (13) and (14) hold. To do this, we regularize the constitutive 
equation of the fluid by introducing a small (artificial) shear modulus J.li = 8 > 0, 
and then to look for the limiting model of the regularized problem as 8 goes to zero. 

The regularized constitutive equation of the fluid reads as 

(15) 

Let (u~, u~) be the solution of the regularized problem (10)-(12) and (15) with 
prescribed boundary conditions (say, first order absorbing boundary conditions) and 
initial conditions. It is well-known that the interface conditions for second order 
elliptic problems are the continuity of the function value and the continuity of the 
normal flux across the interface (cf. [9]). For the regularized problem (10)-(12) 
and (15), this means that 

(16) 
(17) 

on r, 
on r. 

The main result of this section is the following convergence theorem. 

THEOREM 1. There exist Uf E H(div,Ot) and UsE H 1(0s) such that 

(i) u~ converges to Uf weakly in H(div,Ot)· 

(ii) u~ converges to Us weakly in H 1(0s)· 
1 

(iii) (uf, Us) satisfies the interface conditions {13} and (14) in (HJ"0 (f))'. 

PROOF. Due to the page limitation, we only sketch the idea of the proof. To 
see a detailed proof of similar type, we refer to [8, 11]. 

The idea of the proof is to use the energy method. To apply the energy method, 
the key step is to get the uniform (in 8) estimates for the solution (u~, u~). This 
can be done by testing the interior equations of the fluid and solid against ( u~ )t 
and (u~)t, respectively. Finally, the proof is completed by using a compactness 
argument and taking limit in (10)-(12) and (15)-(17) as 8 goes to zero. D 

4. Non-overlapping domain decomposition methods 

Because of the existence of the physical interface, it is very nature to use non-
overlapping domain decomposition method to solve the fluid-solid interaction prob-
lem. In fact, Non-overlapping domain decomposition methods have been effectively 
used to solve several coupled boundary value problems from scientific applications, 
see [11] and the references therein. 

In this section we first propose a family of new interface conditions which are 
equivalent to the original interface conditions (3) and (4). From a mathematical 
point of view, this is the key step towards developing non-overlapping domain 
decomposition methods for the problem. Based on these new interface conditions, 
we introduce two types of parallelizable non-overlapping domain decomposition 
iterative algorithms for solving the system (1)-(9) and establish the usefulness of 
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these algorithms by proving their strong convergence in the energy spaces of the 
underlying fluid-solid interaction problem. 

Due to the page limitation, the algorithms and the analyses are only given 
at the differential level in this paper. Following the ideas of [1, 4, 6], it is not 
very hard rather technical and tedious to construct and analyze the finite element 
discrete analogues of the differential domain decomposition algorithms. Another 
point which is worth mentioning is that the domain decomposition algorithms of 
this paper can be used for solving the discrete systems of (1)-(9) which arise from 
using other discretization methods such as finite difference and spectral methods, as 
well as hybrid methods of using different discretization methods in different media 
(subdomains). 

4.1. Algorithms. Recall the interface conditions on the fluid-solid contact 
surface are 

8p 
(18) -a = PJUtt. ns, pnf = a(u)ns, on r. 

nt 

Rewrite the second equation in (18) as 

(19) 

where T 8 denotes the unit tangential vector on 80 8 • The equivalence of (18)2 and 
(19) holds if the initial conditions satisfy some compatibility conditions (cf. [8]). 

LEMMA 2. The interface conditions in (18} are equivalent to 

(20) 

(21) 
(22) 

:::, +apt = PJUtt . ns - aa(ut)ns . ns, 

PJUtt + ,8a(ut)ns = -/:!;ns- ,8ptns. 

a(ut)n8 T8 = 0, 

for any pair of constants a and ,8 such that a+ ,8-# 0. 

on r, 
on r, 
on r, 

Based on the above new form of the interface conditions we propose the fol-
lowing two types of iterative algorithms. The first one resembles to Jacobi type 
iteration and the other resembles to Gauss-Seidel type iteration. 

Algorithm 1 
Step 1 Vp0 E Pt, Vu0 E V 8 . 

Step 2 Generate {(pn, un)}n?:1 iteratively by solving 

(23) 1 n An-2iPtt- P - gf, in of, 

(24) l n !ti2_ -cPt + an1 - 0, on rf, 

(25) !ti2_ n _ n-1 ( n-1) an, +apt - PJUtt · ns - aa ut n8 • n8 , on r; 

(26) n d" ( n) _ Pslltt- lVO" U - g 8 , in 0 8 , 

(27) PsAsuf + a(un)ns = 0, on f 8 , 

(28) n (3 ( n) _ apn~l ,8 n-1 PJUtt + a Ut ns - an! ns - Pt ns. on r, 
(29) a(uf)ns · Ts = 0, on r. 
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Algorithm 2 
Step 1 Vu0 E Vs. 

XIAOBING FENG 

Step 2 Generate {pn }n~o and { un }n~l iteratively by solving 

(30) 1n An-C2Ptt- P -gf, 

(31) lpn + apn = 0 c t anf 1 

(32) !!L_ + n _ n ( n) anf apt - PfUtt. ns- a(}" Ut ns. ns, 

(33) n+1 d' ( n+1) _ Pslltt - 1V(J" U - g8 , 

(34) PsAsu~+ 1 + (J"(un+l )ns = 0, 
(35) n+1 + (3 ( n+1) - apn (3 n PfUtt (}" ut ns - ant ns- Pt ns, 

(36) (J"(u~+ 1 )ns · Ts = 0, 

in Of, 

on rf, 

on r; 

in 0 8 , 

on rs, 

on r, 
on r. 

REMARK 3. Appropriate initial conditions must be provided in the above al-
gorithms. We omit these conditions for notation brevity. 

4.2. Convergence Analysis. In this subsection we shall establish the utility 
of Algorithms 1 and 2 by proving their convergence. Because the convergence proof 
for Algorithm 2 is almost same as the proof of Algorithm 1, we only give a proof 
for Algorithm 1 in the following. 

Introduce the error functions at the nth iteration 

It is easy to check that ( rn, en) satisfies the error equations 

(37) 

(38) 

(39) 
(40) 
(41) 

( 42) 

(43) 

1 n A n 0 cxrtt- ur = ) 

lrn + arn = 0 
c t ant ' 

ar" n n-1 ( n-1) ant +art = Pfett · ns- a(}" et ns · ns, 

Psert - div (}"(en) = 0, 
PsAser +den )ns = 0, 

n (3 ( n) arn-i (3 n-1 Pfett + (}" et ns = ~ns- rt ns, 

(J"(er)ns · Ts = 0, 

Define the "pseudo-energy" 

in of, 
on rf, 

on r; 
in 0 8 , 

on rs, 

on r, 
on r. 

En= E( {rn, en})= II ~rn + ar~11 2 + IIPte~ + f3(J"(en)nsii~2(Jg) · 
nf £2(lg) 

LEMMA 4. There holds the following inequality 

(44) 

where 
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To make the estimate (44) be useful, we need to find a lower bound for Rn(r). 
Testing (37) against r~ to get 

1 d Ill nll 2 1 d·ll nll2 11 nl 2 
[ 8rn nd 2 dt ~rt + 2 dt \lr o,n, + rcrt = lr an rt x, o,n1 V" o,r1 r f 

which implies that 
(45) 

r r aarn r~dxdt = _2lll!r~(r)ll2 + ~ ll\/rn(r)ll~.n, +II ~r~ll . 
lo lr nt c o,n1 yc £2(£2(r,)) 

Here we have implicitly assumed that rn(o) = r~(O) = 0. 
Differentiating (40) with respect tot and testing it against ef! give us 

~! IIJPse~tll~,n. + ! IIVJL;c(e~)ll~,n. + ~! II A div(e~)11:.n. 

which implies that 

+ co IJPse~l~ r ::; [ a(e~) · nsettdx, 
' s lr 

(46) for l Psa(e~)ns·ettdxdt ~ ~ IIJPse~t(r)ll~,n. + IIVJL;c(e~(r))ll5,n. 

+ ~ IIA div(e~(r))ll:,n. + eoiiJPse~III2(£2(r.)) 
- ~ IIJPse~t(O)II~,n •. 

Since en(o) = ef(O) = 0, it follows from (37) that 

IIJPsett(O)IIo,n. = II vkdiv(en(O))IIo,n. = 0. 

Combining ( 45) and ( 46) we get the following lemma. 

LEMMA 5. Rn ( T) satisfies the following inequality 

Rn(T) ~ 2o: [ll!r~(r)ll 2 
+ ll\/rn(r)ll~,n 1 + 211 ~r~11 2 

] 
c o,n1 v c £2(£2(r 1 )) 

+2{3 [ll#sett(r)ll~,n. + IIJIL;c(e~(r))ll~,n. 

+ll~div(e~(r)ll~,n. + 2eo IIJPse~III2(£2(r.))]. 
Finally, from Lemma 4 and 5 we get the following convergence theorem. 

THEOREM 6. Let {(pk, uk)} be generated by Algorithm 1 or Algorithm 3. For 
o: > 0 and {3 > 0, we have 

(1) pk -4 p strongly in L00 (H1(0.t)) n W1•00 (L2(0t )), 
(2) uk -4 u strongly in W1•00 (H1(0s)) n W2•00 (L2(0s)). 

REMARK 7. If we choose o: = 0, {3 = oo, Algorithms 1 and 2 become N-N 
alternating type algorithms. In addition, at the end of each N-N iteration one can 
add the following relaxation step to speed up the convergence 

pn .- Jl.Pn + (1 _ J.L)Pn-1, 

uf! .- J.llltt + (1- J.L)Utt-1, 
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where p, is any constant satisfying 0 < p, < 1. 

5. Conclusions 

In this paper we have presented a mathematically rigorous derivation of the in-
terface conditions for the inviscid fluid-solid interaction model proposed in [8], and 
developed two families of non-overlapping domain decomposition iterative methods 
for solving the governing partial differential equations. Our analysis demonstrated 
that it is crucial and delicate to choose the right transmission conditions for con-
structing domain decomposition methods for the problem, since trivial use of the 
physical interface conditions as the transmission conditions may result in slowly 
convergent even divergent iterative methods. Finally, we believe that the ideas and 
methods presented in this paper can be extended to other heterogeneous problems, 
in particular, the viscid fluid-solid interaction problems in which the Navier-Stokes 
equations should be used in the fluid medium. This work is currently in progress 
and will be reported in the near future. 
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Overlapping Schwarz Waveform Relaxation 
for Parabolic Problems 

Martin J. Gander 

1. Introduction 

We analyze a new domain decomposition algorithm to solve parabolic partial 
differential equations. Two classical approaches can be found in the literature: 

1. Discretizing time and applying domain decomposition to the obtained se-
quence of elliptic problems, like in [9, 11, 1] and references therein. 

2. Discretizing space and applying waveform relaxation to the large system of 
ordinary differential equations, like in [10, 8, 7] and references therein. 

In contrary to the classical approaches, we formulate a parallel solution algorithm 
without any discretization. We decompose the domain into overlapping subdomains 
in space and we consider the parabolic problem on each subdomain over a given 
time interval. We solve iteratively parabolic problems on subdomains, exchanging 
boundary information at the interfaces of subdomains. So for a parabolic problem 
~~ = .C( u, x, t) in the domain n with given initial and boundary conditions the 
algorithm for two overlapping subdomains 0 0 and 0 1 would read for j = 0, 1 

auk+l 
_)_ 

at .C(uj+1,x,t), 

{ uL1(x, t), 
given be, 

x, t E n1 

x, t E r 1 := an1 n nl-j 

x, t E anj- rj 
This algorithm is like a classical overlapping additive Schwarz, but on subdomains, 
a time dependent problem is solved, like in waveform relaxation. Thus the name 
overlapping Schwarz waveform relaxation. 

This algorithm has been considered before in [4], where linear convergence on 
unbounded time intervals was proved for the one dimensional heat equation, and 
in [6] where superlinear convergence for bounded time intervals was shown for a 
constant coefficient convection diffusion equation. 

We study here three model problems which show that the results in [4] and [6] 
hold for more general parabolic equations. All the convergence results are in L 00 

with the norm llulloo := supx t iu(x, t)l. 
' 
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t 

0 aL 
------------~---x 

(3L L 
FIGURE 1. Decomposition into two overlapping subdomains 

2. Reaction Diffusion Equation 

We study the overlapping Schwarz waveform relaxation algorithm for the one 
dimensional reaction diffusion equation with variable diffusion coefficient 

au 2 a2u 
at =c (x,t)ax2 +f(u) O<x<L, O<t<T 

with appropriate initial and boundary conditions. We consider only the two sub-
domain problem given in Figure 1 with nonempty overlap, 0 < a < (3 < 1. The 
generalization toN subdomains can be found in [2]. 

2.1. Theoretical Results. Define for 0 < x <Land 0 < t < T 

c2 := supc2(x, t) , 
x,t 

which are assumed to be finite. 

f'(~) a:= sup ---
x,t,eEIR c2(x, t) 

THEOREM 1 (Linear convergence for t E [0, 00)). If -oo < a < ( L) 2 then the 
overlapping Schwarz waveform relaxation algorithm converges linearly on unbounded 
time intervals, 

max llu- u]k+1 lloo:::; ·/Cmax llu- u~lloo 
J J 

with convergence factor 

sin(v'a(1- (3)L) · sin(v'aaL) 1 
"( = sin(v'a(1- a)L) · sin(v'af3L) < 

and C a constant depending on the parameters of the problem. 

PROOF. The proof can be found in [3]. D 

Note that the convergence factor "( tends to 1 and convergence is lost as the 
overlap goes to zero or a goes to ( rr / L )2 . On the other hand for a negative, the 
sine functions in"( become hyperbolic sine functions and"( --t 0 as a--t -00. 

THEOREM 2 (Superlinear convergence fortE [0, T]). The overlapping Schwarz 
waveform relaxation algorithm converges superlinearly on bounded time intervals, 

max llu- u]k+llloo:::; max(1,e 222 aT)erfc(k(~)L) max llu- u~lloo· 
J c J 

PROOF. The proof can be found in [3]. D 
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to' 

to' 

.... 

... 
1104 
!•a"' ... 
... 
.... 
... 

0 • ···!--. ------:--!----:----:~-::.--!----:-~~-!---;'. 
lterabonk !terabonk 

FIGURE 2. Linear convergence on long time intervals on the left 
and superlinear convergence on short time intervals on the right. 
Dashed the numerical results and solid the derived upper bounds 
for the convergence rate 

Note that convergence is lost again when the overlap goes to zero (a= /3). But 
in contrary to the linear result, the superlinear convergence rate does not depend 
on a, only the constant in front does. Instead there is a dependence on the diffusion 
coefficient c2 and the length of the time interval: the smaller the product c2T, the 
faster the convergence. 

2.2. Numerical Results. We consider the model problem 

8u 82u 3 
at = Bx2 + 5(u- u ), 0 < x < 1, 0 < t < T 

with initial condition u(x, 0) = x2 and boundary conditions u(O, t) = 0 and u(1, t) = 
e-t. We chose 20% overlap (a= 0.4 and /3 = 0.6). On the left of Figure 2 we show 
the algorithm in the linear convergence regime for a long time interval T = 3. Since 
this is still a bounded time interval, the algorithm would start to exhibit super linear 
convergence if the iteration was continued. On the right of Figure 2 we chose a short 
time interval T = 0.1 to see the algorithm directly in the superlinear convergence 
regime. We used a centered second order finite difference in space with Ax= 0.01 
and backward Euler in time with 300 time steps and the error displayed is the 
difference between the numerical solution on the whole domain and the iterates on 
the subdomains. 

3. Convection Diffusion Equation 

We consider a convection diffusion equation with variable coefficients in one 
dimension 

au 2 82u 8u 
at = c (x, t) ax2 + b(x, t) ax + f(x, t) 0 < x < L, 0 < t < T 

with appropriate initial and boundary conditions. 

3.1. Theoretical Results. 

c2 := sup c2 (x, t) , 
x,t 

which are assumed to be finite. 

Define for 0 < x < L and 0 < t < T 
• b(x, t) • . b(x, t) 
b:=sup~( )' b:=mf~( ) 

x,t C X, t x,t C X, t 
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THEOREM 3 (Linear convergence for t E [ 0, oo ) ) . The overlapping Schwarz 
waveform relaxation algorithm converges linearly on unbounded time intervals, 

with convergence factor 

1 _ e-b((3L-L) 1 _ e-baL 
'Y = • 0 A 0 1 _ e-b(aL-L) 1 _ e-b(3L 

PROOF. The proof can be found in [2]. 0 

As in the reaction diffusion case convergence is lost as the overlap goes to zero. 
But a large ratio of convection to diffusion helps the algorithm by decreasing 'Y· 

THEOREM 4 (Super linear convergence for t E [0, T]). The overlapping Schwarz 
waveform relaxation algorithm converges superlinearly on bounded time intervals, 

A • k((J- a)L max llu- u]k+llloo :S e(f3-a)L(b-b)k/2 · erfc( ~ ) max llu- uJIIoo 
J c J 

PROOF. The proof can be found in [2]. 0 

Note that the principal convergence rate is the same as in the reaction diffusion 
case, but there is a lower order dependence on the convection term in the bound. 
The dependence is lower order, because erfc(x) :S e-x2

• If the coefficients are 
constant, the dependence on the convection term disappears completely. 

3.2. Numerical Results. We consider the model problem 

0 < X < 1, 0 < t < T 

with the same initial and boundary conditions as before. We chose again an overlap 
of 20% and different convection terms, b E {0, 2.5, 5}. Figure 3 shows on the left 
the algorithm in the linear convergence regime for T = 3 and the three different 
values of band on the right the algorithm in the superlinear convergence regime for 
T = 0.1 and b = 2.5. We used again a finite difference scheme with llx = 0.01 and 
backward Euler in time with 300 time steps. 

4. Heat Equation in n-Dimensions 

Consider the heat equation in n dimensions 

8u 
Bt = llu + f(x, t) x E 0, 0 < t < T 

with appropriate initial and boundary conditions. We assume that 0 is a smoothly 
bounded domain in IRn and that we have an overlapping decomposition of the 
domain into a finite number of subdomains [5]. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



OVERLAPPING SCHWARZ WAVEFORM RELAXATION FOR PARABOLIC PROBLEMS 429 

... 
10-1 

,.-• 
... 

~ 
~ 10""' 

~ ... 
, .. 
.. -· 

10 ... 01,---~~--:-------7-~. --c~-=--!"-"!---:!. 
lterabonk 

,. , .. 
0 3 

lteratiOnk 

' 

' 

FIGURE 3. Linear convergence on the left and superlinear conver-
gence on the right, dashed the numerical experiment and solid the 
theoretical bound on the convergence rate. 

4.1. Theoretical Results. 

' 
' ' 

THEOREM 5 (Linear convergence for t E [ 0, oo ) ) . The overlapping Schwarz 
waveform relaxation algorithm converges linearly on unbounded time intervals 

max llu- uj+m+llloo:::; ')'max llu- ujlloo 
J J 

where I' < 1, dependent on the geometry but independent of k. Note that m depends 
on the number of subdomains. 

PROOF. The proof can be found in [5]. D 

THEOREM 6 (Superlinear convergence for t E [0, T]). The overlapping Schwarz 
waveform relaxation algorithm converges superlinearly on bounded time intervals 

k/5 
max llu- uJIIoo:::; (2n)kerfc( c;:;:;) max llu- u~lloo 

J 2vnT J 

where 15 is a parameter related to the size of the overlap. 

PROOF. The proof can be found in [5]. D 

Note that the superlinear convergence rate does not depend on the number of 
subdomains. 

4.2. Numerical Results. We used the homogeneous heat equation in two 
dimensions with homogeneous initial and boundary conditions on a unit square 
with the decomposition given in Figure 4 for our numerical experiments. Figure 5 
shows for two different sizes of the overlap, (a, (3) E { (0.3, 0. 7), (0.4, 0.6)}, on the 
left the linear convergence behavior of the algorithm for a long time interval, T = 3 
and on the right the superlinear convergence behavior for a short time interval, 
T = 0.1. We used a centered second order finite difference scheme in space with 
b.x = 1/30 and backward Euler in time with 100 time steps. 
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FIGURE 4. Decomposition of the domain for the heat equation 
model problem 
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FIGURE 5. Linear convergence on the left and superlinear conver-
gence on the right for the two dimensional heat equation 

5. Conclusion 

On unbounded time intervals the proposed algorithm converges linearly, pro-
vided there is a strong enough dissipation mechanism. Thus the new algorithm 
inherits the classical convergence behavior of the overlapping Schwarz algorithm 
for elliptic problems, and also the classical convergence behavior of waveform re-
laxation on long time windows. 

On bounded time intervals the convergence is superlinear, which is a new result 
for domain decomposition algorithms. The waveform relaxation theory predicts 
superlinear convergence, but the presence of diffusion leads to a faster superlinear 
convergence rate than the one predicted by waveform relaxation theory [6]. 

Note that the superlinear convergence rates do not depend on the number of 
subdomains and thus there is no coarse mesh needed to avoid deterioration of the 
algorithm [2]. 
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Domain Decomposition, Operator Trigonometry, 
Robin Condition 

Karl Gustafson 

1. Introduction 

The purpose of this paper is to bring to the domain decomposition community 
certain implications of a new operator trigonometry and of the Robin boundary con-
dition as they pertain to domain decomposition methods and theory. In Section 2 
we recall some basic facts and recent results concerning the new operator trigonom-
etry as it applies to iterative methods. This theory reveals that the convergence 
rates of many important iterative methods are determined by the operator angle 
¢>(A) of A: the maximum angle through which A may turn a vector. In Section 3 we 
bring domain decomposition methods into the operator trigonometric framework. 
In so doing a new three-way relationship between domain decomposition, operator 
trigonometry, and the recently developed strengthened C.B.S. constants theory, is 
established. In Section 4 we examine Robin-Robin boundary conditions as they 
are currently being used in domain decomposition interface conditions. Because 
the origins of Robin's boundary condition are so little known, we also take this 
opportunity to enter into the record here some recently discovered historical facts 
concerning Robin and the boundary condition now bearing his name. 

2. Operator Trigonometry 

This author developed an operator trigonometry for use in abstract semigroup 
operator theory in the period 1966-1970. In 1990 [9] the author found that the 
Kantorovich error bound for gradient methods was trigonometric: E;/2 (xk+d ~ 
(sin A)E;/2(xk)· Later [14] it was shown that Richardson iteration is trigonometric: 
the optimal spectral radius is Popt = sin A. Many other iterative methods have 
now been brought into the general operator trigonometric theory: Preconditioned 
conjugate gradient methods, generalized minimum residual methods, Chebyshev 
methods, Jacobi, Gauss-Seidel, SOR, SSOR methods, Uzawa methods and AMLI 
methods. Also wavelet frames have been brought into the operator trigonometric 
theory, see [6]. The model (Dirichlet) problem has been worked out in some detail 
to illustrate the new operator trigonometryc theory, see [5]. There ADI methods 
are also brought into the operator trigonometric theory. For full information about 
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this new operator trigonometry, we refer the reader to [9, 11, 10, 12, 14, 13, 18] 
from which all needed additional details may be obtained. 

For our purposes here it is sufficient to recall just a few salient facts. The central 
notion in the operator trigonometry theory is the angle of an operator, first defined 
in 1967 through its cosine. Namely, the angle ¢(A) in the operator trigonometry is 
defined for an arbitrary strongly accretive operator A in a Banach space by 

. Re (Ax,x) 
(1) cos A= mf IIAxllllxll , x E V(A), Ax i- 0. 

For simplicity we may assume in the following that A is a SPD matrix. By an early 
(1968) min-max theorem the quantity sin A= inf,>o IlEA- Ill enjoys the property 
cos2 A+ sin2 A= 1. For A a SPD matrix we know that 

(2) 
2A~/2 A:/2 

cos A= A A , 
n + 1 

. A An- A1 S1n = \ \ . 
An + /\1 

3. Domain Decomposition 

Here we will establish the general relationship between domain decomposition 
methods and the operator trigonometry by direct connection to the treatments of 
domain decomposition in [19, 3, 23, 21, 2, 20], in that order. Proofs and a more 
complete treatment will be given elsewhere [4]. 

We turn first to the treatment of domain decomposition methods in [19, Chap-
ter 11]. Using a similar notation, let A> 0, Wx ~Ax > 0, assume there exist upper 
and lower bounds cupper and nower such that the decomposition, X = I:J PxXX 

exists for every x E X and such that 

(3) .!. - c .:s. l:J(ApxxX,xX) = I:j IIPxxXII~ .:s. cupper-.!. 
r - lower - (Ax, x) - llxll~ - - 'Y. 

Here 'Y and rare the optimal bounds in 'YwaddSI ~A~ rwaddSI i.e., the condition 
number ~(w- 1 A) is the ratio r h· Then it follows for two nonoverlapping domains 
that the optimal convergence spectral radius is p(M9addSI ) = IIM9addSI IIA ~ rr+-1. 

opt1mal opttmal '""( 

When conjugate gradient is applied to the additive Schwarz domain decomposi-
tion algorithm, in the two level case the asymptotic convergence rate improves to 
p(CGMaddSI ) = 8/1 + v"f=82 where 

Bopttmal 

~ (x,y)A 
v = sup 

xE'R(pl),yE'R(p2 ) llxiiAIIYIIA 
(4) 

is the C.B.S. constant associated with the two-level decomposition. 
THEOREM 1. [4]. Under the stated conditions, the optimal convergence rate of 

the additive Schwarz domain decomposition algorithm is trigonometric: 
p(M9addsi ) = sin((W-112AW-112). In the two level case with the conjugate gradi-

optimai 

ent scheme applied, the optimal asymptotic convergence rate is also trigonometric: 
p(CGM9addsi ) = sin((W- 112 Aw-1/2)1/2). 

opttmal 

We may obtain an abstract version of Theorem 1 by following the abstract 
treatment of [3]. 

THEOREM 2. [4]. With R and R* the embedding (restriction) and conjugate 
(prolongation) operators for v = Vo X v1 X ... X VJ and B defined by the Fictitious 
Subspace Lemma as in [3], p~~~i;;;_al = sin(RB-1 R* A). 
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Next we comment on an important connection between the operator trigonom-
etry and the C.B.S. constants which is inherent in the above results. Turning to 
[23], for the preconditioned system BA with BSPD and p =III- BAllA< 1, one 
knows that ~(BA) ~ ~- When optimized, the preconditioned Richardson itera-
tion uk+I = uk + wB(f- Auk) has error reduction rate (~(BA)- 1)/(~(BA) + 1) 
per iteration. This means the error reduction rate is exactly sin(BA), [14, The-
orem 5.1] applying here since BA is SPD in the A inner product. From these 
considerations we may state 

THEOREM 3. [4]. Under the above conditions for the preconditioned system 
wBA, the spectral radius p = III - wBAIIA plays the role of strengthened C.B.S. 
constant when w = w* optimal. 

The principle of Theorem 3 could be applied to the whole abstract theory 
[21], i.e., to additive multilevel preconditionings BA = I.:f=1 Ti and multiplicative 
preconditionings BA =I-2:f=0(I-Tp-i)· The relationships of this principle to the 
Assumptions 1, 2, 3 of the domain decomposition theory are interesting, inasmuch 
as the three constants c0 , p( £), and w of those three assumptions are closely related 
to Amax(BA) and Amin(BA), viz. c02 ~ Amin(BA) ~ · · · ~ Amax(BA) ~ w[1+p(£)]. 

Next we turn to operator trigonometry related to the FETI (Finite Element 
Tearing and Interconnecting) algorithm [2]. See [8] where in an early paper we 
discussed the potential connections between Kron's tearing theories and those of 
domain decomposition and FEM and where we utilize graph-theoretic domain de-
composition methods to decompose finite element subspaces according to the Weyl-
Helmholtz-Hodge parts, which permits the computation of their dimensions. The 
FETI algorithm is a nonoverlapping domain decomposition with interfacing repre-
sented by Lagrange multipliers. To establish a connection of FETI to the operator 
trigonometry, let us consider the recent [20] analysis of convergence of the FETI 
method. There it is shown that the condition number of the preconditioned conju-
gate gradient FETI method is bounded independently of the number of subdomains, 
and in particular, that 

(5) ~ = Amax(PvMPvF) ~ c2c4 ~ C ( 1 +log H)' 
Amin(PvMPvF) c1c3 h 

where Pv F is the linear operator of the dual problem of interest and where Pv M 
is its preconditioner, c 1 and c2 are lower and upper bounds for F, c3 and c4 are 
lower and upper bounds for M, and where 'Y = 2 or 3 depending on assumptions 
on the FEM triangulation, h being the characteristic element size, H an element-
mapping-Jacobian bound. 

THEOREM 4. [4] The operator angle of the FETI scheme is bounded above ac-

cording to sin¢(PvMPvF) ~ (C(1 +log~)' -1)/2. 

4. Robin Condition 

To reduce overlap while maintaining the benefits of parallelism in Schwarz 
alternating methods, in [22) a generalized Schwarz splitting including Robin type 
interface boundary conditions was investigated. Certain choices of the coefficients 
in the Robin condition were found to lead to enhanced convergence. In the notation 
of [22) the Robin conditions are written gi(u) = wiu + (1- wi) g~, i = 1, 2, for two 
overlapping regions. Later in the discretizations another coefficient a is introduced, 
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o: related tow by the relation w = (1- o:)/(1- o: + ho:), h the usual discretization 
parameter. The case w = 1 (o: = 0) corresponds to Dirichlet interface condition, 
the case w = 0 ( o: = 1) corresponds to Neumann interface condition. Optimal 
convergence rates are found both theoretically and for computational examples for 
o: in values near 0.9, i.e., for w near 1/(1 + 9h). 

Let us convert these coefficients to the standard Robin notation [7] 

(6) 
au 
an+ O:RU = f 

where we have used O:R for the Robin coefficient to avoid confusion with the o: of 
[22]. Then in terms of thew of [22] the Robin condition there becomes g~ + w(1-
w) - 1 u = f where the right hand side has absorbed a factor ( 1 - w) - 1. For the 
successful o: ~ 0.9 of [22] the Robin constant O:R ~ 1/9h. Since h was relatively 
small in the simulations of [22], this means that O:R was relatively large and that 
the Robin condition employed there was "mostly Dirichlet." This helps intuition, 
noted in [22] as lacking. 

Next let us examine the theoretical analysis of [22]. Roughly, one wants to 
determine the spectral radius of a block Jacobi matrix J = M- 1 N. The route to 
do so travels by similarity transformations from J to J to G to G' to HG' H to 
elements of the last columns of T1- 1 and T2- 1 to four eigenvalues >.1,2,3,4 and hence 
to the spectral radius of J. How have the Robin interface conditions affected the 
spectral radii of J depicted in the figures of [22]? To obtain some insight let us 
consider the following simple example. The one dimensional problem -u" = f is 
discretized by centered differences over an interval with five grid points xo, ... , x4, 
with a Robin boundary condition (6) at Xo and X4. For the three interior unknown 
values u1, u2, u3 we then arrive at the matrix equation 

(7) [ 2- (3 -1 0 l [ u1 l [ ch(J + h l -1 2 -1 U2 = f2 
0 -1 2 - {J U3 dh{J + h 

where we have absorbed the left Robin boundary condition -(u1 -u0 )/h+o:Ruo = c 
and the right Robin boundary condition (u4 - u3)jh + o:Ru4 = d, and where (3 
denotes (1 + o:Rh)- 1 . Then the matrix A of (7) has eigenvalues >.1 = 2- (J/2-
((32 + 8) 112 /2, >.2 = 2 - (3, >.3 = 2 - fJ/2 + ((32 + 8) 112 /2. For the successful 
o: = 0.9 and assuming h = 1/45 (corresponding to [22]) we find (3 = 0.9 and hence 
>.1 = 0.066, >.2 = 1.1, >.3 = 3.034. Using Dirichlet rather than Robin boundary 
conditions corresponds to (3 = 0 and >.1 = 0.586, >.2 = 2, >.3 = 3.414. The condition 
numbers are K;Robin ~ 45.97 and K;Dirichlet ~ 5.83. The Robin condition moves the 
spectrum downward and increases condition number. The worst case approaches 
Neumann and infinite condition number. One needs to stay mostly Dirichlet: this 
is the intuition. Also the size of the grid parameter h is critical and determines the 
effective Robin constant. 

Turning next to [1] and the Robin-Robin preconditioner techniques employed 
there, we wish to make two comments. First, for the advection-diffusion problems 
Lu = cu +a· 'Vu- vflu = f being considered in [1], the extracted Robin-Robin 
interface conditions 

(8) ( a a· nk) 
II ank - -2- Vk = 9k 
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is really just an internal boundary trace of the differential operator and therefore is 
not independent in any way. A better terminology for (8) might be Peclet-Peclet, 
corresponding to the well-known Peclet number P = a!; over a fluid length L. Sec-
ond, when the sign of a may change with upwinding or downwinding, the coefficient 
o:R in (6) may become an eigenvalue in the boundary operator. Solution behavior 
can then become quite different. Such an internal Steklov-Steklov preconditioner 
would permit interior "flap" of solutions. 

Robin was (Victor) Gustave Robin (1955-1897) who lectured at the Sorbonne 
at the end of the previous century. Our interest in Robin began twenty years ago 
when writing the book [7]. The results of the subsequent twenty year search will 
be published now in [15, 16] to commemorate the 100th anniversary of Robin's 
death in 1897. Little is known about Robin personally. However we have uncovered 
all of his works (they are relatively few). Nowhere have we found him using the 
Robin boundary condition. Robin wrote a nice thesis in potential theory and also 
worked in thermodynamics. We have concluded that it is neither inappropriate nor 
especially appropriate that the third boundary condition now bears his name. 

5. Conclusion 

In the first domain decomposition conference [17] we presented new appli-
cations of domain decomposition to fluid dynamics. Here in the tenth domain 
decomposition conference we have presented new theory from linear algebra and 
differential equations applied to domain decomposition. 
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On Orthogonal Polynomial Bases for Triangles and 
Tetrahedra Invariant under the Symmetric Group 

Gary Man-Kwong Hui and Howard Swann 

1. Introduction 

We present an L2-orthonormal polynomial basis for triangles containing lOth 

degree polynomials in its span. The sixty-six basis functions are defined by using 
35 generating functions {Bk(x,y)} with the property that Bk(x,y) is orthogonal 
to Bk(y, x) unless they are equal. For tetrahedra, we describe methods for con-
structing a an L2-orthonormal basis by defining generating functions Bk(x, y, z) 
such that the action of S3 on the arguments of Bk can provide as many as six 
orthogonal basis functions. Thirty-five basis functions generated by 11 Bk have 
been computed. These bases are particularly useful for approximating the solution 
of partial differential equations using the Cell Discretization Algorithm (CDA). 

The CDA allows a user to partition the domain of a problem into 'cells', choose 
any basis on each cell, and then 'glue' the finite dimensional approximations on 
each cell together across cell interfaces to achieve a form of weak continuity using 
a method called 'moment collocation.' This method allows a user to select a basis 
tailored to the type of an equation or the geometry of the cells without having to 
worry about continuity of an approximation. 

If polynomial bases are used and we have planar interfaces between cells, we can 
impose sufficient collocation moments so that our approximations are continuous 
and we duplicate the h - p finite element method [9]. Error estimates that estab-
lish convergence of the method contain two components; the first consists of terms 
arising from the lack of continuity of an approximation and the second contains 
terms majorized by the orthogonal complement of the projection of the solution 
onto the approximation space. However, in all trials of the method using polyno-
mial bases[4, 9, 5, 7, 6, 8], there has been no particular advantage in enforcing 
continuity of an approximation; continuity does eliminate the first error component, 
but by doing so a parameter in the second error component grows strongly, thus 
cancelling any apparent gain by forcing continuity. This is discussed extensively in 
[9]. Thus we obtain additional degrees offreedom that can, for example, be used to 
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enforce a weak solenoidal condition for approximating the solutions to the Stokes 
equations [8]. 

We have implemented the algorithm for general domains in R 2 partitioned into 
cells with linear internal interfaces between cells. Affine transformations are used 
to map any cell into a standard configuration to effect quadrature and if a basis 
is defined on a cell in standard configuration, we use an affine transformation to 
provide a basis for the affine image of the cell. For the most part we use cells 
that are parallelograms or triangles-affine images of a unit square or unit simplex. 
A 'good' basis for a general implementation of the algorithm is a basis that is 
L 2 orthonormal, particularly for time-dependent problems and the construction 
of a solenoidal basis [8]. Since affine transformations preserve orthogonality, it 
suffices to construct orthonormal bases for the standard square or simplex. A 
global orthonormal basis is then produced by a linear combination of the cell basis 
functions using coefficients obtained from the QR decomposition of the matrix 
enforcing the moment collocation constraints [5, 7, 6]. These arguments generalize 
to R 3 . 

Products of Legendre polynomials provide an L 2 - orthonormal basis for a 
square. In Section 2, for the unit 2-simplex, with vertices at (0,0), (1,0) and (0,1), 
we describe the method we have used to construct an orthonormal basis with poly-
nomials of degree 10 or less in its span. 

In R 3 ; products of Legendre Polynomials produce an orthonormal basis for any 
parallelepiped. In Section 3 we describe the construction of an orthornormal basis 
for the standard 3-simplex. The methods we use require that we solve a set of four 
simultaneous quadratic equations in five variables. 

The results for tetrahedra were obtained by Hui [2]. 

2. Construction of a polynomial basis for triangles. 

We contrive an L2 orthonormal basis B;(x, y) for the 2-simplex that uses a 
method similar to the Gram-Schmidt process to sequentially introduce sets of mono-
mials xJ yk into the basis. The first problem is to determine how j and k should be 
successively chosen to produce our basis sequence. 

Consider the Taylor's expansion of any u(x, y) around (xo, Yo): 
u(x, y) = u(xo, Yo)+ Ux(x- Xo) + Uy(y- Yo)+ 

(1/2!)[uxx(X- Xo) 2 + 2uxy(X- Xo)(y- Yo)+ Uyy(Y- Yo) 2 ] 

+(lj3!)[uxxx(X- Xo) 3 + 3Uxxy(X- X0 ) 2(y- Yo)+ 
2 3 3Uxyy(X- Xo)(y- Yo) + Uyyy(Y- Yo) ] 

+(lj4!)[uxxxx(X- Xo) 4 + 4Uxxxy(x- Xo) 3 (y- Yo)+ 6Uxxyy(x- X0 ) 2 (y- Yo) 2 

3 4 +4Uxyyy(x- Xo)(y- Yo) + Uyyyy(Y- Yo) ] + · · · 
With no other information available about u(x, y), the terms containing the mixed 
partial derivatives in the expansion with coefficients containing factors 2,3,3,4,6,4, 
6,4, appear to be more important than those involving Uxx, Uyy, Uxxx, Uyyy, and so 
forth. 

Polynomial approximation theory suggests that we introduce monomials into 
the basis span according to increasing degree and, given any chosen degree, the form 
of the Taylor's series suggests that the monomials with equal coefficient factors, 
which are either a pair { xiyj, xJ yi} or of form xkyk, be added to the basis span 
in order of decreasing coefficient factors. Thus, for example, when generating a 
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basis that spans polynomials of degree 4, we would first introduce monomial x2y2 

into the basis set (with Maclaurin series coefficient Uxxyy(O, 0)6/4!), then the pair 
{x3 y, xy3}(with Maclaurin series coefficients Uxxxy(O, 0)4/4! and Uxyyy(O, 0)4/4!) 
and finally the pair { x4 , y4}. Our method follows this algorithm. 

This gives a justification for increasing the number of basis functions used in 
the approximation gradually, lessening the need for a new full degree basis at each 
new approximation. 

We call a function f(x, y) symmetric if f(x, y) = f(y, x); recalling that the 
2-simplex is to be our domain for J, the axis of symmetry is the line y = x. 

We say function f is skew if f(x, y) = -f(y, x). The product of two symmetric 
functions is symmetric; the product of two skew functions is symmetric, and the 
product of a symmetric function and a skew function is skew. One easily shows 
that the integral of a skew function over the standard simplex is zero. We combine 
our monomials to form expressions that are either symmetric or skew and have the 
same span; our sequence of generating functions is given by two sets 

A= {1, (x + y), xy, (x2 + y2), (x2y + xy2), (x3 + y3 ), ... } and 

B = {(x- y), (x2- y2), (x2y- xy2), (x3- y3), .... }. 

If we integrate by parts over the standard triangle and use a recursive argument, 
we obtain 11 11-x xPyqdydx = [p!q!]/(p + q + 2)!. 

This gives us an exact (rational) value for the L2 (simplex) inner product (denoted 
< ·, · >) of any monomials. 

We use an algorithm equivalent to the Gram-Schmidt process to generate a 
sequence of symmetric orthogonal polynomials { Q1 , Q2 , ... } from generating set A 
and a set of skew orthogonal polynomials {S1, S2, ... } from B. 

Our basis is obtained by combining these two sets using the heuristic suggested 
by the Maclaurin series. For example, to generate the 7th(and 8th) basis functions, 
thus introducing x2y and xy2 into the basis, we form 

a± (3 = [2 < Qs, Qs >r 1/ 2Qs ± [2 < s3, s3 >r 112S3. 
Then symmetric a is orthogonal to skew (3 and the skew span of B; skew (3 is 
orthogonal to the symmetric span of A; a and (3 have norm 1/v'2, so 

< a+ (3, a- (3 >= 1/2- 1/2 = 0 

and II a+ !311 2=< a, a>+< (3,(3 >= 1 =II a- !311 2 • If B(x,y) =a+ (3, 

then B(y, x) =a- (3. 
When generating basis functions with a symmetric lead term, such as 1, xy, x2y2 

and so forth, where there is no skew partner, we use only the appropriate Q1, Q3, Q7, 
... ; there is no skew (3 term. 

These computations were done with care, for the matrices in the linear systems 
employed by the Gram-Schmidt process are very ill-conditioned. Our computations 
were nevertheless exact, for the matrices and vectors are arrays of rational numbers, 
so that the solution is rational and we have written a program that does Gaussian 
elimination and back substitution using rational arithmetic, thus keeping control of 
the instability of the system. A set of 36 polynomials has been computed, producing 
66 basis functions, which allow us to generate any polynomial of degree 10 or less. 
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FORTRAN77 code and the necessary coefficients to generate the full set of basis 
functions (and their first derivatives) are available from the second author. 

The use of this polynomial basis for solving partial differential equations with 
domains partitioned into triangles requires an efficient method for doing quadrature; 
points and weights for Gaussian quadrature over triangles, exact for polynomials 
of degree 20 or less, have been obtained by Dunavant [1]. As in [3], we generate 
and store an array that contains the information to look up, for example, the 
computations < gxBi, gyBJ > for use when the partial differential equation has 
constant coefficients. 

3. A symmetric ortho-normal basis for tetrahedra. 

The Maclaurin series expansion for f(x, y, z) is 

f(O) 
+fxx + fyY + fzz 

+(1j2)[2(fxyXY -f- fxzXZ -f- fyzYZ) -f- fxxX 2 -f- jyyY2 -f- fzzZ 2] 

+(1/6)[6fxyzXYZ + 3(fxxyx2 y + · ·. fyyxY 2X + ... ) + fxxxX 3 + ... ]+ 
(1/24) [ 12(fxxyzX2yz -f- · · ·) + 6(fxxyyX2y2 + · · ·) + 4(fxxxyX3 y + · · · )+ 

UxxxxX4 + .. · )] + .. · 
Proceeding naively as before, we assume that, for any particular degree of 

basis functions, we should initially introduce monomials xPyqxr into the basis that 
correspond to the larger integer multipliers: 2 then 1; 6,3 then 1; 12,6,4 then 1 and 
so forth. The monomials that are associated with these multipliers occur in sets 
of 1 (e.g. {xyz}), 3 (e.g. {xy,xz,zy}) or 6 (e.g. {x2y,x2z,y2x,y2z,z2x,z2y}.) To 
minimize the number of functions that need to be generated, ideally, our symmetric 
orthonormal basis would require just one basis generating function B(x, y, z) for 
each of the classes; for the classes with 3 members, { B(x, y, z), B(y, z, x), B(z, x, y)} 
would be an orthonormal set, also orthogonal to the basis functions generated 
previously; we will call such functions 3-fold basis generating functions. For the 
classes with 6 members, the full group S3 of permutations of B(x, y, z) : 

{B(x, y, z), B(y, z, x), B(z, x, y), B(y, x, z), B(x, z, y), B(z, y, x)} 

would constitute an orthonormal set, orthogonal to the previously generated basis 
functions; we will call these 6-fold basis generating functions. 

Figure 1 shows a triangular array of the homogeneous monomials of degree 5, 
with the numbers below each monomial representing the bold-face integer multiplier 
to be used in the Maclaurin expansion above. For any particular degree, monomials 
with the same number under them identify those that would be included in the same 
set as described above. Those with higher numbers would be introduced into the 
basis first. 

Our study takes place in the subspace S of L2 (3-simplex) consisting of polyno-
mials in x, y and z. We denote the inner product < ·, · >. 

Each member of the permutation group S3 induces a linear transformation on 
S: 

If T is the permutation (x, y, z), it acts on R 3 as T < x, y, z >=< y, z, x >; 
T 2 < x, y, z >= T < y, z, x >=< z, x, y >; T 3 is the identity. T acts oil a 
polynomial in the following fashion: T(2x2yz + 3xz) = T(2x2y 1 z1 + 3x1yO z1 ) = 
2y2zx + 3yx. 
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yx4 x4z 
5 5 

y2x3 x3yz x3z2 
10 20 10 

y3x2 y2x2z yx2z2 x2z3 

10 30 30 10 
y4x y3xz y2xz2 xyz3 xz4 
5 20 30 20 5 

y5 y4z y3z2 y2z3 yz4 zs 
1 5 10 10 5 1 

FIGURE 1. Fifth degree monomials. 

Transformation P = Pxy corresponds to permutation (x, y). The basic relator 
is PT = T 2 P. Since these transformations are to act on any polynomial q(x, y, z), 
we adopt the convention that, for example, in computing TPxyq(x,y,z),Pxy acts 
first and then T, so the transformation TPxy = (x, y, z)(x, y) = (x, z) and T2 Pxy = 
(y, z). We also use notation S3 for these transformations. 

We let ~ represent a generic member of R 3; given ~. bold face symbol X 0 

represents the monomial xiyi zk associated with any triple of non-negative integers 
[a] = [i, j, k]. For any X 0 , the set of permutations of X 0 is 

{x 0 Tx0 T2x 0 Px0 TPx0 T2Px0 } ' ' ' ' ' ' 
where there will be duplicates if the set has only 3 or 1 member. We let T act 
on 'powers' [a]= [i,j,k] by defining T[a] = T[i,j,k] = [k,i,j];P[i,j,k] = [j,i,k]. 
Then Tx0 = xTa, T2x 0 = xTTa and so forth. 

In figure 1, monomials belonging in the same set (those with the same number 
below them) correspond to all permutations of such a triple [i,j, k]. If i = j = k, 
there is only one monomial; if two of { i, j, k} are the same, there are three monomials 
in the set; if { i, j, k} are all different, there are six. 

The integral of monomial xPyq zr ·over the standard 3-simplex can be shown 
to be [p!q!r!]/[(p + q + r + 3)!] using recursive methods similar to those described 
above [2]. The value of this integral is invariant under the action of 83 on the 
monomials. This symmetry means that the integral depends only on set {p, q, r }. 
This observation, together with bilinearity of the inner product, can be used to 
prove the following lemma: 

LEMMA 1. For·any polynomials G and HE S, 
1. for any R E S3, < RG, RH >=< G, H >; 
2. for any R E S3, < RG, H >=< G, R- 1 H >; 
3. < G,TH >=< T 2G,H >=< TG,T2H >. 
Results 2 and 3 follow readily from 1; 2 shows that the members of S3 act as 

unitary operators on S. 

Our first basis member is the normalized constant function B1 = J6. When 
only one basis function is produced, we call these one-fold generators. The images 
under 83 of the next three basis-generating functions are to contain { x, y, z }, then 
{xy,yz,xz} and finally {x2 ,y2 ,z2 } in their span. 

We give some necessary conditions for recursively defining basis-generating 
functions Br+ 1 that produce three basis members under the action of T, as is 
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the case here. Assume appropriate functions Bk(O have already been constructed, 
k = 1, ... ,r. 

LEMMA 2. Suppose [a]= [i1,i2,i3] has exactly two of {i1,i2,i3} equal. The 
next function G is expressed as 

r n(k) m(k) 

(1) G(O = H(xa) + L L L ak,i,jTi pJ Bk(~) 
k=l i=O j=O 

where n(k) ::; 2; m(k) ::; 1. When Bk(~) is a 3-fold basis generating function, n(k) = 
2 and m(k) = 0. Function H(xa) = boxa + b1Txa + b2T2xa. Suppose 

(I) G, TG, and T 2G are orthogonal to the previous basis functions; 
(II) G, TG and T 2G are pairwise orthogonal and 

(III) set {PG,PTG,PT2G} = {G,TG,T2G}. 
Then, without loss of generality, the following assumptions can be made about 
G, [a], {bi} and {ak,i,J}: 

(a) PG = G;PH =H. 
(b) [a]= [i1, i1, i3]; the first two powers are equal and b1 = b2. 
(c) (I) holds if and only if ak,i,J =- < H, Ti pJ Bk >. Thus the ak,i,J are linear 

combinations of bo and b1. 
(d) In view of (a), arguing recursively, without loss of generality, we can assume 

that all three-fold basis generators Bk satisfy PBk = Bk. Then 

ifn(k) = 2 and m(k) = O,ak,I,o = ak,2,0· 

Ifn(k) = 2 and m(k) = 1,ak,O,l = ak,o,o;ak,l,l = ak,2,o and 

ak,2,1 = ak,l,O· 
(e) If the substitutions in (c) and (d) are made, (I), (II) and (III) hold if and 

only if< G,TH >= 0. 

PROOF. (a) From (III) it follows that exactly one of {G, TG, T2G} must be 
fixed under P. For example, suppose PG = T 2G. Then TG is fixed under 
P, for PTG = T 2 PC= T 2T 2G = TG. Now 

r n(k) m(k) 

TG(~) = TH(xa) + L L L ak,i,jTi+1 pJ Bk(~) 
k=l i=O j=O 

r n(k) m(k) 

= H(xTa) + L L L ak,i,jTi+1 pJ Bk(~). 
k=l i=O j=O 

By re-labelling the ak,i,J and defining [,B] = T[a], this has the same form 
as (1); call it G. We are assuming that PTG = TG; thus PG = G. Then 
PH(xf3) = H(xf3) follows immediately. Redefine G to be G. 

(b) Expanding H(xf3) = PH(xf3) we get H(xf3) = b0xf3 + b1Txf3 + b2T 2xf3 

= boxf3 + b1xTf3 + b2xTTf3 = PH(xf3) := boPxf3 + b1PTxf3 + b2PT2xf3 

= boXP(3 + b1XPT(3 + b2xPTT(3. 

Recalling that [,B] = [i1,i2,i3] has exactly two of i1,i2,i3 equal, one of 
[,B], T[,B] and T 2 [,B] has these two equal integers in the first two positions and 
hence this triple is invariant under P. For example, suppose that PT[,B] = 
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T[/3]. Then PT2[!3] = PTPT[/1] = [!3] and P[/3] = T 2[/3]; the assumption 
that PH= H then requires that bo = b2. If we let bJ = T[/3] and express 
H(x"~) as b1xTf3 + b2TxTf3 + b0T 2xTf3 = b 1 x"~ + b 2 Tx"~ + b 0 T 2 x"~ we get the 
correct representation by relabelling the bi 's. 

(c) This follows if we take the inner product ofTiPiBk with (1). 
(d) When m(k) = 0, the assumption that PBk = Bk and PG = G readily give 

the first result. When m(k) = 1, we have, for example, -ak,l,l = 
< H,TPBk >=< T 2H,PBk >=< PT2H,Bk >=< TPH,Bk >= 
< TH,Bk >=< H,T2Bk >= -ak,2,0· 

(e) Since < G, TG >=< TG, T2G >=< T 2G, G >, pairwise orthogonality 
follows if we can establish that just one of these is zero. If the substitu-
tions in (c) are made, G will be orthogonal to all Ti pi Bk for any choice 
of H, hence orthogonal to the sums in the representation (1) for G. Thus 
< G,TG >=< G,TH >.The representations in (d) give us (III). 

D 

This lemma shows that all we need to do to establish the existence of a suitable 
G is to find some H(xa) of form boxa + bt (Txa + T 2xa) so that, when the substi-
tutions in (c) are made, which are linear in {b0,bt}, the expression< G,TH >= 0 
has a real solution. This is a quadratic equation in {b0 , bt}. If we first seek only 
this orthogonality, there really is only one degree of freedom here; we can set bo or 
b1 = 1 so that the requirement that< G, TH >= 0 yields a quadratic equation in 
one variable. Any real root gives a suitable G with the orthogonality properties; 
it's final definition is found by normalizing so that < G, G >= 1. 

The first four basis generators we have computed are 

Bt = J6; 
B2 = v'3o(2(x + y)- 1); 

B 3 = J7j6(78xy + 6z(x + y)- 2z- 14(x + y) + 3); 

B4=J1.-8_2_+_5_6Ji0_1_o((6Ji0-20)z2+JiO(x2+y2)+(2Ji0-1)xy+(6Ji0-17)z(x+y) 

+(3- 2JiO)(x + y) + (19- 6JiO)z + ( JiO- 5/2) ). 

One-fold basis generators, like the one with lead term xyz, are easily computed. 
These are to be invariant under 83; for any k, all ak,i,i will be equal. For example, 
B5 = J2(504xyz- 63(xy + yz + xz) + 9(x + y + z) - 3/2). 

B6 is the first 6-fold generating function. The lead term is a linear sum of 
{yz2, zx2, xy2 , xz2, yx2, zy2}. It will have representation 

r n(k) m(k) 

G(~) = H(xa) + L L L ak,i,iTi pi Bk(~) 
k=l i=O i=O 

as before, except this time all three integers in [a] are different; [a] = [0, 1, 2] in 
this case, and 

H(xa) = boxa + b1Txa + b2T2xa + b3Pxa + b4TPxa + b5T2 Pxa. 

We wish to find values for ak,i,i and bp such that 

Q = {G,TG,T2G,PG,TPG,T2PG} 

is a set of pairwise orthogonal functions, orthogonal to the previous basis functions. 
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First note that for the functions in Q to be orthogonal to basis functions 
Ti pJ Bk(~) it suffices to show that they are orthogonal to Bk, since Q is to be 
invariant under s3 and the adjoints of operators in s3 are in 83. 

Next, since the previous basis functions are assumed to be orthonormal, for 
any Bk, we can make the following reductions with the help of lemma 2.1. The 
orthogonality requirements are 

0 =< G, Bk >=< H, Bk > +ak,o,o 

0 =< TG, Bk >=< G, T 2 Bk >=< H, T 2 Bk > +ak,2,o 

0 =< T2G,Bk >=< G,TBk >=< H,TBk > +ak,1,o 

0 =< PG,Bk >=< G,PBk >=< H,PBk > +ak,0,1 

0 =< TPG,Bk >=< G,PT2Bk >=< G,TPBk >=< H,TPBk > +ak,1,1 

0 =< T2PG,Bk >=< G,PTBk >=< G,T2PBk >=< H,T2PBk > +ak,2,1· 

For three-fold generators, where P Bk = Bk, the last three requirements are 
omitted; the associated ak,i,1 are zero. In this way we express the ak,i,j as linear 
combinations of the { bi}. 

Finally, we need {bi} so that Q is a pairwise orthogonal set. Again, using 
adjoints, the fifteen requirements reduce to the following four. 

0 =< G, TG >=< G, T2G >=< TG, T 2G >=< PG, TPG >=< PG, T2 PG > 
=< TPG,T2PG >(Type 1) 
0 =< G,PG >=< TG,TPG >=< T 2G,T2PG >(Type 2) 
0 =< G,TPG >=< TG,T2PG >=< T2G,PG >(Type 3) 
0 =< G,T2PG >=< TG,PG >=< T 2G,TPG >(Type 4). 
If the substitutions for the ak,i,j are made, the members of Q are orthogonal to 

the previous basis functions, and the four equations above give us four simultaneous 
quadratic equations in the variables 

{bo,b1,b2,b3,b4,b5}. 

For example, for B6, where all ak,i,1 = 0 with k < 6 and we let ak,i denote 
ak,i,o, the four types above are equivalent to the following, where when k = 1 or 5, 
there is only a single term in the sum. 
Type 1. 

0 =< G,TG >=< G,TH >=< H,TH >- l:~= 1 (ak,oak,1+ak,oak,2+ak,1ak,2) 
Type 2. 

0 =< G, PG >=< G, PH>=< H, PH>- 2:::~= 1 (at0 + 2ak,1ak,2) 
Type 3. 

0 =< G, TPG >=< G, TPH >=< H, TPH >- 2:::~= 1 (a%,2 + 2ak,oak,l) 
Type 4. 

0 =< G, T 2 PG >=< G, T2 PH>=< H, T 2 PH>- 2:::~= 1 (a%,1 + 2ak,oak,2). 
The normalization requirement is 1 =< G, G >=< G, H > . < G, G > is a 

non-negative homogeneous quadratic form; thus < G, G >= 1 places us on the 
(compact) 5-dimensional surface of an ellipsoid in R 6 . We initially confine our 
attention to fulfilling the orthogonality requirements, so, for example, we can let 
bo = 1; we must then find simultaneous roots for 4 quadratic forms in five variables. 
We use a variant of Newton's method that has proved to be quite effective in 
obtaining roots rapidly [2]. 

A number of questions remain. 
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1. We have computed 11 basis-generating functions so far, which produce the 
35 basis functions necessary to have polynomials of the fourth degree or 
less in their span. More are needed for practical use of this basis. Is there 
some way of proving that there always exists a solution to the simultaneous 
quadratics? 

2. Assuming that (as is the case in our experiments) there is a one-parameter 
family of solutions, what criteria should we use for selecting any particular 
one? We sought solutions b such that each bi was about the same magnitude, 
but with many changes of sign. For example, should we rather choose some 
solution b such that just one bi has a large magnitude? 

3. The coefficients become quite large; for example, in Bn, with 24 distinct 
coefficients, the smallest is about 31, the largest about 4890, with 15 greater 
than 1000. We used double precision Gaussian Quadrature to evaluate all the 
inner products in the solution algorithm and terminated the algorithm when 
b was found so that, for each i, I fi(b) I< w- 17 , but tests of orthogonality 
of the normalized basis functions were beginning to have significant errors, 
as appears to be the case with such generalizations of the Gram-Schmidt 
process. The inner products of the monomials are rational; is there a way 
to exploit this as was done with the basis functions for triangles? 
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On Schwarz Alternating Methods for Nonlinear 
Elliptic Problems 

Shiu Hong Lui 

1. Introduction 

The Schwarz Alternating Method is a method devised by H. A. Schwarz more 
than one hundred years ago to solve linear boundary value problems. It has garnered 
interest recently because of its potential as a very efficient algorithm for parallel 
computers. See the fundamental work of Lions in [7] and [8]. The literature on this 
method for the boundary value problem is huge, see the recent reviews of Chan and 
Mathew [5] and Le Tallec [14], and the book of Smith, Bjorstad and Gropp [11]. 
The literature for nonlinear problems is rather sparse. Besides Lions' works, see 
also Cai and Dryja [3], Tai [12], Xu [15], Dryja and Hackbusch [6], Cai, Keyes and 
Venkatakrishnan [4], Tai and Espedal [13], and references therein. Other papers 
can be found in the proceedings of the annual domain decomposition conferences. 
In this paper, we prove the convergence of the Schwarz sequence for some 2nd-order 
nonlinear elliptic partial differential equations. We do not attempt to define the 
largest possible class of problems or give the weakest condition under which the 
Schwarz Alternating Method converges. The main aim is rather to illustrate that 
this remarkable method works for a very wide variety of nonlinear elliptic PDEs. 

Let n be a bounded domain in RN with a smooth boundary. Suppose n = 
01 U 02, where the subdomains 0; have smooth boundaries and are overlapping. 
We assume the nontrivial case where both subdomains are proper subsets of 0. 
Let (u,v) denote the usual L2 (0) inner product and llull 2 = (u,u). Denote the 
energy inner product in the Sobolev space HJ(O) by [u, v] = J0 'Vu · 'Vv and let 
llulh = [u,u]l/2 . Denote the norm on H-1(0) by ll·ll-1 with 

llull-1 = sup l[u, v]l. 
llvll1=1 

Let 6.; be the Laplacian operator considered as an operator from HJ (0;) onto 
H- 1(0;), i = 1, 2. The smallest eigenvalue of -6. on 0 is denoted by A1 while 
the smallest eigenvalue of -6.; is denoted by A1 (0;), i = 1, 2. The collection of 
eigenvalues on 0 is denoted by {Aj }~ 1 . For notational convenience, we define 
Ao = -oo. We take overlapping to mean that HJ(O) = HJ(01) + HJ(02 ). In 
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this paper, a function in HJ (Oi) is considered as a function defined on the whole 
domain by extension by zero. Let Pi denote the orthogonal (with respect to the 
energy inner product) projection onto HJ(Oi), i = 1,2. It is well known that 

d = max(II(I- P2)(I- PI) III, II (I- PI)(I- P2)lh) < 1. 

See Lions [7] and Bramble et. al. [2]. Throughout this paper, C will be used to 
denote a (not necessarily the same) positive constant. 

We shall consider two classes of Schwarz methods. The first class, nonlinear 
Schwarz method, denotes a method where a sequence of nonlinear problems is 
solved one subdomain after another one. The second class, linear Schwarz method, 
is devoted to the method where a linear problem is solved in each subdomain. 

The first Schwarz method for nonlinear problems is due to Lions [7]. He consid-
ers a functional IE C 1(HJ(O),R) which is coercive, weakly lower semicontinuous, 
uniformly convex and bounded below. By making a correction alternately in each 
subdomain which minimizes the functional, he shows that the sequence converges 
to the unique minimizer of the functional. 

2. Nonlinear Schwarz Method 

In this section, we use the Schwarz method in conjunction with the methods 
of Banach and Schauder fixed points and of Global Inversion. The first result is an 
adaptation of the variational approach of Lions [7] for linear problems to nonlinear 
problems. We assume the nonlinearity satisfies a certain Lipschitz condition with 
a sufficiently small· Lipschitz constant so that the method of proof for the linear 
problem still applies. See Lui [9] for a proof. 

THEOREM 1. Consider the equation 

(1) -!:::,.u = f(x, u, 'Vu) + g on 0 

with homogeneous Dirichlet boundary conditions. Assume for every u, v E HJ (0), 

llf(x,u, 'Vu)- f(x,v, Y'v)ll ~ c~llu- viii, 
where c is a constant such that c < 1 and 

(2) d<~-c. 

Assume g E L2 (0). For n = 0, 1, 2, · · · and some u(O) E HJ(O), define the Schwarz 
sequence as: 

-!:::,.u(n+~) = f(x, u(n+~)' 'Vu(n+~)) + g on 01, u(n+~) = u(n) on aol, 

-!:::,.u(n+l) = f(x, u(n+l), 'Vu(n+l)) + g on 02, u(n+l) = u(n+~) on 802. 

Then, the Schwarz sequence converges geometrically to the solution of (1} in the 

energy norm. Here, u(n+~) is considered as a function in HJ(O) by defining it to 
be u(n) on 0\01 and u(n+l) is defined as u(n+~) on 0\02. 

It is an open problem to determine whether the Schwarz sequence converges 
geometrically with just the condition c < 1. 

Next, we give a similar result for an equation whose solution is shown to exist 
by the Schauder/Schaeffer fixed point theorem. See Nirenberg [10] for instance. 
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THEOREM 2. Consider the equation 

(3) -6u = J(x,u, Vu) + g on 0 

with homogeneous Dirichlet boundary conditions. Assume that f E C1(0xRxRN) 
and for every x E 0, a E R, ~ E RN, aj(x,a,~)jau :S 0 and lf(x,a,~)l :S 
C(l+l~l'~'), where C, "(are positive constants with"(< 1. Assume g E H 1(0), u(O) E 
HJ(O) and sufficiently smooth (g E H[N/2l+l(O) and u(o) E H[N/2l+3(0)). For 

n = 0, 1, 2, · · ·, define the Schwarz sequence as: 

-L,u(n+~l = J(x,u(n+~l, Vu(n+~l) + g on 01, u(n+~l = u(n) on ao1, 

-L,u(n+l) = J(x, u(n+l), Vu(n+ll) + g on 0 2 , u(n+l) = u(n+~l on ao2. 

Then, the Schwarz sequence converges geometrically to the solution of (3) in the 
L 00 norm. 

The proof can be found in Lui [9]. It can be divided into four steps. The first 
step is to show that the Schwarz sequence is well defined. Next, we show that the 
sequence is bounded in the H 1 norm so that there exists a weak limit. Then, we 
show that the sequence actually converges strongly (in H 1) to this limit. Finally, we 
use the maximum principle to show that this limit is in fact the unique solution to 
the differential equation. Note that geometric convergence results from the strong 
maximum principle which is used to show that the ratio of successive errors in the 
L 00 norm is bounded by some constant less than one. 

It is natural to inquire whether the rather strong condition on the nonlinearity, 
a f j au :S 0, is really necessary. We believe that any restriction on f leading to a 
unique solution would also do. However, without any conditions on J, the quasi-
linear equation may have multiple solutions and some numerical evidence suggests 
that the Schwarz sequence does not converge. We tried several examples for which 
there are at least two distinct solutions. We monitor llu(n+~) - u(n) II in 01 n 02 
and find that it oscillates. 

Next, we show that the Schwarz method can be applied to a certain class of 
semilinear elliptic problem whose solution can be shown to be unique using the 
Global Inversion Theorem. See Ambrosetti and Prodi [1]. 

THEOREM 3. Consider the semilinear elliptic equation 

(4) -f':..u = AU+ f(x, u) + g on n 
with homogeneous Dirichlet boundary conditions. Here A E R is given with A =F Aj 
for all j and such that there exist positive integers j, l so that for every t E R, 

Aj-1 (01) <A+ fu(x, t) :SA< Aj(Ol), Vx E 01, 
and 

Assume f E C1(0, R) and satisfies the conditions 

(5) llf(x, Vn)ll-1 I 
llvn Ill ---+ 0 whenever I Vn lh ---+ oo 

and 
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for every x E 0 and t E R and for some k E N. The function g is assumed to be 
in H- 1 (0). For n = 0, 1, 2, · · · and any u(o) E HJ(O), define the Schwarz sequence 
as: 

-l':,u(n+l) = AU(n+l) + f(x, u(n+l)) + g on 02, u(n+l) = u(n+~) on 802. 

Then the Schwarz sequence converges geometrically to the unique solution of the 
semilinear elliptic equation (4) in the £= norm. 

We note that (5) is satisfied when, for instance, f is a bounded function. 
For the above semilinear equation, we made use of the property fu ~ 0 in the 

final step of the proof to show that the limit of the Schwarz sequence is the unique 
solution to the original problem. It is unknown whether this assumption is really 
necessary. 

Next we consider the resonance problem for the above semilinear equation. 

THEOREM 4. Consider the semilinear equation 

(6) -L':,u = -\,u + f(x,u) + g on 0 

with homogeneous Dirichlet boundary conditions. Here f E C1 (IT, R) and satisfies 
the following conditions: 

1. :JM such that lf(x, s)l ~ M, 'Vx E 0, s E R. 
2. lims->±oc f(x, s) = J±, 'Vx E 0. 
3. f- · fo ¢1 < - fo gcp, < f+ · fn ¢I, where ¢, is the positive eigenfunction of 

- 1':, corresponding to the principal eigenvalue ,\ 1 . 

4. fu(x,s) ~ 0, 'Vx E 0, s E R. 

The function g is assumed to be in H- 1(0). For n = 0, 1, 2, · · · and any u(o) E 
HJ(O), define the Schwarz sequence as: 

-l':,u(n+~) = A]U(n+~) + f(x,u(n+~)) + g on o,, u(n+~) = u(n) on 801, 

-Lo.u(n+ 1) = -\1u(n+l) + J(x, u(n+ 1l) + g on 02, u(n+1l = u(n+~) on 802. 

Then the Schwarz sequence converges geometrically to the unique solution of the 
semilinear elliptic equation (6) in the£= norm. 

3. Linear Schwarz Method 

In the last section, each subdomain problem is still a nonlinear problem. We 
now consider iterations where linear problems are solved in each subdomain. This 
is of great importance because in practice, we always like to avoid solving nonlinear 
problems. One way is in the framework of Newton's method. Write a model semi-
linear problem as G(u) = u- 1':, - 1 f(x, u) for u E Ht\(0). Suppose it has a solution 
u and suppose that IIL:,- 1f.u(x,u)ll < 1, then for initial guess u(O) sufficiently close 
to u, the Newton iterates u(n) defined by 

(7) u(n+l) = u(n)- Gu(u(n))-IG(u(n)) 

converge to u. Note that the assumption means that Gu =I -6- 1 fu has a bounded 
inverse in a neighborhood of u. Now each linear problem (7) can be solved using 
the classical Schwarz Alternating Method. We take a different approach. 
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THEOREM 5. Consider the equation 

(8) -6u = f(x, u, V'u) + g on n 
with homogeneous Dirichlet boundary conditions. Assume for every u, v E HJ(O), 

llf(x, u, V'u)- f(x, v, V'v)ll ~ c~llu- vll1, 

where c is a constant such that c < 1 and 

d<~-c. 
Assume g E L2(0). For n = 0, 1, 2, · · · and any u(o) E HJ(O), define the Schwarz 
sequence by, 

-l::::,.u(n+~) = f(x,u(n), V'u(n)) + g on nl, u(n+~) = u(n) on anl, 

-l::::,.u(n+l) = f(x,u(n+~), V'u(n+~)) + g on n2, u(n+l) = u(n+~) on an2. 

Then, the Schwarz sequence converges to the solution of (8) in the energy norm. 

Note that each subdomain problem is a linear one. 

4. Work in Progress and Conclusion 

We now report some recent progress on Schwarz Alternating Methods for the 
two-dimensional, steady, incompressible, viscous Navier Stokes equations. In the 
stream function formulation, these equations reduce to the 4th-order nonlinear 
elliptic PDE 

6 2 '1j; = RK(61j;,'lj;) + f, 
where 'lj; is the stream function, R is the Reynolds number, K is a skew-symmetric 
bilinear form defined by K(u,v) = VyUx- VxUy, and f is a forcing term. We 
have constructed three different Schwarz sequences, nonlinear, linear and parallel 
sequences and have been able to show global convergence of the sequences in the 
H 2 norm to the true solution provided the Reynolds number is sufficiently small. 
Here, nonlinear and linear sequences refer to whether nonlinear or linear problems 
are solved in each subdomain, and parallel sequence refers to the independence of 
the problems in each subdomain. We give some further details for the nonlinear 
Schwarz sequence below. 

In the general case, the boundary conditions are inhomogeneous. We make a 
simple change of variable so that the boundary conditions become homogeneous. 
The problem now becomes 6 2¢ = RG(¢) where¢ E H6(0) and G is an appropriate 
nonlinear term. Let ¢(o) E H6(0). For n = 0, 1, 2, ···,define the nonlinear Schwarz 
sequence as 

and 

t:::,.2¢(n+~) 

(¢(n+ll, 8¢:ll) 
RG(¢Cn+ll) on 02 

(¢(n+!l, a¢~:~)) on 802. 
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The result is that this sequence converges in H 2 to the exact solution provided 
R < C / ( M + 1), where C is a constant depending on the geometry and is less than 
one, and M = 11¢(0)- ¢11H2· We are now attempting to show a local convergence 
result for Reynolds numbers larger than one. 

In this paper, we showed how Schwarz Alternating Methods can be imbedded 
within the framework of Banach and Schauder fixed point theories and Global 
Inversion theory to construct solutions of 2nd-order nonlinear elliptic PDEs. Future 
work include Schwarz methods for multiple subdomains, nonlinear parabolic and 
hyperbolic PDEs and the consideration of Schwarz methods on nonoverlapping 
subdomains. 
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Convergence Results for Non-Conforming hp Methods: The 
Mortar Finite Element Method 

Padmanabhan Seshaiyer and Manil Suri 

1. Introduction 

In this paper, we present uniform convergence results for the mortar finite 
element method (which is an example of a non-conforming method), for h, p and hp 
discretizations over general meshes. Our numerical and theoretical results show that 
the mortar finite element method is a good candidate for hp implementation and 
also that the optimal rates afforded by the conforming h, p and hp discretizations 
are preserved when this non-conforming method is used, even over highly non-
quasiuniform meshes. 

Design over complex domains often requires the concatenation of separately 
constructed meshes over subdomains. In such cases it is difficult to coordinate 
the submeshes so that they conform over interfaces. Therefore, non-conforming 
elements such as the mortar finite element method [2, 3, 4] are used to "glue" 
these submeshes together. Such techniques are also useful in applications where the 
discretization needs to be selectively increased in localized regions (such as those 
around corners or other features) which contribute most to the pollution error in 
any problem. Moreover, different variational problems in different subdomains can 
also be combined using non-conforming methods. 

When p and hp methods are being used, the interface incompatibility may 
be present not only in the meshes but also in the degrees chosen on the elements 
from the two sides. Hence the concatenating method used must be formulated to 
accomodate various degrees, and also be stable and optimal both in terms of mesh 
refinement (h version) and degree enhancement (p version). Moreover, this stability 
and optimality should be preserved when highly non-quasiuniform meshes are used 
around corners (such as the geometrical ones in the hp version). 

We present theoretical convergence results for the mortar finite element method 
from [7],[8] and extend these in two ways in this paper. First, we show that the 
stability estimates established for the mortar projection operator (Theorem 2 in 
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[8]) are optimal. Second, we present h, p and hp computations for a Neumann 
problem, which fills a gap in numerical validation as explained in Section 4. 

2. The Mortar Finite Element Method 

We begin by defining the mortar finite element method for the following model 
problem. 

(1) -L\u = f, U = 0 on anD, au 
- =g on anN. an 

where n C JR? is a bounded polygonal domain with boundary an anD U 
anN (anD nanN = 0), and for simplicity it is assumed anD =I= 0. Defining 
Hb(n) = {u E H 1(n)ju = 0 on anD} (we use Standard Sobolev space notation), 
we get the variational form of (1) : Find u E Hb(n) satisfying, for all v E Hb(n), 

(2) a(u,v) ~ { 'VuSlvdx = { fvdx + { gvds ~r F(v). 
ln ln lanN 

This problem has a unique solution. 
We now assume n is partitioned into non-overlapping polygonal subdomains 

{ni}~ 1 assumed to be geometrically conforming for simplicity (though our results 
also hold for the geometrically non-conforming (see [2]) case). The interface set 
r is defined to be the union of the interfaces rij = rji, i.e. r = ui,jrij where 
r ij = ani u anj. r can then be decomposed into a set of disjoint straight line 
pieces /'i,i = 1,2, ... ,L. We denote Z = {")'1, ... ,I'd· 

Each ni is assumed to be further subdivided into triangles and parallelograms 
by geometrically conforming, shape regular [5] families of meshes {TD. The trian-
gulations over different ni are assumed independent of each other, with no compat-
ibility enforced across interfaces. The meshes do not have to be quasiuniform and 
can be quite general, with only a mild restriction, Condition(M), imposed below. 

For K C IR n, let Pk ( K) ( Qk ( K)) denote the set of polynomials of total degree 
(degree in each variable) :S: k on K. We assume we are given families of piecewise 
polynomial spaces {V~,k} on the ni, 

. 1 . 
V/;,k={uEH (ni) I uiKESk(K) for KET/;, u=O on aninanD}· 

Here Sk(K) is Pk(K) for K a triangle, and Qk(K) for K a parallelogram. Note 
that v~ k are conforming on ni' i.e. they contain continuous functions that vanish 
on an;. 

We define the space Vh,k by, 

(3) 

and a discrete norm over Vh,k U H 1(n) by, 
K 

(4) llulli,d = L jjujj~l(fl;)· 
i=l 

The condition on the mesh, which will be satisfied by almost any kind of mesh 
used in the h, p or hp version, is given below. Essentially, it says the refinement 
cannot be stronger than geometric. 

Condition(M) There exist constants a, C0 , p, independent of the mesh param-
eter h and degree k, such that for any trace mesh on "'( E Z, given by xo < 
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h· 
x1 < ... < XN+l, with hi = Xj+l - Xj, we have ht :::; Co o:li-jl where o: satis-

J 
fies 1 :::; o: < min{(k + 1)2 , p }. 

To define the "mortaring" , let 'Y E Z be such that 'Y c r ii. Since the meshes 
T~ are not assumed to conform across interfaces, two separate trace meshes can 
be defined on"(, one from ni and the other from 01. We assume that one of the 
indices i,j, say i, has been designated to be the mortar index associated with"(, 
i = M('Y). The other is then the non-mortar index, j = NM('Y). We then denote 
the trace meshes on 'Y by T/:1(-y) and T/JMh)' with the corresponding trace spaces 
being yM ('Y) and yNM ('Y), where e.g. 

Given u E Vh,k, we denote the mortar and non-mortar traces of u on 'Y by u!; and 
u~ M respectively. We now restrict the space Vh,k by introducing constraints on the 
differences u!; - u~ M. This "mortaring" is accomplished via Lagrange Multiplier 
spaces S ('Y) defined on the non-mortar trace meshes T/J M b). Let the subintervals 
of this mesh on 'Y be given by Ii, 0:::; i:::; N. Then we set S('Y) = S~f: ('Y) defined , 
as, 

S('Y) = {x E C('Y) I xk E Pk(Ii), i = 1, ... , N- 1 , XIIo E 'Pk-1 (Io), 

XIIN E 'Pk-l(IN)} 
i.e. S('Y) consists of piecewise continuous polynomials of degree :::; k on the mesh 
T/JM('y) which are one degree less on the first and last subinterval. 

We now define Vh,k C Vh,k by, 

(5) vh,k = {u E Vh,kl1(u!/ -u~M)xds = 0 Vx E Sf,f:('Y),V'Y E Z}. 

Then our discretization to (2) is defined by: Find uh,k E Vh,k satisfying, for all 
v E Vh,k, 

(6) 
K 

ah,k(uh,k,v) ~f L 1 V'uh,k. V'vdx = F(v). 
i=l !1; 

THEOREM 1. [3] Problem (6) has a unique solution. 

3. Stability and Convergence Estimates 

Let V0NM ('Y) denote functions in yNM ('Y) vanishing at the end points of 'Y· The 
stability and convergence of the approximate problem depends on the properties 
of the projection operator ll1 : L2('Y) ~ Vf M ('Y) defined as follows: For u E 
L2('Y), 'Y E z, n")'u = n~,ku is a function in vtM ('Y) that satisfies, 

(7) 1 (n~,ku) xds = 1 u xds Vx E sf,f:('Y). 

Condition(M) imposed in the previous section is sufficient, as shown in [7, 8], to 
ensure the following stability result for the projections TI1 . 
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THEOREM 2. Let {Vh,k} be such that Condition(M) holds. Let {II~,k, "fEZ} be 
defined by (7). Then there exists a constant C, independent of h, k (but depending 
on a, Co, p) such that, 

(8) 

(9) 

IIII~·kullo, 1 :::; Ck! llullo,1 'VuE L2('Y) 

II(II~·ku)'llo, 1 :::; Ckllu'llo,1 'VuE HJ('Y) 

A question unanswered in [8] was whether (8)-(9) are optimal. Figure 1 shows 
that the powers of kin (8)-(9) cannot be improved. This is done by approximating 
the norms of the operator IIII~·kll.c(L 2 (T),L 2 (T)) and IIII~·kll.c(Hl(T),Hl(T)) (with h 
fixed), using an eigenvalue analysis. (For details we refer to the thesis [7].) It is 
observed that these norms grow as O(k!) and O(k) respectively, as predicted by 
Theorem 2. 

Using Theorem 2 and an extension result for hp meshes [8], we can prove our 
main theorem, by the argument used in [3], Theorem 2 (see [7, 8] for details). In 
the theorem below, { Nj} denotes the set of all end points of the segments 'Y E Z. 

THEOREM 3. Let {Vh,k} be such that Condition(M) holds. Then for any E > 0, 
there exists a constant C = C(t:), independent ofu, hand k such that, 

(10) llu- Uh,kllr,d :::; c" inf II au - 1/JII 1 I+ ~ 1/JESh k(T) an (H 2 hl) 
1EZ ' 

C i~f {L:IIu-vllr,n;+ 
vEVh,k i 

v(Nj)=u(N1) 

ki+< L (llu- v~ll!+q + llu- v~M11!+<, 1 )} 
1EZ 

Moreover, for h or k fixed, or for quasi uniform meshes, we may take E = 0 if we 

replace ll·lll+q by 11·11 d"f). 
2 ' Ho2o 

The following estimate for quasiuniform meshes follows readily from Theorem 3: 
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FIGURE 2. (a) L-shaped domain (b) Tensor product mesh form= 
n=2 
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THEOREM 4. Let the solution u of (2) satisfy u E H 1(0), l > ~ (l > ~ if k 
varies). For the hp version with quasiuniform meshes {T~} on each ni, 
(11) llu- uh,klh,d ~ Ch~-'-lk-(l-l)+~ llull!,n 
where J.L = min{ l, k + 1} and C is a constant independent of h, k and u. 

Theorem 3 also tells us that, using highly non-quasiuniform radical meshes 
in the neighbourhood of singularities (see Section 4 of [1]), we can now recover 
full O(hk) convergence even when the mortar element method is used. Moreover, 
exponential convergence that is realized when the (conforming) hp version is used 
over geometrical meshes will be preserved when the non-conforming mortar finite 
element is used. We illustrate these results computationally in the next section. 

4. Numerical Results 

We consider problem (1) on the L-shaped domain shown in Figure 2, which 
is partitioned into two rectangular subdomains, 0 1 and 0 2 , by the interface AO. 
In [8], we only considered the case where ao.D = an.. This, however, results in 
the more restrictive mortar method originally proposed in [3], where continuity is 
enforced at vertices of ni. To implement the method proposed in [2] and analyzed 
here, where the vertex continuity enforcement is removed, we must take Neumann 
conditions at the ends of AO. We therefore consider here the Neumann case where 
a0.N = a0., with uniqueness maintained by imposing the condition U = 0 at the 
single point C. Our exact solution is given by, 

u(r, 0) = r~ cos(~) - 1. 

where (r, 0) are polar coordinates with origin at 0. We use the mixed method to 
implement the mortar condition. For our computations, we consider tensor product 
meshes where n2 is divided into n2 rectangles and nl is divided into 2m2 rectangles 
(see Figure 2). 

It is well-known that this domain will result in a strong r~ singularity which 
occurs at the corner 0 in Figure 2, which limits the convergence to O(N-~) when 
the quasiuniform h version is used. Figure 3 shows that this rate is preserved when 
the mortar finite element is used (graph (1)) with degree k = 2 elements. When 
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FIGURE 3. The relative error in the energy norm in dependence 
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FIGURE 4. The relative error in the energy norm in dependence 
on N for geometric meshes (a1 = 0.17, a2 = 0.13) 

suitably refined radical meshes are used, then O(N- 1) convergence is recovered 
both for the conforming (graph(2)) and mortar (graph(3)) methods. 

For the p and hp mortar F;EM on geometric meshes, we take m = n and 
consider the geometric ratio a (i.e. the ratio of the sides of successive elements, see 
[6]) to vary in each domain f!i. The optimal value is 0.15 (see [6]), but we take 
a1 = 0.17 and a2 = 0.13 to make the method non-conforming. We observe in Figure 
4, the typical p convergence for increasing degree k for various n. Note that for our 
problem, at least, we do not see the loss of O(k~) in the asymptotic rate due to the 
projection TI1 not being completely stable (as predicted by Theorem 4 and Figure 
1). See Figure 5(a) where we have plotted the case a1 = 0.17, a2 = 0.13 for n = 4 
together with the conforming cases a 1 = a 2 = 0.13 and 0.17. The results indicate 
that the p version mortar FEM behaves almost identically to the conforming FEM. 

Finally, in Figure 5(b), we plot log(relative error) vs Nl, which gives a straight 
line, showing the exponential rate of convergence. We also plot log(relative error) 
vs N~, which is the theoretical convergence rate for the optimal geometric mesh 
(see [1],[6]). Since we consider a tensor product mesh here, which contains extra 
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degrees of freedom, we can only obtain an exponential convergence rate of Ce-"~N 4 

theoretically. 
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Intergrid Transfer Operators for Biharmonic Problems Using 
Nonconforming Plate Elements on N onnested Meshes 

Zhongci Shi and Zhenghui Xie 

1. Introduction 

The aim of this paper is to construct a preconditioner for biharmonic problems 
using nonconforming plate element on nonnested meshes by additive Schwarz 
methods. The success of the methods depends heavily on the existence of 
a uniformly,or nearly uniformly, bounded decomposition of a function space 
in which the problem is defined, and intergrid transfer operators with certain 
stable approximation properties play an important role in the decomposition 
[1, 2, 4, 5, 7, 8, 3]. For the case when coarse and fine spaces are all nonconforming, 
a natural intergrid operator seems to be one defined by taking averages of the 
nodal parameters. We define an intergrid transfer operator for nonconforming 
plate elements in this natural way, discuss its stable approximation properties, and 
obtain the stable factor ( H j h )312 . It is also shown that the stable factor cannot 
be improved. However, to get an optimal preconditioner, we need in general the 
stability with a factor C independent of mesh parameters H and h. Therefore, 
it cannot be used for that purpose. To obtain an optimal preconditioner for 
biharmonic problems using nonconforming plate elements on nonnested meshes by 
additive Schwarz methods, we define an intergrid transfer operator, prove certain 
stable approximation properties, construct a uniformly bounded decomposition for 
the finite element space, and then get optimal convergence properties with a not 
necessarily shape regular subdomain partitioning. Here the fine mesh may not be 
quasi-uniform. 

2. A sharp estimate 

Let n be a bounded polygonal domain in R2 with boundary an. We consider 
the following biharmonic Dirichlet problem: 

(1) D. 2 u=finf2,u=~~=Oon80. 
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The variational form of the problem (1) is : to find u E HJ(O) such that 

(2) a(u, v) = (!, v), Vv E HJ(n), 
where 

a(u,v) =In {~U~V + (1- a)(2812U812V- 8nu822V- 822U8nv)}dx, 

(!, v) = In fvdx, a E (0, 0.5) is the Poisson ratio . 

The unique solvability of the problem (2) for f E L2 (0) follows from the continuity 
and coerciveness of the bilinear form in HJ(n) and Lax-Milgram theorem. 

Let Jh be a triangulation of n, and Vh a nonconforming plate element space. 
The corresponding finite element discrete equation for problem (2) is : to find 
Uh E Vh such that 

(3) 
where 

ah(uh, vh) = L 1 {~uh~vh +(l-a)(2812uh812vh -8nuh822vh -822uh8nvh}dx. 
TEJh T 

To obtain an optimal preconditioner of problem(3) by additive Schwarz methods, 
the intergrid transfer operator with certain stable approximation properties plays 
an important role. For the case when coarse and fine spaces are all nonconforming, 
a natural intergrid transfer operator seems to be one defined by taking the average 
of the values of the nodal parameters. We define an intergrid transfer operator in 
this natural way. However, it can be shown that the intergrid transfer operator is 
not suitable for obtaining an optimal preconditioner. 

We take Morley element as an example. In this section, let JH and Jh be two 
quasi-uniform triangulations of n and VH the associated Morley element spaces. 
We assume that Jh is a refinement of JH. Note that VH ct. Vh. 

The intergrid transfer operator I'H : VH -t vh is defined as follows. 
For v E VH, I'Hv E Vh is defined so that 
a) if p is a vertex of Jh which is also a vertex of J H or in the interior ofT E J H, 

(I'Hv)(p) = v(p); for other vertices p of Jh, v may have a jump at p and I'Hv takes 
the averages of v at p; 

b) if m is a midpoint of an edge of Jh which is in the interior of T E J H, 

a(~~v) (m) = g~ (m); for one of other edge midpoints m associated with Jh, g~ may 

have several jumps and a(~~v) (m) takes the arithmetic average value of g~ atm. 
About the operator I'H we have the following sharp estimates. 

THEOREM 1. For v E VH, we have 

(4) II'Hv- vlo,h,n::; C(H3h) 1/ 2lvi2,H,n, 

(H3) 1/2 
(5) II'Hv- vl1,h,!1::; C h lvi2,H,n, 

and 

(6) (H)3/2 
II'Hvl2,h,!1 ::; C h lvi2,H,!1· 

Furthermore, the estimates (5) and (6) are sharp. 
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The proof of the theorem can be found in Shi and Xie [6]. For other 
nonconforming plate elements, we can get similar results. 

To get an optimal preconditioner, we need in general the stability with a factor 
C independent of mesh parameters H and h. Therefore, it cannot be used for 
obtaining an optimal preconditioner. 

3. An intergrid transfer operator for nonconforming plate element on 
nonnested meshes 

We now define another intergrid transfer operator, discuss its stable 
approximation properties, and construct an optimal precondotioner for problem(2) 
using nonconforming plate elements on nonnested meshes. 

3.1. Stable approximation properties. Let JHc be a quasi-uniform 
triangulation of n. JHc will be referred to as the coarse grid. Here He is the 
maximum diameter of this coarse triangulation. Let J h be a triangulation of n 
that satisfies the minimal angle condition in this section. In general,Jh is not a 
subdivision of J He. We assume that each fine triangle intersects with at most no 
coarse triangles,n0 ::; C, 

(7) { h::; CHe, and 
lrl::; Clkl, if knf # ¢,r E Jh,k E JHc, 

where I · I means the area in R2. 
Let VHc be Morley element spaces associated with meshes He, nodal parameters 

of which vanish on an. Note that VHc ct. vh. For the space VHc,we take 
WHc = ARHc(n) to be its conforming relative, where WHc is the Ps Argyris element 
space { w E C 1 ( n) : wIT E Ps (T)' 'r/T E J H c' w = On w = 0 on an}. The conforming 
interpolation operator EHc : VHc----> WHc is defined as follows(cf. Brenner [1]): 

(8) {

(EHcv)(p) = v(p); 
(DaEHcv)(p) = average of (Davi)(p), la:l = 1; 
DaEHcv(p) = 0, la:l = 2; 
OnEHcv(m) = Onv(m); 

where p is vertex,m is midpoint of sides,vi = vlri and Ti contains p as a vertex. 
Eh : Vh ----> Wh can be defined similarly. We have [1] 
(9) llv- EHcviiP(T) + Helv- EHcvh,r + H~IEHcvi2,T::; CH~Ivi2,T, 'r/v E VHc, 

where T E JHc' and 

(10) llw- Ehwll£2(r) + hrlw- Ehwh,r + h;IEhwl2,r::; Ch;lwl2,n 'r/w E Vh, 

where r E Jh, hr is the diameter of r. 
Define the nodal interpolation operator ITHc : CJ(n)----> VHc as follows: 

{
ITHcv(p) = v(p), 

OniTHcv(m) = Onv(m). 

Ih : CJ (0) ----> Vh can be defined similarly. Then, it is easy to prove that 
(11) 

llv- ITHcviiL2(T) + Helv- ITHcvil,T + H~IITHcvi2,T::; CH~Ivi2,r, 'r/v E H2(T), 

where T E JHc· 
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The intergrid transfer operator I'k : VHc-) vh is defined by I'Hc = Ilh. EHc· 
For nested meshes, certain stable approximation properties of the intergrid transfer 
operator were discussed in Brenner [1]. However, for nonnested meshes, it can 
not be proved in the same way. We have the following theorem, which plays an 
important role in our analysis. 

THEOREM 2. There exists a constant C > O,independent of h, He such that for 

U E VHcl 

(12) II'Hc ul2,h,f! ::::; Clui2,Hc,f!, 
(13) llu- I'l£cullo,n + HciEHcU- I'l£cull,h,f!::::; CH~Iui2,Hc,n, 

where iuiT,Hc,n = I:rEJnc lulh· 
PROOF. We first prove (12). Let u = EHc u. The essential step is to establish 

the estimate 

(14) 

LetT= Llp1P2P3, and m1, m2, m3 be the midpoint of the edge P2P3, P3Pb and P1P2 
of T, respectively. If k belongs completely to a single coarse element T, T E J He, 

then (14) is obviously true. We now prove (14) in the case that k does not belong 
completely to arbitrary coarse element T, T E J H c. We know that 

3 

(15) II'Hcult2(k)::::; c~)an(u- UJ)(mi))2, 
i=l 

where UJ means the linear interpolation of u. Let p2m1 be the line segment 
connecting points P2 and m1. We assume that P2m1 is cut into l pieces by the 
coarse triangles rf2m1 , • • • , rrm1 ,and u( ·) is a polynomial on each piece. By the 
assumption made at the beginning of this section, l ::::; C. Therefore, by using the 
triangle inequality, we have 

(16) l8n(u- u1 )(m1)W ~ 2l8n(u- UJ )(p2W + 2l8nu(p2)- 8nu(ml)l2 =I+ II. 

Let g = u-u1, theng(p1) = g(p2) = g(p3) = 0, and there exists 6 E P1P2,6 E P2P3 
such that 

(17) 8P1P29(6) = 0, 8P2Pa9(6) = 0. 

Hence using the triangle inequality and the mean value theorem, we obtain 

(18) 

and 

(19) 

From (16), (18)-(19) we have 

(20) I:::;C 
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Similarly, 

(21) 
l 

II= 2l8nu(p2)- 8nu(ml)l ::; C L lu1LxJ,r:;,2"'11kl,::; C 
m=l 

For m2, m3,we can get the estimates similar to (16), (20) and (21). Therefore, from 
(16),(20) and (21) and their similar estimates for m2 and m3, we have 

3 

(22) L l8n(u- ui)(miW::; C 
i=l 

(14) follows from (15) and (22). 
ForTE JHc,we denote by Tj,j = 1,··· ,lt,all the coarse triangles which share 

at least one of the fine triangles that intersects with T(i.e.,this fine triangle intersects 
with both T and Tj). lt ::; C. 

For all ki E Jh, i = 1, · · · , m' ,whose intersection with Tis nonempty, we obtain 
from (14) that 

h 
(23) II~cul~2(ki)::; cL:: iui~,OO,Tj lkil, \fu E VHc· 

j=l 

By summing (23) over all ki, i 
estimate we have 

1, · · · , m', and from an elementwise inverse 

m' !1 h m' 

L II~cul~2(k) ::; cL:: L iui~,OO,Tj lkil::; cL:: iui~,OO,Tj L lkil 
(24) i=l j=l j=l i=l 

!1 h 
:S C L iul~,oo,rJ ITI :S C L iuiLrJ · 

j=l j=l 

Here we used the fact that,for each T,the sum of the areas of the fine triangle that 
intersects with Tis less than CITI because of the assumption h::; CHc. 

By summing (24) over all Tin J He and noting that the number of repetitions,for 
each T,in the summation is finite,we have 

(25) II~c ui~,h,n ::; L L II~c ui~2(k) ::; Clul~,n· 
rEJHc knf¥</> 

(12) follows from (25) and (9). 
We now turn to the proof of (13). Let k E Jh be a fine triangle and pone of its 

nodes,which implies that w(p) = 0, 8nw(m) = 0. Here w = u- I~c u. We consider 
the integral 

llwlli2(k) = 1 w2(x)dx::; 21 (w(p)- w(x)- Dw(p).(x- p))2dx 

+ 211Dw(p).(x- p)l2dx = h + h 
(26) 

Let xp be the line segment connecting points x and p. We assume xp is cut into l2 
pieces by coarse triangles Tf, · · · , T 1~. Using the triangle inequality and the mean 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



INTERGRID TRANSFER OPERATORS FOR BIHARMONIC PROBLEMS 465 

value theorem,we have 
l2 

(27) h :S: 21 (w(p)- w(x)- Dw(p).(p- x)) 2dx :S: 2l2 L lwl~,oc,T~nkhklkl, 
k m=l 

where hk is the diameter of element k. For the three edge midpoints m;(i = 1, 2, 3) 
of k, and by using On w ( m;) = 0 and the arguments similar to ( 17)-( 19) we 

l2 

(28) !2 :S: 2l2 L Jwl~,oo,T~nkhklkl. 
m=l 

It follows from (26)-(28) and an elementwise inverse estimate that 

Jlwlli2(k) :S: C L lwl~,oc,Tnkhklkl 
7nbf</>,TEVHc 

(29) :s: c 2: 
Tnkf.</>,TEVHc 

:s: c I: 
7nkf.</>,TEVHc 

For T E J H c ,from ( 29) and by the same notation as ( 23) we have 
It 

(30) llwlli2(ki)::; ci: lul~,oc,Tjh 4 lk;l + Clul~,k,h 4 . 
j=l 

By summing (30) over all k;, i = 1, · · · , m,and using the argument similar to (24) 
and the fact that LknTf.</> lkl ::; CJrl we have 

(31) 
m' m' l1 m' 

L llwlli2(k) = L llwlli2(ki)::; cl: L lul~,oc,Tjh 4 lk;J + cl: lul~,kih 4 
i=l i=l j=l i=l 

h m' l1 l1 

::; Ch4 L lul~,oo,T 1 L Jk;l + Ch4 L lui~,TJ ~ Ch4 L Jui~,TJ. 
j=l i=l j=l j=l 

By summing (31) overT in JHc and noting that the number of repetitions,for each 
r,in the summation is finite,we obtain 

(32) llwlli2(0):::; Ch 4 lui~2(0):::; Ch 4 lui~2(0)' 
and by the similar argument we can get 

(33) lwli,h,Sl :::; IE He U - Ijt uJi,h,Sl :::; C H~ IE He ui~,Sl,:::; C H~ Jui~,Sl· 
Combining (32) and (33) completes the proof of the lemma. 0 

We now partition n into nonoverlapping subdomains {n;},such that no an; 
cuts through any elements T, T E Jh, and n = u~l!;. Note that we do not assume 
that {ni} forms a regular finite element subdivision of n,nor that the diameters of 
n; are of the same order. To obtain an overlapping decomposition of n, we extend 
each n; to a larger subdomain n~ :) n;,which is also assumed not to cut any fine 
mesh triangles, such that dist(an~ n n, an; n n) 2: C8, 'v'i,for a constant C > 0. 
Here 8 > 0 will be referred to as the overlapping size. We assume that there exists 
an integer Nc independent of the mesh parameters h, He and 8 such that any point 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



466 ZHONGCI SHI AND ZHENGHUI XIE 

inn can belong to at most Nc subdomains n~. For each n~, i = 1, · · · , N,we define 
a finite element space 

Vi= {v E Vh; nodal parameters = 0 at 8!1~ and outside na. 

On the basis of Theorem 2 and (9)-(11), we can prove the next theorem, which 
shows that the decomposition vh = Vo + vl + ... + v N exists and is uniformly 
bounded when 8 = O(Hc)· 

THEOREM 3. For any v E vh,there exist Vo E VHc,vi E Vi,i = 1,··. ,N, such 
that 

v = I~t vo + v1 + · · · + v N, 

and in addition, there exists a constant Co > O,independent of the mesh parameters 
h, He and 8 such that 

an"("<J, Vo) + t an(v;, v;) oO CoNo ( 1 + ~ + ~1) an(v, v), Vv E V,. 

The proof can be found in Xie [7]. 

3.2. An Additive Schwarz Method. Define Ah Vh --+ Vh, Ai Vi --+ 

Vi(1 ~ i ~ N),and AHc: VHc--+ VHc by 

(Ahv, w) = ah(v, w), Vv, wE Vh, 
(Aiv,w) = ah(v,w),Vv,w E Vi, 

(AHcv,w) = aHJv,w), Vv,w E VHc' 

respectively. The operator Qi : Vh--+ Vi, 1 ~ i ~ N, is defined by 

The operator Pi : Vh --+ Vi, 1 ~ i ~ N ,is defined by 

ah(Piv, w) = ah(v, w), Vv E Vh, wE Vi. 

The operators If!c, Pf!c : vh- VHc are defined by 

(l;tv,w) = (v,l{!cw),Vv E VHc,w E Vh, 

and 

respectively. 
The two level additive Schwarz preconditioner B : Vh --+ Vh is defined by 

N 

B := I'kA"H!lf!c +I: Ai 1Qi. 
i=l 

It can be easily seen that the operator P =BAh= l 1ifcPf!c + E!1 Pi is symmetric 
positive-definite with respect to ah ( ·, ·). 

On the basis of Theorem 2 and Theorem 3, we obtain the following theorem 
which shows that P is uniformly bounded from both above and bellow when 
8 = O(Hc)· 
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THEOREM 4. The following estimate holds: 

A1ah(u,u) ~ ah(Pu,u) ~ A2ah(u,u),\iu E Vh, 

where 

A2/Al ~ CNc (1 + ~1 + ~1), 
which is independent of the diameter of subdomains. This allows us to use 
subdomains of arbitrary shape. 
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Additive Schwarz Methods for Hyperbolic Equations 

Yunhai Wu, Xiao-Chuan Cai, and David E. Keyes 

1. Introduction 

In recent years, there has been gratifying progress in the development of domain 
decomposition algorithms for symmetric and nonsymmetric elliptic problems and 
even some indefinite problems. Many methods possess the attractive property 
that the convergence rate is optimal, i.e., independent of the size of the discrete 
problem and of the number of subdomains, or within a polylog factor of optimal. 
There is, in comparison, relatively little in the domain decomposition literature on 
hyperbolic problems. Quarteroni [8, 9] used nonoverlapping domain decomposition 
methods based on the spectral collocation approximation on systems of conservation 
laws. Gastaldi and Gastaldi [5, 6] set up a nonoverlapping domain decomposition 
scheme based on the finite element approximation for the transport equation. These 
contributions establish the boundary operators that lead to well-posed decoupled 
problems, which can then be discretized and solved by standard means. 

Our interests in this paper are rather different. We examine overlapping domain 
decomposition preconditioners, and leave the original global discretization fully in 
tact. Rather than deriving interface conditions that lead to decomposed solutions 
that are mathematically equivalent (to· within some specified discretization toler-
ance) to the solutions of the undecomposed problem, we derive an approximate 
inverse that can be applied in a concurrent manner, subdomain-by-subdomain, and 
that effectively preconditions the original undecomposed operator, whose action is 
already trivial to apply in the same concurrent manner. There seem to have been to 
date no such additive or multiplicative Schwarz preconditioners leading to optimal 
convergence rates for hyperbolic equations. 

Based on the standard Galerkin method [4] an ASM algorithm is formulated. 
The preconditioned problems are solved by the GMRES method. The convergence 
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rate is shown to be asymptotically independent of the time and space mesh param-
eters and the number of subdomains, provided that the time step is fine enough, 
namely of such a size as would be typical for temporal stability reasons in an ex-
plicit discretization. As these limits are exceeded, numerical experiments based on a 
Galerkin discretization show a rapid deterioration in convergence rate. (Upwinded 
discretizations permit explicit stability limits to be exceeded, in the sense that 
the resulting preconditioned iterations on each time step can converge sufficiently 
rapidly to be cost-effective in comparison with explicit methods, as discussed in a 
forthcoming sequel.) Convergence rate is experimentally observed to be relatively 
independent of overlap. 

Just as in the parabolic case, but in contrast to the elliptic case, no coarse-level 
mesh is required in forming an optimal preconditioner. Good speedups are available 
on a distributed-memory machine, as would be expected of a problem with a purely 
local preconditioner. 

2. Model problem 

We consider for convenience the constant-coefficient linear scalar hyperbolic 
equation: 

(1) 
au au au 
-----=0 
at ax ay ' 

in !1 xI, 

together with proper boundary and initial conditions, where !1 is a bounded domain 
in R 2 with boundary r and I= (0, T) is a time interval. 

All results in this paper extend without difficulty to the more general linear 
hyperbolic problem: 

~~ + div(bu) + cu = J, m (x, t) E !1 X I, 

where !1 is a bounded domain in Rd (d = 2 or 3), the coefficients b = (b1 , · · · , bd) 
and c depend smoothly on (x, t), and ~divb + c ~ c0 ~ 0 in !1 xI, for stability. 

(2) 

By implicit temporal finite differencing, we obtain the following problem: 

{ 
-T (~ + ~) + U = f k 8x 8y k ' 
Uk = g, 

in 
on ~ _ } , k = 1, 2, · · · , K, 

where Tk is the kth time step, K is the number of steps, ~~= 1 Tk = T, f = Uk- 1 , 

and r- is the inflow boundary defined by 

f _ = {(x,y) E f: n(x,y) · (3 < 0}, 

where n(x, y) is the outward unit normal to r at the point (x, y) E r, and (3 = 
( -Tk, -Tk)· Any implicit multistep time-integration method leads to a system like 
(2), in which f more generally contains a linear combination of the solution at 
earlier time steps. 

The following notation will be used throughout this chapter: 

< u, v >-= fr_ uv(n · (J)ds, < u, v >+= fr + uv(n · (J)ds, 
< u, v >= fr uv( n · (J)ds, lul;3 = Ur u2 ln · fJids) ~, 

llull = llull£2(!1), lui= Uru 2 ds)~, 
where f+ = f\f _ = {(x,y) E f: n(x,y) · (3 ~ 0}. 
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3. Standard Galerkin method 

Let us consider the standard Galerkin method for the problem (2), which can 
be given the following variational formulation: Find u E H 1(0), such that 

(3) (uf3 + u, v)- < u, v >-= (!, v)- < g, v >-, Vv E H 1(0), 

where we omit the subscript k, and where Uf3 = -r(~~ + ~~). By Green's formula, 
it is easy to show that 

(uf3, v) =< u, v > -(u, Vf3)· 
The stability of (3) is a consequence of the following property of the bilinear form 
B (3 ( u, v) = ( Uf3 + u, v)- < u, v >-: 

1 
Bf3(u,u) = llull2 + 2lul~· 

The symmetric part of Bf3(u,v) is 
1 

Af3(u,v) = (u,v) + 2(< u,v >+- < u,v >-), 

and the skew-symmetric part is 
1 

Sf3(u,v) = 2 < u,v > -(u,vf3)· 

Define the ,8-norm as 11·11!3 = JB(3(·, ·). 
We choose Vh c H 1(0) as a finite element space of continuous piecewise poly-

nomial functions of degree one or higher on a mesh of quasi-uniform element size 
h. We discretize equation (3) in space by the Galerkin finite element method and 
have the approximation: Find uh E Vh at each time step k, such that 

(4) Bf3(uh, vh) = (!, vh)- < g, vh >-, Vvh E Vh. 

We require the following assumption for the theoretical analysis: 

AsSUMPTION 1. The relation between T and h is 
T :S; Chl+s, 

where s :2: 0. 

In the case of velocity magnitudes different from unity in (1), Assumption 1 
becomes a CFL condition, and the allowable time step must be reduced in inverse 
proportion to the global maximum of the velocity. 

We have some lemmas pertaining to Bf3, Af3, and Sf3 as follows. 

LEMMA 2. There exist positive constants c1 and c2, independent ofT, such 
that 

1Bf3(u,v)l ::; c1llullf3 ·llvllf3, Vu,v E Vh(O), 

Bf3(u, u) :2: c2llull~, VuE Vh(O). 

LEMMA 3. There exist positive constants c3 and c4, independent ofT, such 
that 

1Af3(u, v)l ::; c311ull!3 ·llvllf3, Vu, v E Vh(O), 

Af3(u, u) :2: c4llull~, VuE Vh(O). 

LEMMA 4. There exists a constant c5 > 0, independent ofT, such that 
1 

IS!3(u,v)l::; csr(hllullllvll + lullvl)::; cs(h8 11ullllvll + lullvl), Vu,v E Vh(O). 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



ADDITIVE SCHWARZ METHODS FOR HYPERBOLIC EQUATIONS 471 

An additive Schwarz algorithm for (4) is formulated following [2]. Let ni, i = 
1, ... , N, be nonoverlapping subregions of n with quasi-uniform diameters H, such 
that U ni = D. The vertices of any ni not on an coincide with the fine-grid 
mesh vertices. We define an overlapping decomposition of n, denoted by { n:, i = 
1, · · · , N}, by extending each ni to a larger region n:, which is cut off at the physical 
boundary of n. The overlap is generous in the sense that there exists a constant 
a> 0 such that dist(an: n n, an: n n) 2:: aH, Vi. 

Corresponding to the domain decomposition, we decompose the finite element 
space vh at each time step kin the customary manner [2], i.e., vh = vlh+·. ·+ v}J, 
where V/: is a discrete space whose support is confined to the extended subdomain 
ni. 

The basic building blocks of the algorithm, projection operators Qi : Vh -t 

V;\ i = 1, · · · , N, are defined by 

(5) 

The subproblems have homogeneous Dirichlet boundary conditions for the inte-
rior boundary. We can introduce the operator T = Q1 + · · · + QN and form the 
transformed linear system 

(6) 

where the right-hand side is defined by b = Tuh = 2:!1 Qiuh, which can be 
computed without the knowledge of uh by solving the subproblems (5). 

If Tis invertible, we show below that equation ( 6) has the same, unique solution 
as ( 4). The operator T is inconvenient to obtain explicitly, but the action of T on a 
function in Vh is straightforward to compute, consisting of independent problems in 
subdomains. Thus the preconditioned form (6) can be solved by a Krylov iterative 
method, such as GMRES [10]. 

With Assumption 1 and the inverse inequalities 

(7) 

and (from [7]) 

(8) 

we have 

llull~ < 1 llull 2 + 2TCiul2 

< llull 2 + CTIIull·lluiii 
< llull 2 + Chsllull 2 

< Cllull 2 

(assuming that h ~ 1). On the other hand, we obtain, 

(9) 

which leads to: 

LEMMA 5. The {3-norm is equivalent to the L2 norm. 

Therefore, following [2], we come to the conclusion that: 
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LEMMA 6. There exists a constant Co > 0, independent of h and H such that, 
for all uh E Vh, there exist u? E ~h with uh = 2:!1 u?, and 2:!1 llu?ll~ ~ 
CJIIuhll~- Co generally depends upon the subdomain overlap a. 

We give an estimate in the following lemma for the skew-symmetric part 8(3(·, ·), 
which shows that the skew-symmetric part is a lower order term compared with 
the symmetric part, and can therefore be controlled. 

LEMMA 7. There exists a constant 8, 0 < 8 < 1, independent ofT, h, and H, 
such that 

IS(3(u\ Tuh)l ~ 8B(3(uh, Tuh), Vuh E vh. 

PROOF. We use the inequalities (7) and (8) throughout the proof. 
By the definition of Qi, i = 1, ... , N, we have 

B(3(Qiu\Qiuh) = B(3(u\Qiuh), 

and furthermore 

11Qiuhll(3(!!;) ~ Clluhll(3(o;)· 
Following Lemma 4, Lemma 5, and Assumption 1, we can show 

IS(3(Qiuh, uh- Qiuh)l ~ Chslluhll~(o;r 

Using Lemma 2, Lemma 5, and the Cauchy-Schwarz inequality, we have 
N 

lluhll~ ~ L B(3(Qiu\ u?) 
i=1 

N 

< c L 11Qiuhilf3 ·llu?llf3 
i=1 

N N 

< c L IIQiuhll~ · Lllu?ll~ 
i=1 i=1 

and hence we obtain 
lluhll~ ~ CB(3(u\ Tuh), 

which finally leads to the conclusion. 

We can summarize the following main result: 

0 

THEOREM 8. (a) There exist constants c > 0 and C > 0, independent ofT, h 
and H, such that 

Clluhllf3 ~ 11Tuhiif3 ~ ciiuhiif3, 'Vuh E Vh. 

(b) There exists a constant C(8) > 0, such that Vuh E Vh 

A(3(uh, Tuh) ~ C(8)lluhll~· 

Since the symmetric part of the preconditioned linear system is positive definite, 
GMRES will converge at a rate that is asymptotically independent of h, H, and 7. 
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TABLE 1. Convergence rate dependence on time-step exponent s 

s It. Time 
0.5 4.0 16.71s 
0.1 7.4 26.25s 
0.0 10.0 33.95s 
-0.1 44.1 146.95s 

4. Numerical Results 

The preceding theorems are useful in motivating effective algorithms but leave 
unanswered quantitative questions about the magnitudes of constants in part (a) of 
Theorem 8 about the extent of dependence of C( c5) on the size of the overlap in parts 
(b) of the same theorems, and about the sensitivity of results to inexact solutions 
in the subdomains. The latter is important since inexactness is usually a practical 
requirement. For these reasons, we include some numerical experiments, whose 
purpose is to quantify the dependence of the convergence rate on potentially "bad" 
parameters, including time step exponent, subdomain overlap, inexactness, overall 
problem size, and number of subdomains into which the problem is decomposed. 

We first vary s between the very conservative s = ~, down to the Courant 
limit of s = 0, and a little beyond into negative values. We solve model problem 
(1) with backward Euler time-stepping on a uniform grid with central-differencing. 
We hold the problem size fixed at h-1 = 512, implying approximately one-quarter 
of a million degrees of freedom overall, and the the number of subdomains at p = 
16, arranged in a 4 x 4 decomposition, with 128 x 128 grid cells owned by each 
subdomain. The overlap between subdomains is one mesh cell. We demand a 
reduction of w-5 in relative residual norm at each time step, accomplished by 
linear subiterations of GMRES with a subdomain preconditioner of ILU(O). 

In Table 1, we tabulate the number of linear iterations per time step, averaged 
over 10 consecutive steps, and also the execution time for these ten time steps, as 
measured on the Intel Paragon, with one processor per subdomain. It is evident 
that the theoretical restriction on the time step to the Courant limit is necessary 
for reasonable conditioning of the linear iterations. 

In Table 2 we vary the subdomain overlap in the preceding example, using 
two different subdomain preconditioners, exact solvers (indicated by "LU"), and 
inexact solvers of zero-fill incomplete LU-type ("ILU"). For ILU, three different 
values of s are tried, hovering around the Courant limit. Convergence criteria and 
iteration counts are as before. The overlap is tabulated in terms of the thickness of 
the overlap region in number of cells all around each subdomain, except where cut 
off at the boundary. We observe that increasing overlap has a slightly beneficial 
effect when it alone is the bottleneck to better convergence, as in the LU situation. 
In the practical ILU case, overlap beyond a minimum of one has little to no effect 
on the convergence rate, provided reasonable values of s are employed. In the 
case of negative s, increasing the overlap actually causes the convergence rate to 
deteriorate. 

Comparing the first and third result columns, we see that inexactness has a 
price of approximately a factor of two in convergence rate. In practice, this does not 
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TABLE 2. Convergence rate dependence on subdomain overlap 

overlap LU,s = 0 ILU,s = 0.1 ILU,s = 0 ILU,s = -0.1 
1 5.0 7.4 10.0 44.1 
2 3.0 7.7 10.0 45.2 
4 3.0 7.4 10.0 48.5 

TABLE 3. Convergence rate dependence on number of subdomains, 
and fixed-size parallel scalability 

p per node It. Time Time/It. Rel. Sp. Rel. Sp.jlt. 
4 256 X 256 10.0 171.54s 1.715s 
16 128 X 128 10.0 33.95s 0.339s 5.05 5.05 
64 64 X 64 10.2 10.41s 0.102s 16.48 16.81 

translate into any advantage for exact solvers since the convergence criterion at each 
time step would usually be commensurate with the temporal truncation error, and 
looser than that employed here, and the cost for computing an exact factorization 
of a coefficient matrix on each time step cannot be amortized in practical time-
dependent problems (though it could be in (1)). 

For Table 3, we fix s = 0, the overlap at 1, and the subdomain preconditioner 
as ILU(O). We perform a problem-size-fixed scaling analysis at h-1 = 512 by 
employing successively more subdomains, in going from 4 to 16 to 64 processors. 
Note that the problem size on each processor decreases by a factor of 2 in each of 
the x and y directions in this scaling. As before we tabulate the average number of 
iterations per time step averaged over 10 steps, and the execution time for first ten 
time steps. The execution time is also presented per iteration, and the speedups 
(relative to four processors) are presented for both overall time and for time per 
iteration. This allows for separate measurement of "numerical scalability" of the 
algorithm and "implementation scalability" of the software/hardware system, with 
any deterioration of convergence rate at highly granular decompositions factored 
out. 

Our main observations are the virtual independence of convergence rate on the 
number of subdomains p, for s at the Courant limit, as predicted by the theory, 
and the better than linear parallel scalability. The latter phenomenon is due to the 
increasingly good reuse of data in the working set required by the subdomain solvers 
as the problem-per-processor shrinks. This is a well-known effect in memory-limited 
machines. Because of the insensitivity of the convergence rate to decomposition, 
the two speedup measurements are nearly identical. 

Table 4 is similar to Table 3; in fact, the last line of each tabulates the same 
execution, and both run over the same number of processors, except that Table 4 
runs a problem small enough to fit on one processor, which grows in size as the 
number of processors grows. This is known as a Gustafson scaling analysis. It is a 
practical scaling for large-scale applications and it has the advantage of keeping the 
workingset per node constant over a range of problem size and processor number. 
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TABLE 4. Convergence rate dependence on number of subdomains, 
and Gustafson parallel scalability 

p h -l It. Time Time/It. Rel. Eff. Rel. Eff./It. 
1 64 8.0 6.60s 0.083s 
4 128 10.1 8.94s 0.089s 0.74 0.93 
16 256 10.2 lO.OOs 0.098s 0.66 0.84 
64 512 10.2 10.41s 0.102s 0.63 0.81 

The one-subdomain case is special (and would have converged in one iteration 
had we employed an L U solver). In tabulating efficiency, we take the ratio of the 
execution times on the successively scaled problems. The efficiency can be viewed 
as the incremental efficiency of the last processor added, when loaded with the 
same work per processor. Presenting the relative efficiency per iteration is more 
important in this case, since the iteration count does degrade in going from one to 
many subdomains. 

Our main observation is that the efficiency remains very high, almost explicit-
like. There is no coarse grid to bottleneck this method. On the other hand the 
frequent global inner products are minor bottlenecks. 

We employed the Portable Extensible Toolkit for Scientific Computing (PETSc) 
[1] from Argonne National Laboratory for the numerical studies. 

5. Conclusions 

We have used the standard Galerkin method and to formulate an optimal ad-
ditive Schwarz method for general scalar linear hyperbolic equations. The same 
techniques leading to optimal convergence rates for the parabolic and elliptic cases 
have been are used here, after identification of the proper norm. The method of 
proof does not permit evaluation of the key constants in the theory. 

The theoretical techniques employed here may be applicable to other equations, 
e.g., linearized Euler equations and hyperbolic systems of conservation laws, after 
transformation to canonical form and operator splitting. We are currently pursuing 
such extensions. 

Because of Assumption 1 limiting the size of T, the implicit method described 
herein might not appear to offer any advantage relative to the correspondingly 
spatially discretized temporally explicit method, which has equally good or better 
parallelization properties, and would not require iteration on each time step to 
solve a linear system. On the other hand, temporal truncation accuracy limits 
the algebraic accuracy required in the solution of the implicit system to just a 
few matrix-vector products, and the implicit form may be thought of as a defect-
correction solver. Two practical applications of the results of this paper may be to: 
(1) problems with multiple scales, with some scales finer than the explicit stability 
limit, all of which could be treated implicitly with this method, and (2) problems 
with embedded hyperbolic regions, for which a uniform Schwarz preconditioned 
framework is desired. We mention [3] as an example. 
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A Minimum Overlap Restricted Additive Schwarz 
Preconditioner and Applications in 3D Flow Simulations 

Xiao-Chuan Cai, Charbel Farhat, and Marcus Sarkis 

1. Introduction 

Numerical simulations of unsteady three-dimensional compressible flow prob-
lems require the solution of large, sparse, nonlinear systems of equations arising 
from the discretization of Euler or Navier-Stokes equations on unstructured, pos-
sibly dynamic, meshes. In this paper we study a highly parallel, scalable, and 
robust nonlinear iterative method based on the Defect Correction method (DeC), 
the Krylov subspace method (Krylov), the minimum overlap restricted additive 
Schwarz method (RAS), and the incomplete LU factorization technique (ILU). To 
demonstrate the robustness of the method, we test the capability of the DeC-
Krylov-RAS solver for several flow regimes including transonic and supersonic flows 
around an oscillating wing and a moving aircraft. The parallel scalability is also 
tested on a multiprocessor computer. We consider the unsteady 3D Euler's equation 

(1) a;+ div(F(W)) = 0 

with certain initial and boundary conditions. Unstructured mesh and variable time 
stepping are used in our numerical simulation, however, for the sake of simplicity 
in the discussion, we let ,6.t and h be the fixed time and spatial discretization 
parameters, and cl>~ 2 nd) a second order MUSCL discretization of div(F(·)). A fully 
discretized scheme, which is of second order in both space and time, can be written 
as 

(2) 
3Wn+l 4Wn + wn-l 

h - h h +cl>(2nd)(wn+l)=O 
2,6.t h h . 

Here n is a running time step index and W~ is the given initial solution. Assuming 
that wr and w~-l are known, (2) is a large, sparse, nonlinear algebraic system of 
equations that has to be solved at every time step to a certain accuracy. 
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2. Discretization and the nonlinear solver 

We are interested in applying the method of DeC-Krylov-RAS to the system 
of Euler's equation: 

aw a a a 
at + ax F1 (W) + ay F2(W) + az F3 (W) = 0, 

where W = (p, pu, pv, pw, Ef and (F1, F2, F3f is the convective flux as defined in 
[8]. Here and in the rest of the paper p is the density, U = ( u, v, w f is the velocity 
vector, E is the total energy per unit volume, and pis the pressure. These variables 
are related by the state equation for a perfect gas 

where 'Y denotes the ratio of specific heats ('Y = 1.4 for air). 
The computational domain is discretized by a tetrahedral grid. We use unstruc-

tured grids since they provide flexibility for tessellating complex, moving geometries 
and for adapting to flow features, such as shocks and boundary layers. We locate 
the variables at the vertices of the grid, which gives rise to a cell-vertex scheme. The 
space of solutions is taken to be the space of piecewise linear continuous functions. 
The discrete system is obtained via a finite volume formulation; see e.g., Koobus 
and Farhat [10]. We determine the nth time step size ~tn in the following way. 
Let CFL be a pre-selected positive number. For each vertex xi, let hi be the size 
of the control volume centered at Xi, and we define the local time step size by 

A n h CFL 
uti= iCi+IIUill2 

and then the global time step is defined by 

(3) ~tn = min{~tn. 
2 

Here Ci is the sound speed, and Ui is the velocity vector. 
One of the effective techniques for solving (2) is based on the so-called Defect 

Correction (DeC) method ([11]): Suppose that we have an initial guess W~+l,O for 
w~+I obtained by using information calculated at previous time steps, we iterate 
for j = 0, 1, ... , 

(4) w~+l,j+I = w~+l,j + ~j, 

where ~j is the solution of the following linear system of equations 

(5) 

( ~I+ a <I>(lst)(Wn)) c1 = _ (3W~+l,j- 4Wh + W~-l + <I>(2nd)(Wn+l,j)) . 
2~t w h h <, 2~t h h 

Here I is an identity matrix and <I> ~ 1 st) ( ·) is a first order MUSCL discretization of 
div(F(·)). To simplify the notation, we use 

. = _ h - h h <I>(2nd)(wn+l,j) ( 3w n+l,j 4wn + wn-l ) 
9n+l,J - 2 ~t + h h 
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to denote the nonlinear residual at the jth DeC iteration of the ( n + 1 )th time step 
and re-write (5) as 

(6) 

We remark that (2) doesn't have to be solved exactly. All we need is to drive the 
nonlinear residual to below a certain nonlinear tolerance r > 0, i.e., 

(7) 

such that w~+l,j gives a second order accurate solution in both space and time. 
Also (6) does not need to be solved very accurately either, as its solution pro-
vides only a search direction for the outer DeC iteration. Preconditioned iterative 
methods are often used for finding a ~j = M;;1'f]j such that 

(8) 

for certain linear tolerance 8 > 0. Here M;;1 is a preconditioner for An· 
The effectiveness of the above mentioned method depends heavily, among other 

things, on the choice of the preconditioner and a balanced selection of the nonlinear 
and linear stopping tolerance r and 8. In this paper, we focus on the study of a 
parallel restricted additive Schwarz preconditioned iterative method for solving (6) 
with various 8. More discussions and computational experience with the selection 
of the nonlinear and linear stopping tolerance r and 8 can be found in [2]. 

3. RAS with minimum overlap 

We now describe a version of the RAS preconditioner, which was recently in-
troduced in [3], with the smallest possible non-zero overlap. We consider a sparse 
linear system 

(9) A~=g, 

where A is an n x n nonsingular sparse matrix obtained by discretizing a system 
of partial differential equations, such as ( 1), on a tetrahedral mesh M = { Ki, i = 
1, ... , M}, where Ki are the tetrahedra. Using an element-based partitioning, M 
can be decomposed into N nonoverlapping sets of elements, or equivalently into N 
overlapping sets of nodes (since tetrahedra in different subsets may share the same 
nodes). Let us denote the node sets as Wi, i = 1, ... , N. Let W be the set of all 
the nodes, then we say that the node-based partition 

N 

W=UWi 
i=l 

is a minimum overlap partition of W. "minimum" refers to the fact that the 
corresponding element-based partition has zero overlap. The nodes belonging to 
more than one subdomains are called interface nodes. To obtain a node-based 
nonoverlapping partition, we identify a unique subdomain as the sole owner of each 
interface node. This leads to a node-based nonoverlapping partition of W, as shown 
in Fig.1 for a 2D mesh, or more precisely Wi(o) C Wi, and 

N u Wi(O) = W and Wi(O) n w?) = 0 for i =/= j. 
i=l 
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\ 
I 

FIGURE 1. A minimum overlap two-subdomain partition. wf0l 
contains all the '•' nodes, and W~o) contains all the 'o' nodes, 
therefore wf0l n w~oJ = 0. wpl contains all the nodes bounded 
inside the solid curve, and wpl contains all the nodes bounded 
inside the dotted curve. 

Let m be the total number of nodes in W. Associated with each wp we define a 
restriction operator R?. In matrix terms, R? is an m x m block-sub-identity matrix 
whose diagonal blocks are set to lsxs if the corresponding node belongs to wp and 
to a zero 5 x 5 block otherwise. Similarly we can define Ri for each Wi. Note that 
both R? and Ri are of size n x n. With this we define the matrix, 

Ai = RiARi. 

Note that although Ai is not invertible, we can invert its restriction to the subspace 

where Li is the vector space spanned by the set Wi in R n. Recall that the regular 
additive Schwarz (AS) preconditioner is defined as MA"J = I; RiAi1 Ri, e.g., [4, 
13]. Our RAS algorithm can be simply described as follows: Obtain the solution 
~ = MR.ls'Tl by solving the right-preconditioned system 

AMJi.ls'TJ=g 

with a Krylov subspace method, where the preconditioner is defined by 

MJi.ls = R1A! 1 R~ + · · · + RN A.N1 RCfv . 

In the numerical experiments to be reported in the next section, all subdomain prob-
lems are solved with ILU(O) and GMRES(5) ([12]) is used as the Krylov solver. 
Because of the page limit, we shall restrict our discussion to this particular precon-
ditioner. Other issues can be found in the papers [1, 2]. We remark that the action 
of R? to a vector does not involve any communication in a parallel implementation, 
but ~ does. As a result, RAS is cheaper than AS in terms of the communication 
cost. We will show in the next section that RAS is in fact also cheaper than AS in 
terms of iteration counts. 
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TABLE 1. Iteration counts. Euler flow passing an oscillating wing 
at Mach 0.89. The mesh contains n = 22014 nodes. subd is the 
number of subdomains and 8 is the stopping condition. 

n = 22014 8 = 10 -:l 8 = 10 -IS 

subd JAC AS RAS JAC AS RAS 
4 26 7 6 129 40 30 
8 26 8 6 129 41 30 
16 26 9 7 129 44 31 
32 26 9 6 129 46 32 

4. Numerical studies 

483 

In this section, we present several numerical simulations of unsteady 3D flows 
to demonstrate the scalability and robustness of the RAS preconditioner. We also 
include some comparisons with the regular additive Schwarz method and the simple 
pointwise Jacobi method (JAC). Note that a point in the mesh represents an 5 x 5 
block matrix. Other recent development in the application of RAS in CFD can be 
found in [6, 9]. 

4.1. Parallel implementation issues. We implemented the algorithm on 
a number of parallel machines, and the top-level message-passing calls are imple-
mented through MPI [7]. We partition the mesh by using the TOP /DOMDEC 
package [5]. We require that all subdomains have more or less the same number 
of mesh points. An effort is made to reduce the number of mesh points along the 
interfaces of subdomains to reduce the communication cost. The mesh generation 
and partitioning are considered as pre-processing steps, and therefore not counted 
toward the CPU time reported. The sparse matrix defined by (5) is constructed at 
every time step and stored in an edge-based sparse format. 

4.2. A transonic flow passing a flexible wing. We tested our algorithm 
for an Euler flow passing a flexible wing at M 00 = 0.89. The wing is clamped 
at one end and forced into the harmonic motion We test the algorithm on two 
unstructured meshes with 22014 and 331233 nodes, respectively. The two meshes 
are generated independently, i.e., one is not a refined version of the other. 

We focus on the performance of the algorithm for solving a single linear system. 
The results on the coarser grid are summerized in Table 1 with CFL=900. Table 2 
is for the finer mesh with CFL=lOO. Due to the special choice of the CFL numbers, 
the time steps for the two test cases are roughly the same. Comparing the RAS 
columns in Tables 1 and 2, we see that there is little dependence on the mesh sizes. 
And, we also see clearly that JAC has a strong dependence on the mesh sizes. As 
the number of subdomains grows from 4 to 16 or 32, the number of iterations of RAS 
stays more or less the same without having a coarse space in the preconditioner. 
Another observation is that RAS requires 20% to 30% fewer number of iterations 
than AS for the test cases. 

4.3. A supersonic flow passing a complete aircraft. We consider a su-
personic, Moo = 1.9, Euler flow passing a complete aircraft. The mesh contains 
n = 89144 nodes. In Table 3, we report the number of iterations for solving a single 
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TABLE 2. Iteration counts. Euler flow passing an oscillating wing 
at Mach 0.89. The mesh contains n = 331233 nodes. subd is the 
number of subdomains and b is the stopping condition. 

n = 331233 b = 10 -:! b = 10 -~ 

subd JAC AS RAS JAC AS RAS 
4 58 9 7 253 51 36 
8 58 9 7 253 52 36 
16 58 10 7 253 52 36 

TABLE 3. Supersonic Euler's flow on a 3D unstructured mesh at 
Mach 1.90. The number of processors equals the number of sub-
domains subd. Number of nodes = 89144. The CPU (in seconds) 
time below is for solving one linear system. 

n = 89144 subd = 4 subd = 8 
JAC AS RAS JAC AS RAS 

ITER 96 37 28 96 38 29 
CPU 33 29 23 16 14 11 

COMM 0.2 0.15 0.1 0.3 0.2 0.15 

linear system with JAC, AS and RAS preconditioned GMRES(5) methods. The 
CPU and communication ( COMM) times are obtained on a SGI Origin 2000 with 
4 and 8 processors. Even though this is a shared memory machine, we still treat it 
as a message-passing machine. The results are given in Table 3 for 6 = 10-6 and 
CFL=1000. 

5. Concluding remarks 

We studied the performance of a newly introduced RAS preconditioner and 
tested it in several calculations including a transonic flow over an oscillating wing 
and a supersonic flow passing a complete aircraft. RAS compares very well against 
the regular additive Schwarz method in terms of iteration counts, CPU time and 
communication time when implemented on a parallel computer. Even though we 
do not have a coarse space, the number of iterations is nearly independent of the 
number of subdomains for all the test cases. 
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in Financial Modelling 

Diane Crann, Alan J. Davies, Choi-Hong Lai, and Swee H. Leong 

1. Introduction 

Finance is one of the fastest growing areas in modern applied mathematics 
with real world applications. The interest of this branch of applied mathematics is 
best described by an example involving shares. Shareholders of a company receive 
dividends which come from the profit made by the company. The proceeds of the 
company, once it is taken over or wound up, will also be distributed to shareholders. 
Therefore shares have a value that reflects the views of investors about the likely 
dividend payments and capital growth of the company. Obviously such value will 
be quantified by the share price on stock exchanges. Therefore financial modelling 
serves to understand the correlations between asset and movements of buy /sell 
in order to reduce risk. Such activities depend on financial analysis tools being 
available to the trader with which he can make rapid and systematic evaluation of 
buy /sell contracts. There are other financial activities and it is not an intention of 
this paper to discuss all of these activities. The main concern of this paper is to 
propose a parallel algorithm for the numerical solution of an European option. 

This paper is organised as follows. First, a brief introduction is given of a 
simple mathematical model for European options and possible numerical schemes 
of solving such mathematical model. Second, Laplace transform is applied to the 
mathematical model which leads to a set of parametric equations where solutions 
of different parameteric equations may be found concurrently. Numerical inverse 
Laplace transform is done by means of an inversion algorithm developed by Stehfast 
[4]. The scalability of the algorithm in a distributed environment is demonstrated. 
Third, a performance analysis of the present algorithm is compared with a spatial 
domain decomposition developed particularly for time-dependent heat equation. 
Finally, a number of issues are discussed and future work suggested. 

2. European Options 

One simple and interesting financial model known as the European Option has 
two types of contracts available namely, call options and put options. The holder 
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of a call option has the right, at a prescribed time known as the expiry date, to 
purchase a prescribed asset for a prescribed amount usually known as the strike 
price. While the other party of the contract must sell the asset if the holder chooses 
to buy it. On the other hand, the holder of a put option has the right, at the expiry 
date, to sell the prescribed asset at the strike price. While the other party of the 
contract must buy the asset if the holder chooses to sell it [6]. This section only 
examines a European call option. The stochastic background of the equation is not 
discussed in this paper and readers should consult [6]. 

Let v(x, t) denotes the value of an option where x is the current value of the 
underlying asset and t is the time. The value of the option depends on a(t), E, 
T and r(t) which are, respectively, known as the volatility of the underlying asset, 
the strike price, the expiry time and the interest rate. The Black-Scholes analysis 
for one independent variable leads to the famous Black-Scholes equation [6], 

av 1 2 2 a2v av + (1) -+-a X - + rx-- TV= 0 E 0 
at 2 ax2 ax 

where n+ = {x : X 2: 0}. In order to describe a European call option, boundary 
conditions and final conditons are required. Since the call option is worthless at 
x = 0 even if there is a long time to reach expiry, therefore it is sensible to have 
v(O, t) = 0. Since the asset price increases without bound, therefore it becomes 
likely that the option will be exercised and the magnitude of the strike price 
becomes less important. Therefore it is sensible to have v(s, t) ""' s as s ----+ oo. 
At expiry, if x > E then one should exercise the call option, i.e. to hand over an 
amount E to obtain an seest with x. However, if x <Eat expiry, one should not 
exercise the call option. Since the expiry date is in the future, the final condition 
v(x, T) = max(x- E, 0) must be imposed. The solution v fort< Tis required. 

The financial interpretation of the above model is as follows. First, the 
difference between the return on an option portfolio, which involves the first two 
terms, and the return on a bank deposit, which involves the last two terms, should 
be zero for a European option. Second, the only parameter that affects the option 
in a stochastic way is the volatility a(t) which measures the standard deviation of 
the returns. 

Since (1) is a backward equation, one can transform it to a forward equation 
by using T = T - t and it leads to, 

av 1 2 2 a2v av + (2) - = -a X - + rx- - rv E 0 
aT 2 ax2 ax 

subject to boundary conditions v(O, T) = 0 and v(s, T) ""' s as s ----+ oo and initial 
conditions v(x, 0) = max(x - E, 0). 

An analytic solution may be derived if a change of variable is made where the 
Black-Scholes equation is converted to a time-dependent heat conduction equation 
with constant coefficients [6]. However a field method, such as finite volume 
methods, is of more interest for two reasons. First, there are many examples in 
multi-factor models such that a reduction of the time dependent coefficient to a 
constant coefficient heat equation is impossible. Hence analytic form of solutions 
cannot be found. Second, the computational environment at Greenwich is based on 
the finite volume code PHYSICA [1] which is the main research and development 
code for multi-physics work. The code has capability of solving unsteady diffusion, 
convection and radiation type of equations. Financial modelling typically requires 
large number of simulations and hence computing resources and efficiency of 
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algorithms are very important in order to make evaluation and decision before the 
agreement of a contact. With the present day high performance computing and/or 
distributed computing, parallel algorithms offer efficient numerical solutions to the 
equation given by (2). 

3. Time Domain Decomposition 

For time varying a(t) and r(t), it is possible to make suitable coordinate 
transformation to the Black-Scholes equation in order to obtain a time independent 
like heat equation [6]. Hence the method describes in this section may then be 
applied. Here, a method is described which focuses on time independent coefficients 
a and r. Taking Laplace transform of (2) and taking integration by parts to the 
left-hand-side of the transformed equation, one obtains the parametric equation 

1 2 2 d2u du 
(3) 2a x dx2 +rxdx -(r+>.i)u=v(x,O) En+ 

subject to boundary conditions u(O; )..j) = 0 and u(s; )..j) = ; . Here u(x, )..j) is the 
J 

Laplace transform of v(x, t) and Aj is a discrete set of transformation parameters 
defined by 

(4) ln2 
Aj =j-, j = 1,2,··· ,m 

T 

where m is required to be chosen as an even number [5]. An approximate inverse 
Laplace transform [4] may be used to retrieve v(x, t) according to 

ln2 m 
(5) v(x, T) ~- L Wju(x, )..j) 

T 

where 
j=l 

. min(j,m/2) kmf2(2k)1 
Wj = ( - 1)m/2+J L (m/2- k)!k!(k- 1)!(j ·_ k)!(2k- j)! 

k=(l+J)/2 

is known as the weight factor. Each of the above m parametric equations may be 
rewritten as 

(6) 
d 1 du d -( -a2x2 - + -((r- a2 )xu)- (2r- a 2 +).. ·)u = v(x, 0) 
dx2 dx dx 1 

The computational domain has a uniform mesh and finite volume method is applied 
to (6) which leads to 

(7) 

The resulting system of linear equations is solved in a local area network which 
consists of P workstations. There are two possible implementations as follow. 

First, the solution at a particular time T is being sought. For the case when 
m = P, one would expect ideal load balancing. The total computing time, tA1 , 

using the present scheme can be estimated as tA = t1 + tal P where ii is the 
computing time for solving one parametric equation and ta is the corresponding 
computing time for numerical inverse Laplace transforms given by (5) and is 
assumed to be equally spreaded across the P workstations. For the case when 
m > P, one would expect just a slight out of load balance for the reason that m is 
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possibly not an integral multiple of P. It is possible to estimate the total computing 
time as 

(8) 

The case m < P is not of interest because the active workstations become a subset 
of the local area network. 

Second, the solutions at P particular times Tk, k = 1, 2, · · · , P are being 
sought. In this situation, each workstation looks after the solutions of m parametric 
equations and the corresponding inverse Laplace transform at a particular time Tk. 

Hence the total computing time, tA 2 , may be estimated as 

(9) 

In order to check the scalability of the algorithm, a cell-centred finite volume 
scheme is applied to the constant coefficient heat equation, 

2 1 au 
Vu=-- E -1<x<1 -1<y<1 

kat ' (10) 

subject to unit boundary conditions along the whole boundary and zero initial 
condition. A uniform 16 x 16 grid where the set of discrete equation is solved by 
Gauss-Seidel iteration. Solutions at eight time values, T = 0.1, 0.2, 0.5, 1, 2, 4, 
10 and 20, are sought. For the purpose of demonstration, a network of 4 T800 
transputers were used as the hardware platform. The computing times for P = 1, 
2 and 4 are respectively 2537, 1309 and 634 seconds. The speed-up ratio for using 
two and four processors are thus 1.94 and 4 respectively. More results about this 
test problem can be found in [2] and experience shown in the paper suggests that 
m = 8 provides sufficient accuracy for the model test. Note that the value of m 
determines the accuracy of the inverse Laplace transform and hence it depends on 
the mesh size or the number of grid point. In general, m = .;N /2 where N is the 
total number of grid points in a two-dimensional problem [2]. Note also that the 
scalability property as shown in this section also applies to eqn (6). 

4. A Comparison with Spatial Domain Decomposition 

In order to find out the suitability of the proposed algorithm for a distributed 
computing environment, a comparison with a spatial domain decomposition method 
is examined in this section. The spatial domain decomposition method is similar to 
the one developed by Dawson et al [3] for unsteady heat conduction equation. The 
problem described in (2) is partitioned into P subdomains so that a coarse mesh 
of mesh size H = s/ P is imposed with interior boundary of the subdomains being 
the same as the nodal points of the coarse mesh. In order to determine the interior 
boundary values of each of the subdomains, an explicit scheme derived from using 
a central difference method along the spatial axis and a forward difference method 
along the temporal axis is as follows, 

n 1 2 2f::.t f::::.t n-1 1 2 2f::.t f::.t n-1 
vi =(2axiH2 -rxi 2H)vi_ 1 +(2axiH2 +rxi 2H)vi+ 1 

(11) 
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Here subscripts i denote the mesh points on the coarse mesh and superscripts n 
denotes the time step at t = n!:::.t. The choice of !:::.t must satisfy the coarse grid 
restriction for an explicit scheme which is 

(12) 
a2x2 

!:::.t:::; ~!n( H2' + r)-1 :::; (a2(P- 1)2 + r)-1 

Note here that !:::.t should be of the order of h2 where h is the grid size of the fine 
mesh. Therefore the total number of time steps involved in the present calculation 
is T(a2(P- 1)2 + r). 

It is reasonable to assume that the computing time for obtaining the solution 
at a new time step using the fine mesh and a finite difference scheme is the same 
as the computing time for obtaining the solution of a parametric equation given 
in (3). Therefore the computing time for marching one time step forward using 
the classical spatial domain decomposition with P subdomains on P processors is 
h/ P. The total parallel computing time can be estimated as 

(13) 

where tb is the overheads for obtaining interior boundary conditons and is assumed 
to be equally spreaded across the P workstations. 

It is natural to require tA1 < ts for any advantage of the proposed time domain 
decomposition scheme to be happened when comparing with the classical spatial 
domain decomposition, and hence one would require f]l'lh < T(a2 (P; 1)2 +rlh, i.e. 

(14) 

When m is an integral multiple of P, one obtains 

(15) 

In other words, one requires the number of parameters in inverse Laplace 
transforms to be smaller than the number of time steps involved in spatial domain 
decomposition. Note that the dominant term in the inequality is obviously T. Since 
typical values of m is usually much smaller than s/h for an acceptable accuracy 
of inverse Laplace transform [2], the inequality (15) is easily satisfied with typical 
ranges of 0.05 <a< 0.45 and 0.6 < r < 1.1. Therefore for a given value of P, the 
inequality offers only a very mild restriction. Hence the time domain decomposition 
method proposed in this paper has advantage over the classical spatial domain 
decomposition method for European call options. 

From (15), we have mh < T(a2(P- 1)2 )j5- which combines with (13) to give 

t 01 T(a2(P- 1)2 + r) -- < ~--~--~--~ 
to P 

(16) 

The ratio governs the number of time levels Tk to be allowed in each workstation 
in order that the inequality tA 2 < tB remains valid. Supposing each parametric 
equation has N grid points involved in the discretisation, the total number of 
floating point operations involved in (5) can be easily counted as 2N + Nm. Also, 
supposing some of floating point operations in ( 11) can be done once for all, the total 
number of floating point operations for the update of interior boundary conditions 
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is counted as 18P. Hence (16) become 
18T 

(17) m<N(a2(P-1) 2 +r)-2 

It can be checked that the inequality is easily satisfied with the above typical ranges 
of a and r. 

5. Conclusions 

A parallel algorithm based on Laplace tranform of the time domain into a 
set of parametric equations is developed for European call option. Distributed 
computing may be applied to solve the parametric equations concurrently. An 
inverse Laplace transform based on Stehfast method is applied to retrieve the 
solution. The method is compared with classical spatial domain decomposition. 
A preliminary analysis shows that the proposed method has advantage over the 
spatial domain decomposition method. 
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Parallel Modal Synthesis Methods in Structural Dynamics 

Jean-Michel Cros 

1. Introduction 

Within the finite element framework, we deal with large-scale eigenvalue 
problems induced by free vibration analysis of complex structures. The classical 
approach for the solution of such problems consists first of reducing the number of 
unknowns, allowing to reduce the computational cost of eigensolver, because only 
the lowest eigenfrequencies are classically researched in modal analysis. Component 
mode synthesis (CMS) or dynamic substructuring methods are appropriate tools 
for this reduction. In this paper we will discuss about the parallel implementation 
of CMS methods. We consider, in particular, among several CMS methods [4], 
the fixed-interface method which we briefly recall. Assuming that the studied 
domain is partitioned in Ns non-overlapping substructures, the global solution 
of the eigenvalue problem to be solved in the domain can be written as the 
sum of the local solutions (fixed interface modes) to elasticity eigenproblem to be 
solved in each subdomain clamped on the interface, and extensions (constraint 
modes or coupling modes), in each subdomain, of functions which represent the 
motion of the interface. The dynamic behavior of the global structure can be 
approximated in the low frequencies range by truncating the series which represent 
the different spaces. It remains to define what kind of Dirichlet's conditions has 
to be prescribed for the coupling of the substructures. The most classical choice 
[3] consists of prescribing at the discrete level the shape functions spanning the 
interfacial interpolation space. In this case, all the motions of the interface are 
represented, but, the number of constraint modes is equal to the number of degrees 
of freedom ( d.o.f.) of the interface. From the parallel point of view the constraint 
and the fixed interface modes can be computed independently in each subdomain. 
An other choice, proposed by Bourquin [1], consists of filtering information in 
order to represent the interface's motion only in the low frequency range, thanks to 
a spectral decomposition of the interface operator coupling subdomains. However, 
the computation of the coupling modes involves all the subdomains. We propose a 
parallel implementation of these methods [5] thanks to the use of techniques arising 
in domain decomposition. 
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The paper is organized as follows : Section 2 presents different parallel 
implementations of the Craig and Bampton (CB) method, one of them enabling 
to avoid the costly computation of the constraint modes. Section 3 describes some 
fixed interface methods using coupling modes. In Section 4, some numerical results 
obtained on the Intel PARAGON machine are presented. We also compare, from the 
cpu time point of view, the results obtained thanks to a parallel sparse eigensolver. 

2. Parallel implementation of the Craig and Hampton method 

The model reduction of each substructure ( s) is given by the projection of local 
mass (M(s)) and rigidity (K(s)) matrices onto the Ritz basis : 

{ :!:: } ~ ( <!>1•1 ;hi J { :~:; } with <1>l•l ~ [ ¢~1 wl •I ~ [-K!;•l;' K,1; 1 l 
where the subscripts i and b respectively refer to the internal and boundary d.o.f., 
ry(s) is the vector of normal modes intensities, \(l(s) and <J>(s) are respectively the 
constraint and fixed interface modes. By assembling the model reduction of each 
substructure we get the following reduced eigenproblem : 

- -(1) Kz=>-.Mz 

with the reduced rigidity (K) and mass matrices (M) given by : 

K- a M-- [O(s)2 l - [ I <J>(s)T M(s)\(l(s) l 
- 0 S ' - \(l(s)T M(s)<J>(s) L:~l \(l(s)T M(s)\(l(s) 

The reduced stiffness matrix includes Schur complement matrix (S) and o~l 2 

which is a diagonal matrix storing the squares of the subdomains eigenvalues. 
The reduced mass matrix includes static condensed mass matrices and the inertia 
coupling between the constraint and fixed interface modes. The size of (1) is equal 
to the sum of the number of fixed interface modes, chosen in each subdomain, 
and the interface's number of d.o.f. (which in the case of complex structures 
is large). This "reduced" eigenproblem is still too large to take benefit from 
eigensolver such QR's method and claims the use of subspace algorithm (Lanczos, 
. . . ). The generalized eigenproblem is then reduced to a standard form and 
involves matrix-vector products with f<- 1 M. Different implementations have been 
studied in order to reduce the computational cost thanks to the use of parallel 
machine with distributed memory. The first one (solver !), is the most natural, 
because it uses the fact that fixed interface modes and constraint modes can be 
computed independently in each subdomain. Then, a processor is on charge of 
a subdomain and the local reduced matrices are built in parallel. However the 
reduced eigenproblem (1) is assembled and solved in sequential way. The second 
one (solver II), looks like Hybrid Craig and Bampton method, proposed by Farhat 
and Geradin [7], but consists in a primal formulation. The Schur complement 
matrix is not assembled and the action of s-1 on a vector is done by using iterative 
Schur complement method [8] with different acceleration techniques [5] (generalized 
Neumann-Neumann preconditioner, technique for taking into account multiple right 
hand sides, . . . ) . The main task, consists in the computation of the constraint 
modes in order to build M. This operation may be avoid. For this purpose a 
third method (solver III) allows for the computation of matrix-vector products 
with reduced mass matrix in a implicit way. The details of this operation are as 
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follows. The product JV!(s)z(s) (with any vector z) can be written in matrix form 
as: 

[ I cf>(s)T M(s)w(s) l { )s)} 

w(s)T M(s)cf>(s) w(s)T M(s)w(s) z~s) 

{ 
z(s) + cf>(s)T M(s)w(s) z(s) } 

- 1 2 
- w(s)T M(s)cf>(s) zis) + w(s)T M(s)w(s) z~s) 

(2) 

The description of the algebraic operations requires the knowledge of the different 
components of this vector, without any explicit assembling of the matrices 
[cJ>(s)T M(s) w(sl], [w(s)T M(s) w(s)], [w(s)T M(s) cf>(s)]. First of all, for each 
subdomain, the following matrix-vector product is computed : 

(3) [ Mi~s) Mi~) l [ qy(s) ] - [ Mi~s)cp(s) l 
M (s) M(s) 0 - M(s) A.(s) 

~ ~ ~ ~ 

Then, at each iteration of a given eigensolver, the operations described below are 
done: 
Computation of w(s)T M(s) cf>(s) zis) 

1. Compute Mi~s) ¢(s) zis) with (3). 
2. Solve Dirichlet's problem in fl(s) with zero on r(s) (interface with other 
subdomains) and external force : 

(4) 22 tb u, _ 22 ~ Z1 [ 
K(s) K(s) l { (s) } { M(s) A.(s) (s) } 

Kit) Ki:) 0 - 0 

3. Compute the forces induced by the opposite displacement, solution of (4) : 

(5J[ Ki,:l Kit) l { -K,~l '~? ¢( •l zJ'l } ~ { - K;;•l K,\•l-' M,~l ¢(•) zJ'l } 

4. Compute Mit) ¢(s) zis) with (3). 
5. Assemble interface's contributions of vectors obtained at the two previous steps : 

(6) { M~:) ¢(s) zis) -Kit) K1:)-1 Mi~s) ¢(s) zis)} 

Computation of w(s)T M(s) w(s) z~s) 

1. Solve Dirichlet's problem in fl(s) with z~s) on r(s) : 

(7) [ ~~: ~n: H ~:: } { n 
2. Compute the matrix-vector product, the local mass matrix M(s), solution of 
problem (7) : 

[
M(s) M(s) l { -K(s)-1 K(s) (s)} { (-M(s) K(s)-1 K(s) + M(s)) z(s)} 

(8) 22 tb 22 tb Z2 _ 22 22 tb tb 2 
M (s) M(s) (s) - (-M(s)K(s)- 1K(s) + M(s)) (s) 

bi bb Z2 bi i i ib bb Z2 

3. Solve Dirichlet's problem in fl(s) with zero on r(s) and external forces : 

[ 
K(s) K~) l { (s) 

(g) K~t) K~~) uO } = { 
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4. Compute the forces induced by opposite displacement, solution of (9) : 

K(s) n n ~~ ~b n ~b Z2 [ Ki:) ] { (K(s)-1 M(s) K(s)-1 K(s) - K(s)-1 M(s)) (s) } 

~ 0 

(10) { (Kb(s) K(s)-1 M(s) K(s)-1K(bs)- Kb(s) K(s)-1 M~bs)) z2(s) } 
2 u 't't '1,7, 'l. 'l. t't 'l. 

5. Assemble interface contributions of vectors (10) and (8). We get then : 

{( Mb(bs) - Mb(s) K(~)-1 K(bs) + Kb(s) K(s)-1 M(s) K(s)-1 K(bs) - Kb(s) K(~)-1 M(bs)) z2(s)} 
'l. 't'l. 'l.. 'l. 'l'l.. 'l.'l. 1.1. t 1. u 'l.. 

Computation of <J>(s)r M(s)w(s)z~s) 

1. Computation of the forces arising from the solution of (7) : 

[ qy(s)T M,Ss) qy(s)T M(s) ] { -K~s)- 1 
Kg) Z~s) } 

•• ib z(s) 
2 

(11) = { -¢(s)T Mi~) K~s)-1 Kg) z~s) + ¢(s)T Mi~) Z~s)} 

The reduced matrix-vector product is achieved through the assembling of the 
contributions of each subdomain. Let us note that all the matrices (except the 
mass matrix) are already used by the iterative Schur complement method. 

3. Fixed interface methods with coupling modes 

With regard to the previous method, a small set of modes is required for the 
coupling of the substructures. The new Ritz basis [1] is indeed defined by : 

{ u~s)} = [ <J>(s) w(s)] { TJ(s) } with 1/J(s) =R(s)'l/J and w(s) = [ -K;:)-1 Kg)'l/J(s) l 
U~s) ~ 1/J(s) 

where 1/J are the first normal modes of the Schur complement matrix (interface 
modes), R( s) is the restriction matrix of the global interface (f) to the local interface 
(r(sl), ~is the vector of the coupling modes intensities and w(s) defines the coupling 
modes. Thanks to this definition of coupling modes, k is diagonal, and the size 
of the reduced eigenproblem is equal to the sum of the number of fixed interface 
modes chosen in each subdomain and the number (Nr) of coupling modes. Then, 
the solution of the reduced eigenproblem is easy. The difficulty is now to find 
the first normal modes of the interface's operator, in the present case the Schur 
complement matrix (method 1) with or without mass condensed matrix (denoted 
by B). 

(12) Sur= >-.rBur ---+ 
1 1 s- Bur= >-.r ur 

From the computation view point, the method presents an interest, when the 
interface is large, only if the Schur complement is not assembled. Once again, the 
iterative Schur complement method (S is not explicitly inverted) is used. Various 
acceleration techniques have been used to reduce as best as possible the cost of 
this operation (Section 2). We have considered different mass matrices : identity, 
lumped (B = 2::~ 1 Mi:)) and static condensed mass matrix. For the latter, the 
matrix-vector product can be done without any assembling operation (Section 2). 
Nevertheless, the computation of the first normal modes of the Schur complement is 
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a costly operation. The use of an approximated inverse [2] (method 2) of the Schur 
complement matrix (such that T ~ s-1) avoids to consider an iterative method, 
because only matrix-vector product with T are then required. 

1 
(13) TBur = .Xr ur 

A good inverse of the Schur complement matrix is clearly the Neumann-Neumann 
preconditioner, written here in its basic form : 

Ns 

(14) T = L R(s)T s(s)-1 R(s) 

s=l 

For sake of generality, it would be required to take into account decompositions with 
cross-points and floating subdomains. In the case of cross-points, [2] defines a new 
extension operator (reflection and cut-off function) which possess an interpretation 
at the continuous level. We propose to improve (14) by averaging the contributions 
of each subdomain through the introduction of weighting matrices [8]. On the 
other hand, the global problem can be well posed (no rigid body modes), but 
the decomposition may lead to local Neumann's problems not well posed (no 
Dirichlet's conditions). Shifting [2] the global problem enables to erase the floating 
subdomains, however one can also handle directly with them thanks to a filter 
operator which stems from balancing method [9]. Finally, the approximated inverse 
is given by: 

Ns 

(15) T =(I- G(GTSc)- 1GTS) L R(s)r p(s)s(s)+ p(s) R(s) 

s=l 

where p(s), stands for the weighting matrix, defined such that 2: p(s) = I;r, G is 
the rectangular matrix which stores the interface restriction of the local rigid body 
motions, and S(s)+ is the inverse of the projection of the image of S(s) in JRNtfronC•), 

where NlfronCs) denotes the local interface size. Let us note, that the rigid body 
motions have to be also considered as coupling modes because, by construction, 
they are perpendicular tour. 

4. Numerical results 

In order to present some numerical experiments, we consider a three-
dimensional beam. The finite element discretization consists in 3000 hexahedral 
Q1-Lagrange elements (11253 d.o.f.); the mesh is cut in 8 boxes (2x2x2); the size 
of the interface is thus large (2253 d.o.f.) and each substructure possess 1728 d.o.f. 
Ten eigenpairs are required. The computation is carried out on 8 nodes of the Intel 
Paragon. 

Table 1 reports the cpu times of the main tasks of the CB's method. As we can 
see, with solver III, the cpu time compared with that of solver I is reduced of 65%. 
Concerning the method 1, we plot (Fig.1) the relative error committed on the global 
eigenfrequencies versus the number (Nr) of coupling modes. We have compared 
the results for different mass matrices, used during the computation of the coupling 
modes. For static condensed mass matrix the improvement is obvious : with 10 
coupling modes, the relative error is less than 1%. With lumped and identity 
mass the graphs are nearly the same, but more coupling modes are included in the 
approximation's space to get the same relative error. To understand these results, 
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TABLE 1. 3d beam (2-2-2) - cpu times of the parallel 
implementations of the Craig and Bampton method 

constraint modes 
with without 

solver I solver II solver III 
constraint modes 80,2s 80,2s 0 
fixed interface modes 90,4s 90,4s 90,4s 
assembling reduced eigenproblem 267,7s 133,9s 0 
solving reduced eigenproblem 70,1s 71,3s 86,8s 
restitution 0,6s 0,6s 1,6s 
total 508,8s 376,2s 177,2s 

TABLE 2. 3d beam (2-2-2) -method 1- coupling modes computing 

Mass Identity Lumped Static condensed 
Nr 20 30 20 30 20 
Lanczos 117,2s 167,2s 126,9s 176,7s 138,2s 
Matrix (mass)-vector 0,007s O,Ols 7,9s 10,9s 24,7s 

TABLE 3. 3d beam (2-2-2) - cpu times 

method 1 (Nr = 15) method 2 (Nr = 25) parallel sparse eigensolver 
190s 130s 97s 

we plot (Fig. 2) the spectrum of the Schur complement matrix with different mass 
matrices along the interface. As we can see, the spectrum of the Schur complement, 
when static condensed mass is used, is very closed to this of the global structure. 
Then, knowing the excitation's range of the global structure it seems possible to 
define a by-passing frequency criterion, allowing to select enough coupling modes 
during their computations to get a good approximation of the global eigenvalues. 

Table 2 reports the cpu times corresponding to the main operation 
(method 1) : the computation of the coupling modes. Taking into account the static 
condensed mass is not too expensive. Despite the use of acceleration techniques 
(Fig. 3) (such as coarse grid induced by rigid modes, preconditioner, techniques 
enabling to take into account multiple right hand sides), the computation of the 
coupling modes remains a cpu times consuming operation. 

Now we compare (Table 3) the cpu times required to find 10 eigenpairs 
with different techniques. From the cpu times point of view, despite the 
different implementations proposed, in particular for the CB's method, parallel 
sparse eigensolver [6], based on Lanczos algorithm and nonoverlapping domain 
decomposition method, is the fastest method. This result was predictable because 
in the three methods (solver III, method 1 and parallel sparse eigensolver) the same 
interface problem (Fig. 3) is solved, and CMS needs additional operations (such that 
fixed interface modes computation, restitution of the solution in each subdomain). 
In addition, parallel sparse eigensolver provides the best approximation of the 
eigenpairs. By another way, for all methods, parallel scalability [6] is guaranteed 
thanks to the iterative substructuring method, if load balancing is correct. 
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FIGURE 1. Error for beam 3d, method 1, Nr increasing 
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FIGURE 2. Beam 3d, eigenspectrum of the Schur complement with 
different mass matrices 

By the way, method 2 is shown to be less accurate (with 25 coupling modes the 
relative error is less than 3%) than method 1 (see also [2, 10]), but quickly gives 
an approximation of the global eigenpairs with regard to the others CMS. 

In conclusion, the methods presented in this paper are particularly well suited 
to the architecture of parallel computers. The different methods can be improved in 
order to take into account other finite elements (plates, shells). A comparison with 
other methods using coupling modes [2, 10] seems necessary. Let us lastly note 
that particular methods can be derived for special cases (decomposition without 
cross-point). 
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Efficient Computation of Aerodynamic Noise 

Georgi S. Djambazov, Choi-Hong Lai, and Koulis A. Pericleous 

1. Introduction 

Computational Fluid Dynamics codes based on the Reynolds averaged Navier-
Stokes equations may be used to simulate the generation of sound waves along with 
the other features of the flow of air. For adequate acoustic modeling the information 
about the sound sources within the flow is passed to a linearized Euler solver that 
accurately resolves the propagation of sound through the non-uniformly moving 
medium. 

Aerodynamic sound is generated by the flow of air or results from the interaction 
of sound with airflow. Computation of aerodynamic noise implies direct simulation 
of the sound field based on first principles [6]. It allows complex sound fields to be 
simulated such as those arising in turbulent flows. 

When building a software tool for this simulation two options exist: (a) to 
develop a new code especially for this purpose, or (b) to use an existing Computa-
tional Fluid Dynamics (CFD) code as much as possible. (As it will be shown later, 
due to numerical diffusion conventional CFD codes tend to smear the sound signal 
too close to its source, and cannot be used directly for aeroacoustic simulations.) 

The second option is considered here as it seems to require less work and makes 
use of the vast amount of experience accumulated in flow modeling. CFD codes 
have built-in capabilities of handling non-linearities, curved boundaries, boundary 
layers, turbulence, and thermal effects. They are based on optimized, efficient, 
readily converging algorithms. If no CFD code is used as a basis, all these features 
have to be implemented again in the new code developed for the simulation of the 
sound field. 

2. The need for a special approach to sound 

Aerodynamic sound is generated as a result of the interaction of vortex struc-
tures that arise in viscous flows. These vortex structures are most often associated 
with either a shear layer or a solid surface. Once the sound is generated it prop-
agates in the surrounding non-uniformly moving medium and travels to the 'far 
field'. 

Sound propagation is hardly affected by viscosity (that is why noise is so difficult 
to suppress). Also, sound perturbations are so small that their contribution to the 
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12 

12 

convection velocity of the flow is negligible in many cases. These two facts mean 
that sound propagation is, in essence, described by the linearized Euler equations 
(1 ). 

The simulation of the flow that generates sound, however, requires time accu-
rate solutions of the Navier-Stokes equations. Two approaches exist here: Reynolds 
Averages and Large Eddy Simulation. Both of them require adequate turbulence 
models and fine meshes to capture the small structures in the flow that oscillate 
and generate sound. 

Most available Computational Fluid Dynamics (CFD) codes have implemen-
tations of Reynolds Averaged Navier-Stokes solvers (RANS). That is because the 
new alternative, Large Eddy Simulation (LES), requires more computational power 
that has become available only in the recent years. In our opinion, the future of 
Computational Aeroacoustics (CAA) is closely related to LES. For the time being, 
however, we should try to make the most of RANS. 

Due to the diffusivity of the numerical schemes and the extremely small mag-
nitude of the sound perturbations, RANS codes are not generally configured to 
simulate sound wave propagation. This is illustrated by the simple test of one-
dimensional propagation in a tube of sound waves generated by a piston at one end 
that starts oscillating at time zero. The resulting sound field (pressure distribution) 
is compared with the one computed by the RANS solver PHOENICS [1] with its 
default numerical scheme (upwind fully implicit). As it can be seen on Figure 1, 
the numerical and the analytic solutions agree only in a very narrow region next 
to the source at the left end of the domain. In this admittably worst-case scenario, 
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TABLE 1 

CFD CAA 
(Computational Fluid Dynamics) (Computational Aeroacoustics) 

Nonuniform/Unstructured Grid Regular Cartesian Grid 

Fully Implicit in Time Explicit/semi-implicit Schemes 

Upwind Discretization Higher Order Numerical Schemes 

Smooth Solid Boundaries Boundaries Can Be Stepwise 

Small-scale structures Extremely small magnitude 

refining of the mesh does not change the result at all. (Better results can be ob-
tained by switching to higher order schemes available within the same CFD code 
but they still cannot be relied upon for long distance wave propagation.) 

To tackle these problems the new scientific discipline Computational Aeroa-
coustics has emerged in the last several years. The important issues of sound 
simulation have been identified [7], and adequate methods have been developed 
[8, 4, 3]. Table 1 shows how different the requirements for accuracy and efficiency 
are with the numerical solutions of the flow and the sound field respectively. 

Although the sound equations (1) are a particular form of the equations govern-
ing fluid flow, great differences exist in magnitude, energy and scale of the solved-for 
quantities. (Acoustic perturbations are typically at least 10 times weaker than the 
corresponding hydrodynamic perturbations and a thousand times smaller than the 
mean flow that carries them. On the other hand acoustic wavelengths are typically 
several times larger than the corresponding structures in the flow.) 

All this means that the algorithmic implementations are so different that they 
can hardly share any software modules. So, it will be best if a way is found of 
coupling a flow solver with an acoustic solver in such a manner that each of them 
does the job that it is best suited for. 

3. The coupling 

The basic idea of software coupling between CFD and CAA (decomposition of 
variables into flow and acoustic parts) as well as the Domain Decomposition into 
near field and far field was presented in our previous works [2, 3]. The CFD code 
is used to solve the time-dependent RANS equations while the CAA deals with the 
linearized Euler equations: 

ap _ap 
+ - 2 avj s -+v·- pc -= 

at J axj axj 
av av ~ ap -F (1) -' +V.-' + at J axj p axi - ,. 
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Here p is the pressure perturbation, v1, v2 and v3 are the Cartesian components of 
the velocity perturbation. The values of the speed of sound c, of the local density 
p and of the velocity components of the flow Vj are supplied by the CFD code. 

CAA algorithms are designed to solve these equations (1) with known right-
hand sides S and Fi that are functions of xi and time t. Term S contains any sources 
of mass that may be present in the computational domain, such as vibrating solid 
surfaces. The three forcing terms Fi will be set to zero in most practical acoustic 
applications. In theory they contain the viscous forces which have negligible effect 
on sound propagation. There are some cases where the nonlinear terms associated 
with the acoustic perturbations may have to be taken into account. Then S and 
Fi will be updated within the acoustic code at each iteration rather than once per 
time step. 

The present study concentrates on the use of the source term S to transfer 
the information about the generation of sound from the CFD code to the acoustic 
solver. 

A closer examination of the time history of the CFD solution pictured in Fig-
ure 1 reveals that the pressure at the first node next to the source of sound has 
been resolved accurately. It is suggested that the temporal derivative of the local 
pressure at the source nodes, calculated from the CFD solution, is added to the 
source termS of the acoustic equations (1). 

&p 
(2) S = at + Svib 

Here Svib denotes sources external to the flow like vibrating solid objects. Thus the 
following combined algorithm can be outlined: 

1. Obtain a steady CFD solution of the flow problem. 
2. Start the time-dependent CFD simulation with these initial conditions. 
3. Impose the calculated temporal derivative of the pressure at selected nodes 

within the flow region as part of the source term of the acoustic simulation. 
4. Solve the linearized Euler equations in the acoustic domain applying any 

external sources of mass (vibrating solids). 
The introduction of the temporal derivative ~~ into the source term S is best 

implemented in finite volume discretization. Then, if phase accuracy of the calcu-
lated acoustic signal is essential (like with resonance), the time-dependent outflow 
from the control volume with increasing fi in the CFD solution or the inflow per-
turbation if fi is decreasing should also be taken into account in order to calculate 
the correct amount of mass that is assumed to enter or exit the acoustic simulation 
at each time step. The finite volume form of the RANS continuity equation with 
isentropic conditions (; = c2 ) suggests the following pressure source: 

s 

(3) j 

j 

A-
pc2(Vj- Vj,average) Ll~ + Svib 

&p 
= Influx, at > 0 

&p 
Outflow, at < 0 

where Ainflux is the area of the faces of the cell with volume Ll V across which 
there is inflow during the time step .t:..t, and the repeated index denotes summation 
over all such faces. Since this option introduces the whole flow perturbation into 
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FIGURE 2. Combined solution of test problem 

the acoustic simulation, the acoustic solver in this case must be capable of handling 
smooth curved solid boundaries. 

The two codes have separate meshes in overlapping domains. The RANS mesh 
must be body fitted to represent smooth solid boundaries. The acoustic mesh can 
be regular Cartesian if option (2) is chosen. In this case the CAA domain can be 
larger- extending to the mid field if Kirchhoff's method is used [5] or to the far 
field if high-order optimized numerical schemes are employed [8]. Uniform mean 
flow has to be assumed outside the region of the CFD simulation. 

Prior to the introduction into the acoustic simulation the flow quantities ( Vj, p 
and p, in air c2 = 1.4§, see 1) are interpolated with piecewise constant functions 
(choosing the nearest neighbouring point from the irregular CFD mesh). This can 
be done because typically the flow mesh is finer than the acoustic mesh. 

In some cases (separated flows, jets) the sources of noise cannot be localized and 
are instead distributed across the computational domain. Then the most efficient 
option is choosing a higher order scheme within the CFD code itself and defining 
a 'near field' boundary where the acoustic signal is radiated from the RANS solver 
to the linearized Euler solver. 

4. Results 

The above algorithm was validated on the same lD propagation test problem 
that was described in the second section. Using the pressure, velocity and density 
fields provided by the CFD code at each time step and a finite volume acoustic 
solver, the actual acoustic signal was recovered as it can be seen in Figure 2. Here 
the coupling option defined by (3) has been implemented with Svib = 0. (The 
acoustic source was introduced in the CFD simulation rather than in the acoustic 
one, in order to set up this test.) 

As a 2D example, generation of sound by a vortex impinging on a flat plate is 
considered. A Reynolds-Averaged Navier-Stokes solver [1] is used to compute the 
airflow on a mesh that is two times finer in the direction perpendicular to the plate 
than the corresponding grid for adequate acoustic simulation. 

The geometry of the problem and the hydrodynamic perturbation velocity field 
(with the uniform background flow subtracted) are in Figure 3. 
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The pressure fluctuations (temporal derivatives) next to the solid surface are 
imposed as source terms on the linearised Euler equations which are solved sepa-
rately as described above. The size of the computational domain is small enough so 
that the finite volume solver [3] can predict accurately the sound field. A snapshot 
of the pressure perturbations can be seen in Figure 4. A graph was made of the 
acoustic pressure as a function of time at different locations above and below the 
solid blade. As it can be seen from Figure 5, the amplitude of the sound waves 
generated at the blade decreases away from it as expected. 
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5. Conclusions 

A coupled technique has been developed that allows general-purpose RANS 
solvers to be used with sound generation problems. Both geometrical and physical 
domain decomposition has been considered. At the locations where it is gener-
ated sound is passed to a linearized Euler solver that allows adequate numerical 
representation of the propagating acoustic waves. The current implementation is 
applicable to aerodynamic noise generation either on solid surfaces or in volumes 
that are not surrounded by reflecting objects. 
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Non-overlapping Domain Decomposition Applied to 
Incompressible Flow Problems 

Frank-Christian Otto and Gert Lube 

1. Introduction 

A non-overlapping domain decomposition method with Robin-type transmis-
sion conditions which is known for scalar advection-diffusion-reaction problems 
[2],[5] is generalized to cover the Oseen equations. The presented method, which is 
later referred to as DDM, is an additive iteration-by-subdomains algorithm. Hence 
parallelism is given in a very natural way. The formulation is based on the con-
tinuous level to study the DDM without dealing with a special discretization. A 
convergence result for the "continuous" algorithm is presented. To treat incom-
pressible Navier-Stokes problems, the 

A parallel implementation based on a finite element discretization has been 
done. Numerical results indicating linear convergence with a rate independent of 
the mesh size are presented for both the (linear) Oseen equations and the (non-
linear) Navier-Stokes equations. 

We denote by L2(n) the space of square integrable functions with norm ll·llo,n 
and inner product(·, ·)n. H 8 (n) denotes the usual Sobolev space with norm ll·lls,!1· 
For r c an we write (-, ·)r for the inner product in L2 (f) (or, if needed, for 

1 1 1 
the duality product between HJ0 (r) and H~ 2 (r)). The space HJ0 (r) consists of 

1 1 2 functions u E H2(r) with d-2u E L (r) where d(x) = dist(x,&r) [3, Chap 1., 
Sec. 11.4]. We explain the DDM for the Oseen equations in Section 2 and look into 
its analysis in Section 3. Then we explain how to discretize the method (Section 4) 
and apply it to the Navier-Stokes equations (Section 5). Numerical results are 
presented in Section 6. 

2. Definition of the DDM for the Oseen equations 

Let n c IR2 be a bounded domain with Lipschitz, piecewise C2-boundary an. 
We consider the following boundary value problem for the Oseen equations 

{ 
-v6.u + Vp + (b · V)u + cu = f E (L2 (n)) 2 

v. u = o E L 2(n) 
(1) u = g E (H~(8nD)) 2 ' 

1/~~ - pn + T)U = h E (£2 (8nR))2 
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FIGURE 1. 

r 

where an= anD U anR, anD n anR = 0, and v > 0, bE (H1(n))2 with V ·bE 
L 00 (n), c E L 00 (n), TJ E L 00 (anR)· n is the outer normal on an. If anR = 0 we 
also require fang · n = 0. Then if c- ~ V · b ~ 0 and TJ + ~b · n ~ TJo = const > 0 
problem (1) has a unique solution which belongs to (H1(n))2 xL2 (n) if J.l(anR) > 0, 
and to (H1(n))2 x L5(n) with L5(n) = {! E L2(n) I JD fdx = 0} otherwise. 

The reason why we consider a mixed boundary value problem will become clear 
in the next section. Here we allow the additional term cu within the momentum 
equation which occurs if a simultaneous linearization and semi-discretization in 
time of the non-stationary Navier-Stokes equations is performed. 

A heuristical approach to non-overlapping domain decomposition methods for 
this type of problems is as follows. We divide n into two subdomains nk, k = 1, 2 
also having a Lipschitz, piecewise C2-boundary. The artificial boundary an1 n an2 
is denoted by r (Figure 1). For simplicity we assume anR ~ an1 nan. 

Then the original boundary value problem is equivalent to the following split 
formulation (ni always denotes the outer normal of ni) 

(2){ 
-v6.u1 + Vp1 + (b · V)u1 + cu1 f E (L2(ni))2 

V·u1 0 E L2(ni) 
U! g E (H!(anD)IanvnanJ2 

au1 h E (L2(anR))2 v an1 - P1n1 + TJUI 

(3){ -v6.u2 + Vp2 + (b · V)u2 + cu2 f E (L2(n2))2 
V·u2 0 E L2(n2) 

u2 g E (H! (anD)IanvnanJ2 

together with the continuity requirements on r 

(4) U! U2 in (H!(r)) 2 , 

(5) aul au2 _l 2 
v-- P1n1 -v- +p2n2 in (H00 2 (r)) . 

anl an2 
These two continuity conditions can be used to construct a non-overlapping domain 
decomposition method for this problem, which can be considered as an iterative 
decoupling of the split formulation. For example using ( 4) iteratively to calculate 
solutions on n1 , i.e. u~ = u~-I, and (5) for n2 we would get a Dirichlet-Neumann-
algorithm [7]. 

We use however a linear combination of both conditions for all subdomains, i.e. 
to get a new solution on ni within the iteration, we impose 

a k a k-1 
ui k k uj k-1 k-1 v-a -Pi ni + AiUi = v-a-- - Pj ni + AiUj on ani n anj 
ni ni 

(6) 
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Such an approach does not require a red-black partition which is often needed for 
DN-algorithms. Furthermore it is known for the related method for advection-
diffusion-reaction problems that the behaviour of the solution can be modelled 
"adaptively" if A; is chosen as an appropriate function [2],[5],[1],[6]. 

More precisely we use a restricted class of weighting factors A; as given below, 
but we allow some kind of relaxation of the interface condition (6). 

The algorithm. We now consider a non-overlapping partition into N subdo-
mains n = U;:1 n;, 0; n Oj = 0 Vi #- j with each 0; having the same boundary 
regularity as 0. We denote f; = 80; \80 and f;j = 80; n 80j. 

Furthermore we use the following notations: 
"interface operator" <I>;(u,p) = v g:::;, - pn; + ( -~b · n; + p;)u 
initial interface condition : <I>;,o 
"relaxation parameter" 8 E (0, 1] 

Instead of A; we use - ~ b · n; + p; with p; to be chosen, because the necessary 
restrictions are easier formulated for p;. 

Now the domain decomposition algorithm for the Oseen problem (1) reads: 
Fork E N solve for all subdomains 0; (i = 1, ... , N) in parallel: 

(7) { -vl:.u; + Vp; + (b · V)u; + cu; 
V ·U; 

= f 
= 0 

with the given boundary conditions on 80; nan together with the interface condition 

(8) 

3. Convergence Analysis 

k > 1 
k=1 

Before formulating the convergence result for the algorithm above we start with 
its well-posedness. 

LEMMA 1. In addition to the regularity of the data prescribed in Section 2 we 

assume c- ~ V · b 2 0, 7] + ~b · n 2 'l]o = const > 0, and for all subdomains !1; 

1. p; E £=(r;) with p; 2 P? = const > 0 
2. <l>;,o E L 2 (f;) 
3. c-~V·b2c;=const>0 or M(8!1;n8!1)>0. 

Then the domain decomposition algorithm is well-defined, i.e. all local boundary 
value problems have for all k a unique solution in (H1 (0;) )2 x £ 2 (0;). Furthermore 

we have 

(9) 

(10) 

We emphasize that the local pressure solution P7 is unique in L2 (f;) for all k. 

Now we denote by II; the £ 2-projection onto the space £6(!1;), more precisely 

q~----+q- (~·)1 qdx. 
tL ' ni 
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THEOREM 2. Let the solution (u,p) of (1) be regular enough to have v /fi:i -
pni E (L2 (rij))2 for all i,j. If Pi= Pj a.e. then we have under the assumptions of 
Lemma 1 for all() E (0, 1] 

llu~- uill1,rli ------> 0, 

II IIi (p~ -Pi) llo,oi ------> 0 

for k ----+ oo, where ( Ui, Pi) is the restriction of ( u, p) to ni. 
Furthermore, if ,..L(anR) > 0, i.e. a mixed boundary value problem is considered, we 
have for all () E (0, 1] 

IIPk - Pllo,oi ------> 0 

fork----+ oo. 

Remarks 

• If c(x)- ~V · b(x) ~ C > 0 then arbitrary subdomain partitions satisfying 
the regularity requirements are allowed. Especially internal cross-points can 
be treated. For C = 0 such partitions are not covered by the theorem, but 
nevertheless they work in numerical computations. 

• The Stokes problem is covered. 
• All results remain valid if different Pi for every velocity component are used. 
• For a Dirichlet problem the pressure convergence is local: Only the locally 

normalized pressure will converge. I.e. we have pressure convergence up to 
a constant which can differ for different subdomains and iteration steps. 

• Since the theorem yields no information about the convergence speed, we 
have no theoretical indication how to construct a "good" Pi. A heuristic ap-
proach to a "good" Pi for advection-diffusion-reaction equations is contained 
in [6]. For the Oseen equations this question is still open. 

To prove the convergence for the velocity variable a key step is the relation 

lllu~lllr + Iri 4~i (<I>i(u7,Pn- 2piu7) 2 = Iri 4~i (<I>i(u7,P7)) 2 

with 
lllulllr := vluli,oi + ll(c- ~V · b)!ull5,oi + II(TJ + ~V · b)!ull5,aoRnaoi 

which uses the L2-regularity of the interface data. This part is established similar to 
the convergence of the related algorithm for advection-diffusion-reaction problems. 
([1] contains that proof for()= 1.) 

The local pressure convergence comes from a modified a priori estimate which 
is based on the continuous version of the Babuska-Brezzi-condition. Global conver-
gence of p in the case f..l( an R) > 0 is based On the transmission of the local pressure 
mean values across interfaces. The full proof is given in [6]. 

4. The discrete algorithm 

Since finite elements are favoured as discretization method, weak formulations 
of the subdomain problems should be considered. In the case of homogeneous 
Dirichlet boundary conditions on an and c = 0 the local Oseen problems read in 
weak formulation: 
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Within step k find (u~,pn E Vi x Qi = {v E (H1(0i))2 1 v = 0 on80n80i} X 

L2(0i) with 

(11) 

where 

1 k (( -2b · ni + Pi)ui, v)r; 

(f,v)n; + L(Aj;\v)r;i 
#i 

ai(b; u, v) v(Vu, Vv)n; + (b · Vu + cu, v)o; 
bi(q,v) (p, V · v)o; 

AJi O<Pi(uJ,pJ) + (1- O)<Pi(u~,p~). 

The discretization is performed by choosing finite dimensional subspaces ~h, Q7 of 
Vi, Qi which consist of piecewise polynomial functions on the restriction of a global 
triangulation of n to ni. 

The evaluation of <Pi( uj-I,pj- 1) resp. <Pi( u7- 1 ,p7- 1) can be avoided by means 
of the following formula 

(12) A~ 1 = O(pi + P1)u~- OAji-1 + (1- O)A71- 1 

which does not use derivatives of the finite element solutions. Again the discrete 
algorithm starts with an initial guess <Pi,O for the interface condition. Hence a good 
initial guess can reduce the number of iterations until convergence. 

5. Application to the Navier-Stokes equations 

The stationary Navier-Stokes equations as a non-linear problem of the form 

A[u]u = J 
can be solved by a defect correction method 
(13) A[um-1](um- um-1) = Wm {!- A[um-1](um-1)} 

or equivalently 

(14) 

with some damping factor Wm > 0. The idea is to solve the linear(ized) Oseen 
problem occuring within this iterative process using the domain decomposition 
algorithm as inner cycle. Then the local subproblems are as in ( 11) with u~, p~ 
replaced by ur;''k, pr;''k and b by the velocity solution from the previous linearization 
step. If the formulation (14) is used, an appropriate initial interface condition for 
the domain decomposition within step m is the last calculated A~ 1 from step m- 1. 
Hence results of step m-1 are re-used and it is not necessary to achieve convergence 
of the domain decomposition algorithm within every linearization step. 

6. Numerical examples 

As remarked in Section 2 an analogous method turned out to be very efficient 
for advection-diffusion-reaction problems [1],[6]. Hence for the numerical examples 
below we used the straightforward extension of the interface function proposed in 
[1] 

(15) 
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FIGURE 2. Convergence history for Example 1. 

A is a strictly positive function and could be chosen seperately for each velocity 
component. 

Within our calculations we use continuous piecewise linear finite elements for 
the velocity as well as for the pressure. So we add to (11) residual terms in order to 
satisfy a modified Babuska-Brezzi-condition and to get a stable discretization (see 
[4] for details). 

Numerical experiments showed that a relaxation parameter () < 1 gives global 
pressure convergence for the Dirichlet problem, too ( cf. Theorem 2). But for the 
type of problems considered below there is no acceleration for smaller e. So we 
chose () = 1 for all test cases. 

Example 1. Linearized N a vier-Stokes flow ( Oseen flow): 
We consider the Poiseuille flow in a 2d channel, where we use the quadratic profile 
as known velocity field. At the outflow part we impose a homogeneous Neumann 
boundary condition and prescribe the velocities elsewhere. The computational do-
main [0, 1] x [0, 1/4] is divided into 4 subdomains arranged in a row. The exact 
solution is given by (u, v,p) = (64y(1/4- y), 0, -128vx) with v = 10-3 . We show 
in Figure 2 the convergence history of the discrete L2-errors versus the iteration 
number of the DDM for different mesh sizes. (Due to their interface discontinuities 
the dd-solutions do not belong to the space of continuous finite element functions 
which is needed to calculate residuals directly. That is why we here only consider 
the error. An alternative is under development.) 

The results indicate that the DDM converges almost linearly until a certain 
error level is achieved which corresponds to the mesh size. The rate of convergence 
seems to be independent of the mesh size. In comparison to the related algorithm 
for scalar equations [6] the performance is worse and the choice of A is more critical. 
Here it is chosen as A= 5/v. 

So far no mechanism of global data transport (like a coarse grid) is incorpo-
rated in the algorithm; hence it cannot be scalable. Table 1 shows the dependence 
of the number of subdomains for the finest grid used for this example. Neither load-
balancing nor inexact subdomain solving has been used to obtain these results. As 
expected the number of iterations increases with the number of subdomains. Never-
theless, the computing time decreases and this suggests that this algorithm together 
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TABLE 1. Iteration numbers and computing time needed on the 
finest mesh (h = 1/256) to achieve for Example 1. an u-error 
smaller than 5 . w-5 . 

subdomain 
partition 

2 X 1 
4x1 
4x2 

number of 
dd-iterations 

17 
54 
88 

CPU-time [s] 
(fastest and slowest subdomain) 

1260, 1630 
1000, 1410 
540, 1110 

t±ll II 
FIGURE 3. Subdomain partition for Example 2. 
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FIGURE 4. Convergence history for Example 2. 

40 

with a coarse grid solver can be very efficient for larger numbers of subdomains. 

Example 2. Stationary Navier-Stokes flow around a cylinder: 
We consider the stationary flow in a 2d-channel with an obstacle. We have a qua-
dratic profile at the inflow, no-slip conditions at the walls and a homogeneous Neu-
mann boundary condition at the outflow. The viscosity is v = w-3 and we choose 
A = 1/v in (15). The computational domain has been divided into 8 subdomains 
as shown in Figure 3. 

In Figure 4 we show the convergence history of the discrete L 2-errors versus 
the number of linearization steps for different mesh sizes. Within each step we 
performed 10 steps of the domain decomposition algorithm. To calculate the errors 
we used a reference solution obtained by solving the global boundary value problem 
on the same mesh up to the level of the truncation error. 
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The graphs show the linear convergence of the outer iteration (linearization) 
with a rate independent of the mesh size. A direct computation without the DDM 
needs between 13 and 16 linearization steps. Hence with 10 dd steps within every 
linearization step we get nearly the same accuracy with roughly the same number 
of steps. In fact, the parallel calculation is cheaper with respect to computing time. 
So the DDM works quite well as kernel of a Navier-Stokes solver. 

7. Summary 

We described a non-overlapping domain decomposition algorithm for the Oseen 
(linearized Navier-Stokes) equations and proved its convergence on the continuous 
level. A discretized variant was proposed and applied to the N avier-Stokes prob-
lem. A finite element implementation which has not been fully optimized yielded 
reasonable results for the linear and non-linear problem. The method has also been 
applied to non-isothermal flow problems with promising results. Further investiga-
tions of both theory and implementation are under development. 
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1. Introduction 

Inverse heat conduction problems (IHCPs) appear in many important scientific 
and technological fields. Hence analysis, design, implementation and testing of 
inverse algorithms are also of great scientific and technological interest. The 
numerical simulation of 2-D and 3-D inverse (or even direct) problems involves a 
considerable amount of computation. Therefore, the investigation and exploitation 
of parallel properties of such algorithms are equally becoming very important 
[9, 2]. Domain decomposition (DD) methods are widely used to solve large scale 
engineering problems and to exploit their inherent ability for the solution of such 
problems. 

An area of particular interest in IHCPs is the cutting of sheet material such 
as metal. An accurate simulation of the temperature distribution of the metal, 
subject to cutting, is vital in order to lengthen the life time of the cutting tool and 
to guarantee the quality of the cutting. In addition, the real-time simulation of such 
temperature distributions is of industrial interest. For example, it is important to 
regulate the cutter speed and coolant application in order to keep the temperature 
(especially at the cutter points) below a threshold. When the temperature rises 
above the threshold this will cause deformation of the metal or it may become 
fatigued. In reality, the accurate measurement of temperature at the cutter points 
is not possible. Therefore, a direct problem cannot be formulated. Inverse methods 
can be used to retrieve the temperature at these points. It has been shown that 
accurate estimates can be obtained using such methods [1]. IHCPs, such as the 
metal cutting problem described above, are more difficult to solve analytically than 
direct problems [1]. Therefore, various approximation methods have been developed 
to solve such problems. These include graphical[10], polynomial [5], Laplace 
transform [7], dynam"ic programming [11], finite difference [3], finite elements [6] 
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and finite volume. Here we will use a finite volume based method. The main 
objective of this work is to study DD methods to solve IHCPs and to explore 
algorithms which are suitable for distributed/parallel computing environments. 

This paper is organised as follows. First, a description of the mathematical 
model for the dimensionless 2D non-linear metal cutting problem is given. Second, 
the description of the problem partitioning is given. Different numerical schemes are 
used in different sub-domains in order to solve different sub-problems. Numerical 
results are shown for a metal cutting application. Third, the exploitation of the 
parallel properties of the numerical schemes are explained. The resulting parallel 
implementation uses MPI (Message Passing Interface) directives [4] and is suitable 
for network-cluster (distributed) computing as well as for traditional tightly-coupled 
multi-processor systems. Finally, some conclusions are drawn. 

2. Dimensionless 2D Non-linear Metal Cutting Problems 

The metal cutting problem considered here is a 2D thin sheet of metal defined 
in the domain D = { ( x, y) : 0 < x < 1 and 0 < y < 1}. The material property 
is assumed to be homogeneous across the domain of interest and the following 
assumptions are made for an idealised cutting:- (1) the application of a cutting tool 
at the cutter points is equivalent to the application of a source at these points, (2) no 
phase changes occur during cutting and (3) the thickness of the cutter is negligible. 
The cutting is considered to be applied along the y-axis at x = Xc· Assumption 
(1) introduces an unknown source of strength Qc(Y, t) at Xc and together with 
assumption (2), the cutting problem can be described by the dimensionless 2D 
non-linear, unsteady, parabolic, heat conduction equation, 

(1) 

subject to initial condition u(x, y, 0) = U;(x, y), boundary conditions u(O, y, t) = 
Bo(y, t), u(1, y, t) = Bt (y, t), u(x, 0, t) = Co(x, t) and u(x, 1, t) = C1 (x, t). Here 
u(x, y, t) is the temperature distribution, k(u) is the conductivity of the metal, 
Qc(Y, t) is the unknown source being applied at x = Xc, 8(x- Xc) is the Dirac delta 
function and U;, Bo, B1 , Co and C1 are known functions. 

Assumption (3) suggests the continuity of the function ~~ at x = Xc, which in 
+ 

turn suggests that r<' ~~ dx = 0. Here x;; denotes a spatial point just to the left 
Xc 

of Xc and xt denotes a spatial point just to the right of Xc. Hence the equivalent 
source strength can be retrieved by integrating (1) from x = x;; to x = xt to give 

(2) au au a au + -
k(u)-a lx+ - k(u)-a lx- + -a (k(u)-a )(xc - xc) + Qc(Y, t) = 0 

X c X c y y 

Assumption (3) also suggests that equation (2) can be truncated to: 
au au 

(3) k(u)-a lx+ - k(u)-a lx- + Qc(Y, t) = 0 
X c X c 

That is, heat fluxes just to the left and just to the right of Xc must be known. 
Temperature sensors are attached at x = X8 , such that 0 < X8 < Xc < 1, and let the 
temperature measured by means of the temperature sensors be u(x8 , y, t) = u*(y, t). 
It is not necessary to have X8 being less than Xc· Similar problem partitioning can 
be generated for 0 < Xc < X8 < 1. The measured temperatures are used to 
retrieve temperatures at the cutting points. Such inverse methods avoid the basic 
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difficulties of a direct method since remote temperatures can be measured more 
easily and accurately. 

For computer simulation purposes, the sensor temperatures are modelled by 
the function u*(y, t) = ay(y- 1)2sin(wt). Its maximum value is generated by 
the amplitude, a. Its variation with respect to time is generated by the angular 
frequency w. 

3. Problem Partitioning 

Problem partitioning is a DD method applied at the mathematical/physical 
problem level. In other words, decomposition is carried out by only considering the 
problem at this level [8]. In order to solve the inverse problem given in (1) with the 
additional condition available at x = x 8 , problem partitioning is carried out to pro-
duce three sub-domains, such that each subproblem may define different numerical 
algorithms. The three sub-domains are, D1 = {(x,y): 0 < x < X8 and 0 < y < 1}, 
D2 = {(x,y): X8 < x < Xc and 0 < y < 1}, and D3 = {(x,y): Xc < x < 1 and 0 < 
y < 1}. This problem partitioning removes the unknown source term Qc(Y, t) and 
the Dirac delta function associated with it from the differential equations. The 
three sub-problems can be written as follows: 

SP1: a;? = fx(k(u1) 88~ 1 ) + fy(k(ul)~) E D1 
subject to u1(x,y,O) = Ui(x,y), u1(0,y,t) = B0 (y,t), 

Ul (xs, y, t) = u*(y, t), Ul (x, 0, t) = Co(x, t), Ul (x, 1, t) = cl (x, t). 

SP2: ~ = fx(k(u2)~) + fy(k(u2)~) E D2 
subject to u2(x, y, 0) = Ui(x, y), u2(x8 , y, t) = u*(y, t), 
au 2 ~;,y,t) = Bu1(~;,y,t) ,u2(x, 0, t) = Co(x, t), u2(x, 1, t) = C1(x, t). 

SP3: ~ = fx(k(u3)-i;) + fy(k(u3)~) E D3 
subject to U3(x, y, 0) = Ui(x, y), u3(xc, y, t) = u2(xc, y, t), 
UJ(1, y, t) = Bl (y, t), UJ(X, 0, t) = Co(x, t), UJ(X, 1, y) = cl (x, t). 

Since the temperature values are given at y = 0, y = 1, x = 0 and there are 
temperature sensors located at x = X 8 , Dirichlet boundary conditions are defined 
at the boundary of D 1 . Solutions of the differential equation provide the required 
data to calculate the heat flux ~~ (x 8 , y, t). Therefore, with the knowledge of the 
temperatures u(x8 , y, t) acquired by the temperature sensors at x = X8 , an initial 
value problem can be formulated in D2. u(xc, y, t) values are obtained by solving 
this initial value problem. Finally, with the calculated temperatures u(xc, y, t), 
another Dirichlet problem can be formulated in D3 . The above three subproblems 
are well-defined [1] [12], and a unique solution exists for each of them. The direct 
sum of these subproblem solutions gives the temperature distribution of the original 
problem, i.e. 

(4) { 
u1(x,y,t), x E D1 

u(x, y, t) = u2(x, y, t), x E D2 
UJ(X, y, t), X E D3 
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3.1. Numerical schemes. To solve the problems in S P 1 and S P3 a first order 
forward difference approximation of the temporal derivative and a second order FV 
approximation of the spatial derivatives are used. A five-point explicit scheme is 
produced from the approximation. Dropping the subscript used in denoting the 
sub-domains, the explicit scheme for the sub-domains D1 and D3 can be written 
as, 

(n+1) _ b(n) (n) (n) (n) ( (n) b(n) (n) d(n)) (n) u. · - rx · U· 1 · +rxa· u.+ 1 · + 1-rxa· -rx . -rye -ry . U· . + t,) t t- ,) t t ,J t t J J t,) 

(5) d (n) (n) (n) (n) 
Ty · U· · 1 + TyC· U· '+1 J t,]- J t,] 

where (i,j) denotes the (i,j)-th grid point, rx - (f:) 2 , ry = (f:) 2 , a~n) = 
k(n) +k(n) (n) k(n) +k(n) (n k(n) +k(n) (n) k(n) +K(n) 
'+ 1 ·' '· 2 b. = ,_ 1 ' 2 '·' c. ) = '' 2+1 ',] d. = '·2 - 1 '' 2 (n) denotes 2 't 2 'J 2 'J 2' 

the time-step, !:::.t is the step size along the temporal axis and !:::.x, !:::.y are the grid 
spacing along the spatial axis x, y, respectively. The initial value problem in SP2 is 
solved by employing a second order Euler Predictor-Corrector (P-C) method along 
the x-axis for each time-step. Again, the spatial derivatives are discretised using 
second order FV approximations and the time derivative with a first order finite 
difference approximation. The two step P-C method can be written as: 

(6) ( ~ r = ( ~ ) + ~X 1 ' ( ~ ) new = ( ~ ) + ~X {1 + t} 

where v = ~~, 1 = 1 ( ~ ) ( v 
_1_(au _ j}_(k(u)au) _ k'(u)v2) 
k(u) at 8y 8y 

) and 

1* = 1 ( ~ ) *. A second order spatially accurate solution may be obtained for 

each of the three subproblems. Therefore, it is expected to have a second order 
spatially accurate global solution for the inverse problem ( 1). The effect of the local 
truncation error for SP2 is minimised because of the small size of the sub-domain 
which usually consists of only a few Euler P-C steps. All experiments carried out 
gave stable results as long as the CFL condition rx, ry s:; 0.25 was satisfied. 

3.2. Numerical results. Numerical results are obtained for equation (1) with 
X 8 = 0.5, Xc = 0.6, Ui(x, y) = 0, Bo(y, t) = 0, B1 (y, t) = 0, Co(x, t) = 0 and 
C1 (x, t) = 0. Sensor points are modelled as u*(y, t) = a.y(y- 1)2 sin(wt), with 
a. = 0.1 and w = 2n. Non-linear heat conductivity is given by k(u) = 1_;u2. 
Temperature distributions are shown for time t = 0 to t = 0.5 in Figure 1. The 
retrieved source/sink strength is also shown, Figure 2, it reflects the shape of the 
function used in the modelling of sensor temperatures, i.e. a sine function in time. 

4. Exploiting Parallelism 

Exploiting the parallel properties of an algorithm provides several key 
advantages. One of them is the expectation of a very fast execution of the algorithm. 
This in turn facilitates the real-time simulation (e.g. one-minute of temperature 
evolution is calculated using no more than one minute of computation time). 
Another added advantage is that very large problem sizes (i.e. problem sizes that 
may not fit into the memory of a single-processing element) can be solved by using 
the total memory available from all the processors. 
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FIGURE 1. Temperature distributions from t = 0.1 tot= 0.5 and 
a lD view at t = 0.1. 

FIGURE 2. Source/Sink strength. 
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4.1. Domain-data parallelism. There are different ways of partitioning 
existing serial algorithms in order to utilise parallel and in particular distributed 
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environments. An advantage of using the DD approach to solve inverse problems is 
that the technique naturally provides a coarse-grained parallel algorithm. In other-
words, each sub-domain generated due to the application of DD can be mapped 
directly to a processor and these sub-problems may be solved concurrently. In 
this paper this concept is referred to as "domain parallelism". The calculation 
performed in sub-domain D2 is much smaller (due to sensor and cutter points 
being very close to each other) than D1 and D3 . Also, calculations in D 1 can be 
carried out independently and gradients from D2 and D3 at x = Xc are used to 
retrieve the source term. Considering these details, the calculations in sub-domains 
D2 and D3 are computed in one processor and the calculations in D1 are computed 
in another. This minimises the communication and gives a better load balance 
among processors. That is, the domain parallelism requires two processors to solve 
the inverse problem defined by ( 1). 

Domain parallelism has an obvious limitation in that it does not scale with an 
increasing number of processors. For the above cutting problem, only two processors 
are required. Data partitioning may be carried out within each sub-domain. In this 
paper we refer to this as "domain-data parallelism". In partitioning the data the 
number of grid-points is divided amongst the processors as evenly as possible. If 
N denotes the total number of grid points and P denotes the number of processors 
and if !js is not an integer, then some processors will have more grid points than 
others. As a result, the remaining data is distributed as evenly as possible so as to 
reduce the load imbalance amongst the processors. 

4.2. Parallel results. The domain-data parallel version of the numerical 
algorithm is implemented using FORTRAN 77 with MPI directives. The parallel 
implementation is tested using a loosely coupled and tightly coupled multi-processor 
environments. The loosely coupled environment used is, a set of Sun Spare 5 
workstations connected together by an Ethernet network. The SGI Origin 2000 
machine describe the tightly coupled multi-processor environment. Performance of 
the parallel implementation on the two platforms is shown in Figure 3 and shows 
that, the trend is similar for both platforms. Differences in speedups between the 
platforms, appear significant for smaller problem sizes (e.g., for 10000 and 20000 
mesh points). This is due to the differences in communication startup latencies 
and message transfer times between the platforms. The Origin 2000 has a very low 
startup latency and message transfer times relative to a network of Sun Spare 5 
stations. This difference becomes less significant with the larger problem sizes (e.g., 
for 80000 mesh points) . 

5. Conclusions 

The use of a numerical algorithm developed by applying DD to the problem 
domain, in order to retrieve heat source/sink at the cutter and the calculation of 
the temperature distribution is presented. It is shown that good parallelism can 
be exploited from the DD based algorithm by using domain-data partitioning as 
the parallelisation strategy. MPI is used to investigate the parallel performance of 
the domain-data parallel version of the algorithm in a loosely coupled and tightly 
coupled multi-processor environments. The parallel performance results show that 
domain-data parallelism can be utilised effectively in both network clusters and 
tightly coupled multiprocessor machines. 
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Overlapping Domain Decomposition and Multigrid Methods 
for Inverse Problems 

Xue-Cheng Tai, Johnny Fnzlyen, Magne S. Espedal, and Tony F. Chan 

1. Introduction 

This work continues our earlier investigations [2], [3] and [8]. The intention 
is to develop efficient numerical solvers to recover the diffusion coefficient, using 
observations of the solution u, from the elliptic equation 

(1) -\7. (q(x)\7u) = f(x) in n, u = 0 on an. 
Our emphasis is on the numerical treatment of discontinuous coefficient and effi-
ciency of the numerical methods. It is well known that such an inverse problem is 
illposed. Its numerical solution often suffers from undesirable numerical oscillation 
and very slow convergence. When the coefficient is smooth, successful numerical 
methods have been developed in [5] [7]. When the coefficient has large jumps, 
the numerical problem is much more difficult and some techniques have been pro-
posed in [2] and [3]. See also [9], [4] and [6] for some related numerical results in 
identifying some discontinuous coefficients. 

The two fundamental tools we use in [2] and [3] are the total variation (TV) 
regularization technique and the augmented Lagrangian technique. The TV reg-
ularization allows the coefficient to have large jumps and at the same time it will 
discourage the oscillations that normally appear in the computations. The aug-
mented Lagrangian method enforces the equation constraint in an H-1 norm and 
was studied in detail in [7]. Due to the bilinear structure of the equation constraint, 
the augmented Lagrangian reduces the output-least-squares (OLS) minimization to 
a system of coupled algebraic equations. How to solve these algebraic equations 
is of great importance in speeding up the solution procedure. The contribution 
of the present work is to propose an overlapping domain decomposition (DD) and 
a multigrid (MG) technique to evaluate the H-1 norm and at the same time use 
them as a preconditioner for one of the algebraic equations. Numerical tests will 
be given to show the speed-up using these techniques. 
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2. The augmented Lagrangian method 

Let ud be an observation for the solution u and 719 be an observation for the 
gradient \7u, both may contain random observation errors. Due to the illposedness 
of the inverse problem, it is often preferable to use the OLS minimization to recover 
q(x). Let us define K = {ql q E L00 (0),0 < k1 ~ q(x) ~ k2 < oo}, with k1 an 
k2 known a priori, to be the admissible set for the coefficient. Let the mapping 
e : K x HJ(O) --+ n-1 (0) be e(q, u) = -\7 · (\7q\7u)- J, which is the equation 
constraint. We shall use R(q) = fn JIVql2 + Edx, which approximate the TV-
norm of q(x), as the regularization term. In our experiments, the value of E is 
always taken in E E [0.001, 0.01]. The OLS minimization can be written 

(2) min -2
1 ilu- udlli2(f2) + -2111Vu- i19 ll£2(f2) + (3R(q). 

e(q,u)=O, qEK 

For more details on numerical approximations of the TV-norms, we refer to Chan 
and Tai [3]. As the inverse problem is illposed, its numerical solution is very 
sensitive to the observation errors. When the observation errors are very large, 
we must use proper noise removal procedure, see section 4 of [3] for the detailed 
algorithms that remove noise from the observations. 

The Lagrangian method is often used for minimization problems with equal-
ity constraint. However, the augmented Lagrangian method is better when the 
minimization problem is illposed or the Hessian matrix of the cost functional has 
very small positive eigenvalues. For minimization (2), the associated augmented 
Lagrangian functional is 

(3) Lr(q,u,A) = 1 2 1 - 2 2llu- udll£2(0.) + 2IIVu- ugiiP(O.) + f3R(q) 

+~lle(q, u)ll1-l(f2) +(A, e(q, u))H-l(f2)• 

\fq E K, u E HJ(O), A E H- 1(0). 

The following algorithm is used to find a saddle point for Lr(q, u, A): 
Algorithm 
Step 1 Choose Uo E HJ(O), Ao E n-1 (0) and r > 0. 
Step 2 Set u~ = Un-1· For k = 1, 2, ... , kmax, do: 

Step 2.1 Find q~ E K such that 

(4) k · L ( k-1 , ) qn = argmm r q,un ,An-1. 
qEK 

Step 2.2 Find u~ E HJ (0) such that 

(5) u~ = arg min Lr(q~, u, An-1)· uEHJ(O.) 
Step 3 Set Un = u~, Qn = q~, and update An as An= An-1 + re(qn, Un). 

In our simulations, we take kmax = 2. The above algorithm has a linear rate of 
convergence, see [7]. Second order scheme can also be used to search for a saddle 
point, see [7, p. 98]. If ( q*, u *, A*) is a saddle point of Lr, then ( q*, u*) is a minimizer 
of (2). For fixed u~-l and q~, the minimization problems of Step 2.1 and Step 2.2 are 
equivalent to two algebraic equations. See [3] for the detailed matrix representation 
of the corresponding algebraic equations. Problems ( 4) and (5) are solved by direct 
solver in [2] and [3]. The numerical accuracy and the executing time is superior 
to earlier literature results. However, we must improve the efficiency and use some 
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iterative solvers in order to be able to solve real life large size problems. Without 
using iterative solvers, the memory limit will prevent us from doing simulations 
for real life three dimensional problems. To use an iterative solver, the rate of 
convergence of the iterative solver is of great concern for the efficiency of the whole 
algorithm. Moreover, the way that the H-1-norm is evaluated is very critical in 
avoiding the solving of large size sparse matrices in the iterative procedure. Let ~ 
denote the Laplace operator, which is a homeomorphism from HJ(O) to H- 1 (0). 
It is true that II~ - 1 JIIHJ(!1) = IIJIIH-1(!1)· Thus, we need to invert a sparse matrix 
~in order to compute the H-1-norm. However, we can obtain the H- 1-norm off 
by inverting smaller size matrices with the domain decomposition methods or using 
multigrid type methods to avoid inverting any matrices by using the theorem of 
the next section. 

3. Space decomposition methods 

Recent research reveals that both domain decomposition and multigrid type 
methods can be analysed using the frame work of space decomposition and subspace 
correction, see Chan and Sharapov [1], Tai and Especial [11] [12], Tai [10] and Xu 
[14]. In this section, we show that we can use them to evaluate the H-1-norm. 

We present the results for a general Hilbert space and for general space decom-
position techniques. For a given Hilbert space V, we denote V* as its dual space 
and use(·,·) to denote its inner product. Notation(-,·) is used to denote the duality 
pairing between V and V*. We consider the case where V can be decomposed as a 
sum of subspaces: 

V = V1 + V2 + · · · + Vm. 

Moreover, we assume that there is a constant C1 > 0 such that 'Vv E V, we can find 
Vi E Vi that satisfy: 

(6) 
m 

v = LVi, 

i=1 

and 

and there is an C2 > 0 such that 

THEOREM 1. Assume the decomposed spaces satisfy (6) and (7), then 

(8) 'Vf E V* C ~*. 

Details of the proof of the above theorem will be given in a forthcoming paper. 
The theorem shows that in order to get llfllv•, we just need to use some parallel 
processors to compute 11!11~· and sum them together. For domain decomposition . 
methods, we need to invert some smaller size matrices to get 11!11~·. For multigrid 
methods, no matrices need to be inverted. ' 

4. Numerical Tests 

Let 0 = [0, 1] x [0, 1]. For a given f and piecewise smooth q, we compute the 
true solution from (1) and get its gradient V'u. Let Rd and R9 be vectors of random 
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numbers between [-1/2, 1/2]. The observations are generated by 

(9) 
We shall use finite element (FE) approximations. The domain D is first divided 
into subdomains Di, i = 1, 2, · · · , m with diameters of the size H, which will also be 
used as the coarse mesh elements. Each subdomain is refined to form a fine mesh 
division forD of mesh parameter h (h <<H). Each subdomain Di is extended by a 
size 8 = cH (0 < c < 1) to get overlapping subdomains Df. Let Sg(D), Sg(Df) and 
Sf! (D) be the bilinear FE spaces with zero traces on the corresponding boundaries 
on the fine mesh, subdomain Df and coarse mesh respectively. It is true that 

m 

i=l 

For the above decomposition, the constants C1 and C2 do not depend on the mesh 
parameters h and H, see [14]. Estimate (8) shows that we only need to invert 
the matrices associated with the subdomains and the coarse mesh to get the H-1 

norms. 
In order to use multigrid type techniques, we take D as the coarsest mesh and 

use rectangular elements. At a given level, we refine each element into four elements 
by connecting the midpoints of the edges of the rectangles of a coarser grid. Starting 
from D and repeating the above procedure J times, we will get J levels of meshes. 
Let Vk, k = 1, 2, · · · , J be the bilinear FE spaces over the levels and denote { ¢n ~~ 1 
the interior nodal basses for the kth level FE space, it is easy to see that 

J nk 

V=L:L:v/ with V=VJ,Vik=span(¢7). 
k=li=l 

For the multigrid decomposition, the subspaces Vik are one dimensional and the 
constants cl' c2 are independent of the mesh parameters and the number of levels. 
No matrix need to be inverted to get the H- 1 norms. 

The bilinear FE spaces introduced above will be used as the approximation 
spaces for u and A. Piecewise constarit FE functions on the fine mesh are used to 
approximate the coefficient q. For a given q, u and A, let B(q, u, A) and A(q, A) be 
the matrices that satisfy 

8L,.(q, u, A)/8q = B(q, u, A)q, 8L,.(q, u, A)/8u = A(q, A)u. 

Let B~ = B(q~, u~-I, An-I) and A~ = A(q~, An-d· Assume that the solution of 
( 4) is in the interior of K, then ( 4) and ( 5) are equivalent to solving 

(10) ) B k k k a nqn = o:n, 

with some known vector o:~ and /3~. Due to the regularization term R( q), the 
matrix B~ depends on q~. A simple linearization procedure is employed to deal 
with the nonlinearity, see [3, 13]. If we use conjugate gradient (CG) method to 
solve the equations (10), it is not necessary to know the matrices, we just need to 
calculate the product of the matrices with given vectors. It is easy to see that the 
equations in (10) have symmetric and positive define matrices. We use CG without 
preconditioner to solve (lO.a) and use a preconditioned CG to solve (lO.b). The 
stopping criteria for the CG iterations is that the residual has been reduced by a 
factor of w- 10 or the iteration number has reached 300 (In Table 2 the maximum 
iteration number is 5000 in order to see the CPU time usage for bad /3). The 
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a) True coefficent b) Identified coefficent c) Identified coefficent 

0 0 0 0 0 0 

d) Observation for u e) Observation for u_x f) Observation for u_y 

2 
5 5 

0 
0 

-1 -5 
1 0 0 0 

0 0 1 1 1 1 

FIGURE 1. The identified coefficients and the observation data. 

constants k1 and k2 used for defining the admissible coefficient set are taken to be 
k1 = 0, k2 = oo. The simulations are tested with a sequential machine in program-
ming language C++. Three different methods are used for the preconditioner and 
for evaluating the H-1 norms: 

1. Do LU decomposition (LU-D) for the Laplace operator and use it as the 
preconditioner and also for the H-1 norms. 

2. Use domain decomposition for the preconditioning and also for the H- 1 

norms. 
3. Use multigrid for the preconditioning and also for the H-1 norms. 
As the tests are done with a sequential machine, the multiplicative version of 

the MG and DD methods are used. In Table 1, the CPU time for different iteration 
numbers is given. We have used (3 = 0.00125 and h = /128. Here and later h 
and nx denote the mesh size and number of elements used both for the x- and y-
directions, respectively. We observe that the domain decomposition approach and 
the multigrid approach are much faster than the LU-decomposition. The multigrid 
method is slightly better than the domain decomposition method. The identified 
coefficients and the observations are shown in Figure 1. In identifying the coefficient 
in subfigure l.b), we have added 10% of noise and used h = 1/128, (3 = 0.00025, r = 
100. At iteration 20, llqn- qll£2(!1) = 0.0631 and lle(qn, Un)ll£2(!1) = 1.5 X w-7 . In 
subfigure l.c), the identified coefficient is with noise level t5 = 100% and we have 
used h = 1/128, (3 = 0.03125, r = 100. At iteration 20, llqn - qjj£2(!1) = 0.1013 and 
lle(qn, Un)ll£2(!1) = 1.1 X 10-6 . 
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TABLE 1. CPU time (in sec.) versus iteration with (3 
0.00125, h = 1/128. 

iter= MG DD LU-D 
1 31.87 94.04 942.76 
3 121.27 370.15 3350.17 
5 221.68 668.06 5999.82 
7 327.14 954.52 8749.58 
9 433.74 1244.67 11509.80 

11 541.47 1538.97 14227.90 
12 653.80 1836.38 16935.80 
15 777.22 2137.01 19628.30 
17 885.29 2439.20 22309.40 
20 1043.60 2887.72 26300.10 

TABLE 2. CPU time (in Sec.) versus (3 with h = 1/64, iteration= 20. 

!3= MG DD 
0.00001 1309.67 3270.60 
0.00005 544.13 1320.36 
0.00025 256.89 758.76 
0.00125 173.72 431.31 
0.00625 172.15 459.70 
0.03125 224.22 566.91 

TABLE 3. CPU time (in Sec.) versus h 
0.00125, iteration = 20. 

nx = MG DD 
16 6.06 16.83 
32 24.56 60.89 
64 171.76 406.91 

LU-D 
5009.87 
2146.69 
1107.20 
747.76 
728.08 
922.79 

1/nx with (3 

LU-D 
9.88 

61.71 
720.45 

128 1393.95 3859.8 35258.20 

The regularization parameter (3 is introduced to prevent numerical oscillations. 
If it is chosen to be big, the discontinuity is smeared out and large errors are intro-
duced. If it is chosen to be too small, it can not control the numerical oscillations 
and so prevent us from getting accurate numerical solutions. From our numerical 
tests, we find that the value of (3 is also of critical importance for the rate of conver-
gence for the CG method. In Table 2, the CPU time in seconds for different values 
of (3 is compared for the three different approaches. It is clear that very small or 
very large (3 increases the computing time. 

Table 3 is used to show the CPU time usage for different mesh sizes h. Let us 
note that the finest mesh is of size h = 1/128 with a total number of grid points 
128 x 128 ~ 2 x 104 . For inverse problems we considered here, there are not many 
numerical approaches that can handle such a large number of unknowns. It shall 
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also be noted that 100% of observation errors are added to the observations, i.e. 
8 = 100% in (9), see d) e) f) of Figure 1. 
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Some Results on Schwarz Methods for a Low-Frequency 
Approximation of Time-Dependent Maxwell's Equations in 

Conductive Media 

Andrea Toselli 

1. Introduction 

In this paper, we recall some recent theoretical results on two-level overlapping 
Schwarz methods for finite element approximations of Maxwell's equations and 
present some numerical results to compare the performances of different overlapping 
Schwarz methods, when varying the number of subregions, the mesh size of the 
coarse space and the time step of the implicit finite difference scheme employed. 

When studying low-frequency electromagnetic fields in conductive media, the 
displacement current term in Maxwell's equations is generally neglected and a para-
bolic partial differential equation is solved. The electric field u satisfies the equation 

1 au aJ . 
(1) curl (J-L- curl u) + (J at = -at, m 0, 

where J(x, t) is the current density and f.L and a are the magnetic permeability 
and the electric conductivity of the medium. For their meaning and for a general 
discussion of Maxwell's equations, see [3]. Here 0 is a bounded, three-dimensional 
polyhedron, with boundary r and outside normal n. For a perfect conducting 
boundary, the electric field satisfies the essential boundary condition 

(2) u x nlr = 0. 
For the analysis and solution of Maxwell's equations suitable Sobolev spaces must 
be introduced. The space H(curl, 0), of square integrable vectors, with square 
integrable curls, is a Hilbert space with the scalar product 

(3) a(u, v) =(curl u, curl v) + (u, v), 

where (·, ·) denotes the scalar product in L2 (0). The subspace of H(curl, 0) of 
vectors with vanishing tangential component on r is denoted by Ho(curl, 0). For 
the properties of H(curl, 0) and Ho(curl, 0), see [5]. 

In the following section, we recall the variational problem associated with (1) 
and (2), and the finite element spaces employed for its approximation. In Section 3, 
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we describe the two-level Schwarz method studied and state some theoretical results 
about its convergence properties. Section 4 is devoted to the numerical results. 

2. Discrete problem 

When an implicit FD scheme is employed and a finite element space V C 
H0 (curl, 0) is introduced, equations (1) and (3) can be approximated by: 

Find u E V such that 

(4) ary(u, v) = (u, v) + TJ (curl u, curl v) = (f, v), Vv E V, 

at each time step; TJ is a positive quantity, proportional to the time step !:l.t, and f 
depends on the solution at the previous steps, as well as on the right hand side of 
(1). See [1] for the finite element approximation of Maxwell's equations, and [10] 
for the time approximation of parabolic problems. 

For the finite element approximation, we first consider a shape-regular trian-
gulation Th of the domain 0, consisting of tetrahedra. Here h is the maximum 
diameter of 7,. We employ the Nedelec spaces of the first kind, of degree k > 0, 
which were introduced in [8]; see also [5]. Other choices of finite element spaces 
are also possible, see [9], as well as triangulations made of hexahedra and prisms, 
see [8], [9]. 

Let V c H 0 (curl, 0) be the Nedelec space of degree k, built on 7,, of vectors 
with vanishing tangential component on the boundary. We recall that vectors in 
V are not continuous, in general, but that only the continuity of their tangential 
component is preserved across the faces of the tetrahedra, as it is physically required 
for the electric field. The degrees of freedom associated to this finite element space 
involve integrals of the tangential components over the edges and the faces, as well 
as moments computed over each tetrahedron. See [8], [9], [5] and the references in 
[12] and [7] for further details on Nedelec spaces. 

3. Additive two-level method 

In order to build a two-level overlapping preconditioner for (4), we have to 
introduce an additional coarse triangulation and a decomposition of 0 into over-
lapping subregions. This can be done in a standard way; see [11] as a general 
reference for this section. 

We suppose that the triangulation T, is obtained by refining a shape-regular 
coarse triangulation TH, H > h, made of tetrahedra { Oi} {=1 . Let us consider a 
covering of 0, say {Oaf=1 , such that each open set 0~ is the union of tetrahedra 
of T, and contains Oi. Define the overlapping parameter 8 by 

8 =min{ dist(80~, Oi)}. 
' 

We suppose that 8 ~ aH, for a constant a > 0 (generous overlap), and that 
every point P E 0 belongs to at most Nc subregions (finite covering). 

The coarse space V0 is defined as the N edelec space over the coarse triangula-
tion TH, H > h, and the local spaces V; c V, associated to the subregions {Oaf=1, 

are obtained by setting the degrees of freedom outside 0~ to zero. Since the tri-
angulations '4_ and TH are nested, the coarse space VH is contained in V; see [6]. 
The space V admits the decomposition V = 2:.{=0 V;. 
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Let us now define the following projections for i = 0, · · · , J: 

(5) T; : V ---+ V;, 
(6) ar1 (Tiu, v) = a'7 (u, v), '</v E V;, 

where a'l(·, ·)is defined in (4) and let us introduce the additive Schwarz operator 
J 

(7) T=LTj:V--+V. 
j=O 

We solve the equation 

Tu=g, 

with the conjugate gradient method, without any further preconditioner, employing 
a'7(·, ·)as the inner product and a suitable right hand side g; see [4], [11]. 

Two-level multiplicative schemes can also be designed; see [4],[11]. The error 
en at the n-th step satisfies the equation 

(8) 

Different choices of multiplicative and hybrid operators are also possible and Krylov 
subspace methods, such as GMRES, can be employed as accelerators; see [11] for a 
more detailed discussion. A hybrid method will be considered in the next section. 

The main result concerning the convergence properties of the standard additive 
and multiplicative algorithms is contained in the following theorem: 

THEOREM 1. If the domain n is convex, and the triangulations T, and TH 
shape-regular and quasiuniform, then the condition number of the additive algorithm 
and the norm of the error operator E are bounded uniformly with respect to h, the 
number of subregions and ry. The bounds increase with the inverse of the relative 
overlap H j 8 and the finite covering parameter Nc. 

A proof of this theorem can be found in [12], for the case 'TJ = 1, and in [7] 
for the general case. We remark that the proofs employ the discrete Helmholtz 
decomposition of Nedelec spaces and suitable projections onto the spaces of discrete 
divergence-free functions; see [5] and [6]. The convexity of the domain n and the 
quasi uniformity of the meshes appear to be necessary for the error bounds of discrete 
divergence-free vectors. 

4. Numerical results 

In this section we present some numerical results to analyze the dependence 
of some Schwarz algorithms on the overlap, the number of subdomains and the 
time step. We will also show some results for a non-convex domain, for which 
the analysis carried out in [12] and [7] is not valid. We consider the Dirichlet 
problem (4) and use hexahedral Nedelec elements. 

We have tested the following Schwarz algorithms: 
(i) The Conjugate gradient method applied to the additive one-level operator 

J 

Tasl = LT;, 
i=l 

where the T; are the projections onto the local subspaces, defined in (5), (6). 
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TABLE 1. Estimated condition number and Nc (in parenthesis), 
versus HI 6 and the number of subregions: additive one-level algo-
rithm, f! = (0, 1 )3 , TJ = 1, 16 X 16 X 16-element fine mesh (13, 872 
unknowns). 

2x2x2 4x4x4 8x8x8 
Hl6=8 28.7 (8) - -
Hl6 =4 14.3 (8) 40.0 (8) -

Hl6 = 813 10.1 (8) - -
Hl6=2 8.62 (8) 13.5 (8) 46.4 (8) 
Hl6 = 413 8.02 (8) 27.0 (27) -

Hl6 = 1 - 5.19 (27) 15.5 (27) 

TABLE 2. Estimated condition number and Nc (in parenthesis), 
versus HI 6 and the number of subregions: additive two-level algo-
rithm, f2 = (0, 1)3 , TJ = 1, 16 X 16 X 16-element fine mesh (13,872 
unknowns). 

2x2x2 4x4x4 8x8x8 
Hl6 = 8 15.7 (8) - -
Hl6=4 9.67 (8) 10.3 (8) -
Hl6 = 813 8.48 (8) - -
Hl6 = 2 8.42 (8) 8.91 (8) 9.23 (8) 
Hl6 = 413 8.73 (8) 27.0 (27) -
Hl6 = 1 - 18.2 (27) 26.3 (27) 
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(ii) The Conjugate gradient method applied to the additive two-level operator 
J 

Tas2 =To+ LTi, 
i=l 

where the To the projection onto the coarse space V0 . 

(iii) The GMRES method applied to the non-symmetric two-level hybrid oper-
ator 

where w is a scaling parameter. 
Our results have been obtained on a SUN Ultra1, using the PETSc 2.0 library; 

see [2]. 
The independence of the condition number on the diameter h of the fine mesh 

is observed, when the number of subdomains and the relative overlap 6 I H are fixed; 
the results are not presented here. 

We first consider a unit cube n, with a fixed value of TJ = 1. Tables 1 and 2 
show the estimated condition numbers for algorithms (i) and (ii), as functions of 
the relative overlap and the number of subregions; in parenthesis, we also show the 
value of Nc defined in the previous section. We observe: 
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TABLE 3. Number of iterations versus Hl8 and the number of 
subregions, to reduce the residual error by a factor w- 6 : additive 
two-level algorithm (ii), f2 = (0, 1)3 , 'T/ = 1, 16 X 16 X 16--element 
fine mesh (13, 872 unknowns). 

8 64 
Hl8 = 8 26 -
Hl8=4 24 22 
Hl8 = 813 23 -
Hl8 = 2 21 21 
Hl8 = 413 21 33 
Hl8 = 1 - 27 

TABLE 4. Number of iterations and residual error (in parenthesis), 
versus HI 8 and the number of subregions, to reduce the residual 
error of the preconditioned system by a factor w- 9 : hybrid two-
level algorithm (iii) with optimal scaling, 0 = (0, 1)3 , 'T/ = 1, 16 x 
16 x 16-element fine mesh (13, 872 unknowns). 

8 64 
Hl8 = 8 28 (4.5 x w-3 ) -
Hl8 =4 26 (1.6 X 10 -3 ) 26 (9.8 X 10 -5 ) 

Hl8 = 813 24 (7.3 X 10 -a) -
Hl8 = 2 23 (l.o x w-") 24 (8.6 x w- 5 ) 

Hl8 = 413 20 (2.8 X 10 -:'>) 50 (1.3 X 10 l) 
Hl8 = 1 - 20 (4.8 X 10 -t>) 

• For both algorithms, the condition number decreases with HI 8 decreasing, 
when the number of subregions and Nc are fixed. In accordance with the 
analysis in [7], the condition number increases with Nc; the bound of the 
largest eigenvalue of the Schwarz operators grows linearly with Nc. 

• For a fixed value of the relative overlap and Nc, the condition number grows 
rapidly with the number of subregions for the one-level algorithm, while it 
grows slowly for the two-level case. 

• The two-level algorithm behaves better than the one-level method when the 
overlap is small, but seems more sensitive to Nc. 

For the same domain 0 = (0, 1)3 and the same value of 'T/ = 1, Tables 3 and 4 
show the number iterations for algorithms (ii) and (iii), as functions of Hl8, for the 
cases of 8 and 64 subregions. In order to compare the two methods, a reduction by a 
factor w-6 of the residual error of the unpreconditioned system was chosen for the 
CG algorithm in (ii), while a reduction by a factor 10-9 of the residual error of the 
preconditioned system was considered in (iii). In Table 4, we also show the residual 
error of the unpreconditioned system in parenthesis. GMRES was restarted each 
30 iterations. 

The results show that algorithm (iii) gives a number of iterations that is compa-
rable to the ones of (ii). According to our numerical tests, the optimal value of the 
scaling factor w depends on the overlap and the number of subregions. The results 
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TABLE 5. Estimated condition number versus H/8 and the num-
ber of subregions: additive one-level algorithm, n = (0, 1)3 \ 

[0, 1/2]3, 16 x 16 x 16-element fine mesh (12, 336 unknowns). 

2x2x2 4x4x4 8x8x8 
H/8=8 31.5 - -
H/8=4 15.0 41.2 -
H/8=2 8.65 13.6 48.9 
H/8 = 1 - 5.84 18.5 

TABLE 6. Estimated condition number versus H/8 and the num-
ber of subregions: additive two--level algorithm, n = (0, 1)3 \ 

[0, 1/2]3, TJ = 1, 16 x 16 x 16-element fine mesh (12, 336 unknowns). 

2x2x2 4x4x4 8x8x8 
H/8=8 52.2 - -
H/8=4 43.4 17.3 -
H/8= 2 36.2 17.1 10.2 
H/8 = 1 - 24.8 27.2 
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in Table 4 were obtained with optimal scaling. We also ran some tests with a sym-
metrized version of the hybrid algorithm, obtained by adding another smoothing 
step on the subdomains, see [11], but the results are not so good as in (iii) and are 
not presented here. The full multiplicative preconditioner was not implemented in 
the PETSc version that we used. 

We have also considered the case n = (0, 1)3 \ [0, 1/2]3, in which n is not convex 
and for which the analysis carried out in [12] and [7] is not valid. Tables 5 and 
6 show the estimated condition numbers for algorithms (i) and (ii), as functions 
of the relative overlap and the number of subregions; in order to facilitate the 
comparison, we have shown the number of subregions and elements corresponding 
to the discretization of the whole (0, 1)3 . We observe: 

• All the remarks made for the case 0 = (0, 1)3 are still valid, in general, 
except that the one-level algorithm behaves better than the two-level one, 
unless the number of subregions is large. 

• The one-level algorithm shows a slight increase of the condition number, 
compared to the convex case, while a considerable deterioration of the per-
formances of the two--level algorithm is observed, unless the number of sub-
regions is large. 

• Theorem 1 seems to be valid for this particular choice of non convex domain, 
even if the constants are found to be larger than the ones in the convex case. 

Finally, we have tested algorithms (i) and (ii) for different values of ry. We recall 
that TJ is proportional to the time step of the FD scheme employed for the approx-
imation of (1). According to the analysis in [7] the condition number of algorithm 
(ii) can be bounded independently of ry. For methods (i) and (ii), Figures 1 and 2 
show the estimated condition numbers as functions of ry, for different values of the 
overlap and 8 subregions. Figures 3 and 4 show the results for 64 subdomains. 
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FIGURE 1. Estimated condition number versus '17 (H/b = 8, solid 
line; H/b = 4, dashed line; H/b = 2, dotted line): additive 1-level 
algorithm, 0 = (0, 1 )3 , 16 X 16 X 16-element fine mesh, 8 subregions. 

"' .... -R ............ "·'""'·":'•:--•• -:-:-•• - ..... ~.":'.,..,.,., .... ,.,-. 

~0' ,. 

FIGURE 2. Estimated condition number versus '17 (H/b = 8, solid 
line; H/b = 4, dashed line; H/b = 2, dotted line): additive 2-level 
algorithm, n = (0, 1 )3 , 16 x 16 x 16-element fine mesh, 8 subregions. 

For values of 'TJ larger than 0.1, the same remarks made for the case '17 = 1 hold. 
But, in practice, for smaller values of ry, the performances of the two-level method 
deteriorate and the algorithm becomes inefficient for very small '17· The coarse space 
correction is not effective if '17 < c( b) b2 , where c( b) is found to be close to one. On 
the contrary the condition number of method (i) is found to be decreasing with the 
time step and, as '17 tends to zero, tends to Nc. For '17 < c( b) b2 , the latter algorithm 
has better performances than the two-level one, or, in other words, for a fixed value 
of the time step, the overlap should not be too large or the coarse space correction 
will not be effective. 
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Parallel Computing for Reacting Flows Using 
Adaptive Grid Refinement 

Robbert L. Verweij, Aris Twerda, and Tim W.J. Peeters 

1. Introduction 

The paper reports on the parallelisation of the computational code for mod-
elling turbulent combustion in large industrial 3D glass melting furnaces. Domain 
decomposition is used to perform the parallelisation. Performance optimisation is 
examined, to both speed up the code as well as to improve convergence. Local grid 
refinement is discussed using several different refinement criteria. 

The numerical simulation of turbulent reacting flows requires advanced models 
of turbulence, combustion and radiation in conjunction with sufficiently fine numer-
ical grids to resolve important small scale interactions in the areas of flame front, 
high shear and near solid walls. These simulations are very CPU- and memory-
demanding. Currently, many of the numerical simulation have to be performed with 
relatively simple models, hampering an accurate prediction. Parallel processing is 
regarded nowadays as the promising route by which to achieve desired accuracy 
with acceptable turn-around time. 

Domain decomposition is very suitable technique to achieve a parallel algo-
rithm. Furthermore, it allows block-structured refinement quite easily. In this 
manner the number of grid points can be minimised, giving rise to a very efficient 
distribution of grid points over the domain. 

2. Physical model 

Figure 1 shows a typical furnace geometry, where the preheated air (T = 1400 
K, v = 9 m/s) and the gas (T = 300 K, v = 125 m/s) enter the furnace separately. 
The turbulence, mainly occurring because of the high gas-inlet velocity, leads to 
good turbulent mixing. This mixing is essential for combustion of the initially non-
premixed fuel and oxidiser into products, which exit the furnace at the opposite 
side. 

The maximum time-averaged temperatures encountered in the furnace are typ-
ically 2200 K, at which temperature most of the heat transfer to the walls is by 
radiation. 

The implementation involves the solving of the 3D incompressible (variable 
density) stationary conservation laws for mass, momentum, energy and species. 
The hydrodynamic and caloric equations of state are added to relate the pressure 
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Air inlet 
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FIGURE 1. Artist's impression of a furnace geometry with flame. 
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to the density and the enthalpy to the temperature. The equations are averaged 
using Favre-averaging. The mean flow equations are closed using the standard 
high-Reynolds k- c turbulence model with standard values for all constants. Wall 
functions are used to bridge the low-Reynolds region near the walls. The heat 
transfer to the walls is not too much influenced by the velocity field in the near-
wall region, justifying this assumption. The conserved-scalar approach is used to 
model the combustion. The chemistry is modelled with a constrained-equilibrium 
assumption. An assumed shape {3 Probability Density Functions (PDF ) is used to 
obtain the mean values of the thermochemical quantities. Radiative heat transfer 
in the furnace is calculated using the Discrete Transfer Model. A more detailed 
description of turbulent combustion modelling for furnaces can be found in [1, 6]. 

3. Numerical model 

The modelled equations are discretised using the Finite Volume Method on 
a colocated, Cartesian grid [4]. The SIMPLE-algorithm is applied to couple the 
pressure and velocity fields and satisfy mass- and momentum conservation. The 
linearised systems are solved using the SIP-algorithm or the GMRES-algorithm. The 
convective terms are discretised using central discretisation, as suggested by [4], 
but other convective schemes (upwind, tvd) are also available. Full multi-grid [4] 
is used to improve the convergence behaviour of the multi-block code. 

For the domain decomposition the grid-embedding technique [3] is used. This 
means that one global (coarse) grid is defined, and the domains are defined as 
subdomains of this coarse grid, where minimal overlap between the blocks is used. 
Every subdomain can be refined with respect to the coarse grid, with the restriction 
that adjacent blocks can only be equally fine, twice as fine or twice as coarse as 
the neighbouring blocks. This is not really a restriction, since the truncation error 
over the interface is of the order of the size of the coarser block, so patching a very 
fine block to a very coarse block would not lead to better numerical accuracy. A 
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FIGURE 2. Two-dimensional view of a domain decomposition into 
five blocks with three different levels of grid refinement. For clarity 
the overlap areas between the blocks have not been drawn. 

2D slice of a typical domain decomposition with local grid refinement is shown in 
Figure 2. 

To couple the domains, one layer of halo-cells (auxiliary control volumes) was 
used [7]. The values on the internal boundaries are copied into the halo-cells of the 
neighbouring domains. This way of coupling renders the need for explicit boundary 
conditions on the internal boundaries superfluous and guarantees that the converged 
solution is independent of the block decomposition, if all blocks are equally fine. 

The local grid refinement was implemented by computing the fluxes on the fine 
grid side of the interfaces only, and then sending them to the coarser grids and 
adding them there. This yields a flux conservative scheme over the block-interface. 
For the other quantities, tri-linear interpolation and splines are used. This also 
uniquely defines the value of the gradients on the interfaces. 

4. Parallel implementation 

The domain decomposition was used as a basis for parallelisation. Static load 
balancing is performed; every domain contains (approximately) the same amount 
of grid-points and the amount of work per grid point was assumed to be constant 
for all points. All processors were assumed to be equally fast. In combination with 
local grid refinement some load-imbalance was accepted to minimise the number of 
blocks and optimise the number of grid points needed. 

Exactly one domain is computed per processor, so that the (old) sequential 
single-block program could easily be used for multi-block computations. The SPMD 
(Single Program, Multiple data) programming model was used. Typically 4 to 32 
domains were used to perform the calculations. 

In this study, PVM and MPI were adopted on clustered workstations and the 
machine specific message passing tool SHMEM on the CRAY T3E. Changing from one 
message passing interface to another proved easy, since all communication was hid-
den in a few generic subroutines, named for example parsend or parrecv. In domain 
decomposition the number and size of messages is relatively small compared to the 
computations done. Hence switching from MPI to SHMEM didn't yield significantly 
better results. 

5. Results 

5.1. Performance optimisation. First the speedup of the code was exam-
ined. The 3D version of the code, called FURNACE is shown in Figure 3 on the left 
for two grid-sizes (203 and 503 ). On the right the speedup for a 2D version of the 
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30 

code, called BIGMIX, with more elaborate chemistry [6] is shown. All test-runs 
have been performed on a CRAY T3E AC80-128. 

Note that FURNACE scales better for finer grids, as is expected. The super-
linear speedup of BIG MIX can be explained by assuming better cache-use, because 
of the two dimensionality of the arrays. Triggered by the sensitivity of the code per-
formance on the cache-use, the original code was slightly rewritten, and optimised 
to enable better vector-length controlling. Compiler-options were investigated and 
it was found out that -03, Unroll2 ,no jump together with the enabling of the CRAY 
T3E data-stream buffers significantly improved the singe PE performance as well as 
the speedup, since there was less load-imbalance. This is shown in Figure 3 (left) 
too. 

The effect of load imbalance can also be seen in the weird bend in the speedup 
curve in the left figure around 8 and 12 PE's, where speedup seems to decrease 
and then increase again, especially for the coarse grid. This bend been analysed by 
plotting the time spent in different parts of FURNACE. It can be seen from Figure 
4 that when using more blocks the amount of time spent in updating the internal 
boundaries (which requires communication) becomes the bottleneck. This is prob-
ably due to the fact that from if there are more than 8 blocks in the decomposition, 
some blocks have more neighbours than others, which implies that some blocks will 
updating more boundaries than others. This assumption is asserted in the next 
paragraph. 

Further time-reduction was obtained by minimising the amount of 1/0 requests. 
1/0 is very expensive and still highly sequential on parallel machines (although 
recently MPI-2 defines a standard to optimise this, which has not been used here). 
In general it was found that if a data-block needs to be read in by all processors, 
it is the quickest to let 1 PE read the data and then global scatter it to all other 
PE's. 
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TABLE 1. Load imbalance for complete problem 

Time needed ( s) sliced decomp. rectangular decomp. 
Total program time 2150 1700 
Parallel working time 1140 (53%) 1241 (73%) 
Total barrier waiting time 606 (28%) 106 (6%) 
Total communication time 85 (4%) 77 (5%) 

TABLE 2. Relative change of some variables with respect to their 
finest grid values 

Grid size heat flux flue temp. flue 0 2 cone. flue NOx cone. 
16 X 24 X 20 + 17% + 2% +2% -33% 
24 X 36 X 30 + 12% + 3% +1% -25% 
32 X 48 X 40 + 8% + 3% +1% -12% 
32 X 72 X 60 + 0% + 0% + 0% + 0% 

In the original code every variable could be read from file independently, causing 
much 1/0 interrupts. In the modified code, all data was available in a single data-
file, and the amount of file checking was minimised. The total amount of 1/0 time 
for both methods is depicted in Figure 4 for a run on 16 PE's, the total amount 
of data to be read from disk is 16 x 5.4Mb (this includes the lookup table for 
chemistry) The amount of data written to disk is 16 x 1.4Mb. The differences per 
PE are much smaller in the modified code, and the mean time spent in 1/0 was 
brought down from 197.1 seconds to 15.4 seconds. 

The assumption that load imbalance was caused by the fact that some blocks 
have more neighbours than others was asserted next. 200 iterations were done on a 
coarse (16 x 24 x 20) grid, used in previous studies [1, 6]. This grid was split into four 
blocks in two different configurations, shown in Figure 5. In the left decomposition 
all blocks have exactly two neighbours (the rectangular decomposition), in the 
right one the middle two blocks have two neighbours (the sliced decomposition), 
and the outer blocks one. Every block contains the same amount of points. Both 
decompositions lead to exactly the same converged solution, but the timings are 
quite different, as shown in Table 1. 

The rectangular decomposition yields much better timing results than the sliced 
decomposition. This confirms the assumption that in the sliced decomposition, the 
two middle blocks have much more communications to do, creating an huge load-
imbalance in that part of the code. This effect becomes smaller if the number 
of points per blocks becomes bigger. Note that the total communication time is 
approximately equal in both cases, and is small compared to the entire program 
time. The smaller parallel working time in the rectangular decomposition is because 
of better cache use, we assume. The load imbalance becomes smaller if the number 
of points per block become larger, as could be seen in Figure 4. 

5.2. Local grid refinement. The block-structured approach allows for local 
grid refinement in each block, as was already explained in the previous section. 
The need for local grid refinement becomes clear from Table 2, where the relative 
change of some variables with respect to the value of the variable on the finest grid 
is printed, if the global grid is varied from relatively coarse to very fine. 
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Although the temperature and the heat flux are not so much influenced by finer 
grids, the predictions for the concentrations show a great grid sensitivity, mainly be-
cause they depend heavily on the mixture fraction concentration prediction, which 
also varies considerably. 
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FIGURE 5. Two block decompositions ofthe same grid. left: Rect-
angular decomposition right: Sliced decomposition. 

Also another, standard, testcase was performed: The laminar lid-driven cavity 
at Re = 100. This testcase was also used by [5] to test his dynamic local grid 
refinement. Also here grid independent results were only obtained at a 2562 grid, 
in agreement with [8], showing the amount of grid points needed without local 
refinement. 

Statical grid refinement was applied first; the blocks where manually gener-
ated, based on experience and intuition rather than some fundamental refinement 
criterion. This did yield satisfactory results, in the sense that first results yielded 
reduction of grid points from 38 % for the entire combustion computations [1] to 
80 % for the cavity. 

Next, dynamical grid refinement was implemented. Some error estimator should 
provide information about the refinement. In literature, the Richardson extrapo-
lation is often used as criterion for refinement. However, for combustion problems, 
where geometry and physics are complex, the coarsest reliable mesh contains so 
many grid points that a uniform refinement, just to estimate the error, cannot 
be afforded. Muzaferia [5] developed a method, similar to Richardson extrapola-
tion, which is based on the difference of higher- and lower order approximation 
of the fluxes to approximate the truncation error. Apart from this method, a 
more physical criterion was build in, to reflect our believe that in complex flows 
steep gradients of relevant quantities also mark regions which should be refined 
[2]. Hence the gradient of an 'interesting quantity' is used as an error indication. 
In the furnace-simulation another interesting quantity like temperature or density 
could be used. However, in most flows it is not the gradient, but the curvature (the 
second derivative) which yields the areas of high shear. These three criteria have 
been implemented and tested on several flows. 

To test the different criteria the laminar lid-driven cavity was computed, to 
compare the results to [5], and since this problem converges very quickly at low 
Reynolds numbers. Grid independent results were only obtained at a 2562 grid, 
in agreement with [8], showing the amount of grid points that are needed without 
local refinement. The results are in excellent agreement with those of [5] and [8]. 
However, switching to other criteria gave different results. Figure 6 shows the 
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a Vectorplot of field b Maximum curvature c Method of [5] and 
present method d Maximum velocity-gradient criterion 

different grid refinements after 2 levels of refinement starting with a uniform 82 

grid, and allowing 4 blocks in both directions. 
The results for refinement criterion c (the Muzaferia method) arc in excellent 

agreement with those of [5] and [8]. All three criteria yield plausible refinement 
regions at first view and comparable minimum values for the streamlines. More 
testcases need to be considered to determine which criterion yields the most ac-
curate results by comparing them to the 'true' solution, ie. the grid independent 
solution. 

A backdraw of the block-structured refinement is that it leads to severe load 
imbalance, as shown in Table 3. This could be overcome by using a different way 
of defining the new domain decomposition. Currently the decomposition is based 
on a minimal number of blocks. Other options might be to use many very small 
blocks (although this will probably influence the convergence behaviour) or to run 
several blocks on 1 PE, which is currently not possible. 
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TABLE 3. Load imbalance due to local grid refinement. 

grid points 
Criterion #blocks Max Min Total 
Muzaferia 6 128 4 220 
Gradient 7 256 4 292 
Curvature 7 128 8 376 

6. Conclusions 

Load imbalance is a underestimated problem in most CFD applications. Par-
allelisation by domain decomposition is a straightforward and efficient way to par-
allelise combustion codes. When combined with multigrid, convergence becomes 
independent of the number of blocks used. Good tuning of a program significantly 
improves the performance on cache-based machines like the CRAY T3E. 

Dynamical grid refinement yields significant reduction of grid points with the 
same accuracy. This is needed since tests showed the need of huge grids for realistic 
applications. Different criteria can be applied to determine the refinement, yielding 
different regions of refinement. The choice for the 'best' criterion is not obvious 
yet, and might even depend on the application. 
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The Coupling of Mixed and Conforming 
Finite Element Discretizations 

Christian Wieners and Barbara L Wohlmuth 

1. Introduction 

In this paper, we introduce and analyze a special mortar finite element method. 
We restrict ourselves to the case of two disjoint subdomains, and use Raviart-
Thomas finite elements in one subdomain and conforming finite elements in the 
other. In particular, this might be interesting for the coupling of different models 
and materials. Because of the different role of Dirichlet and Neumann boundary 
conditions a variational formulation without a Lagrange multiplier can be presented. 
It can be shown that no matching conditions for the discrete finite element spaces 
are necessary at the interface. Using static condensation, a coupling of conforming 
finite elements and enriched nonconforming Crouzeix-Raviart elements satisfying 
Dirichlet boundary conditions at the interface is obtained. Then the Dirichlet 
problem is extended to a variational problem on the whole nonconforming ansatz 
space. In this step a piecewise constant Lagrange multiplier comes into play. By 
eliminating the local cubic bubble functions, it can be shown that this is equiva-
lent to a standard mortar coupling between conforming and Crouzeix-Raviart finite 
elements. Here the Lagrange multiplier lives on the side of the Crouzeix-Raviart 
elements. And in contrast to the standard mortar Pl/Pl coupling the discrete 
ansatz space for the Lagrange multiplier consists of piecewise constant functions 
instead of continuous piecewise linear functions. We note that the piecewise con-
stant Lagrange multiplier represents an approximation of the Neumann boundary 
condition at the interface. Finally, we present some numerical results and sketch the 
ideas of the algorithm. The arising saddle point problems is be solved by multigrid 
techniques with transforming smoothers. 

The mortar methods have been introduced recently and a lot of work in this 
field has been done during the last few years; cf., e.g., [1, 4, 5, 14, 15]. For the 
construction of efficient iterative solvers we refer to [2, 3, 20, 21]. The concepts 
of a posteriori error estimators and adaptive refinement techniques have also been 
generalized to mortar methods on nonmatching grids; see e.g. [13, 22, 25, 24]. 
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Originally introduced for the coupling of spectral element methods and finite ele-
ments, this method has thus now been extended to a variety of special situations 
[6, 7, 11, 12, 26]. 

(1) 

2. The continuous problem 

We consider the following elliptic boundary value problem 

Lu := -div (aV'u) + bu = f in n, 
u = 0 on r :=an 

where n is a bounded, polygonal domain in He and f E L2(n). Furthermore, we 
assume a = ( a;j )T,J=l to be a symmetric, uniformly positive definite matrix-valued 
function with a;1 E L00 (n), 1 ::; i,j ::; 2, and 0 ::; b E L00 (n). The domain 0 
is decomposed into two nonoverlapping polyhedral subdomains nl u 02, and we 
assume that meas(an2 nan) =/=- 0. On n1 we introduce a mixed formulation of 
the elliptic boundary value problem (1) with a Dirichlet boundary condition on 
r := anl n an2, whereas on n2 we use the standard variational formulation with 
a Neumann boundary condition on r. We denote by n the outer unit normal of 
n 1. The Dirichlet boundary condition on r will be given by the weak solution 
U2 in n2 and the Neumann boundary condition by the flux jl in n]. Then, the 
ansatz space for the solution (j 1, ul) in n 1 is given by H(div; nl) x L2(n1) and 
by Hrh2 (n2) := { v E H 1 (n2) I vlr2 = 0}, where r2 := ann an2 for the solution 
U2 in n2. We recall that no boundary condition on r has to be imposed on the 
ansatz spaces. In contrast to the standard case, Neumann boundary conditions 
are essential boundary conditions for the mixed formulation, i.e. they have to be 
enforced in the construction of the ansatz spaces. The coupling of the mixed and 
standard formulations leads to the following saddle point problem: 
Find (jJ,UJ,u2) E H(div;nl) x L2(nl) x Hrh2 (n2) such that 

a1(j1,ql) + b(q1,ul) - d(q1,u2) 0, 
(2) b(j1,vl) - c(u1,v1) -(f,vi)o;n1 , 

-d(j1,v2) - a2(u2,v2) -(f,v2)o;n2 , 

Here the bilinear forms a;(·,·), 1::; i::; 2, b(·, ·), c(·, ·)and d(·, ·) are given by 

a2(w2,v2) ·- In 2 (aV'v2V'w2+bv2w2)dx, v2,w2EHJ;r2 (n2), 
al (Pl, ql) ·- I~h a- 1Pl. ql dx, Pl, ql E H(div; nl), 

b(q1,vl) ·- In1 divq1 v1 dx, v1 E L2 (ni), q1 E H(div;ni), 
c(w1, vi) .- In1 bw1 v1 dx, v1, w1 E L2(nl), 
d(q1,v2) ·- (q1n,v2), qlEH(div;nJ),v2EHJ;r2 (n2), 

and (-, ·), stands for the duality pairing of H- 112 (f) and H 112 (f). The kernel of 
the operator B : H( div; nl) x HJ;r2 (n2) -----+ L2(nl), which is associated with the 
linear form b(-, Vj) is KerB:= {(ql, 112) E H(div; nl) X Hrh2(n2) I divq = 0}. On 
H(div;nJ) x Hr\y 2 (n2), we introduce the nonsymmetric bilinear form a(a,T) := 
a 2 (w2,v2) + d(p1,v2) + a1(P1,q1)- d(q1,w2) where a:= (q1,v2), T := (p1,w2), 
and the norm II · II is given by llall 2 := llv2lli;n2 + llq1ll~iv;n 1 • Taking the continuity 
of the bilinear forms, the Babuska-Brezzi condition, and the coercivity of a(·, ·) on 
KerB, a( a, a) 2: allalj 2, a E KerB, into account, we obtain unique solvability of 
the saddle point problem (2); see e.g. [19]. 
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3. Discretization and A Priori Estimates 

We restrict ourselves to the case that simplicial triangulations 7h1 and Th 2 

are given on both subdomains 01 and 02. However, our results can be easily 
extended to more general situations including polar grids. The sets of edges of 
the meshes are denoted by £h1 and £h2. We use the Raviart-Thomas space of 
order k1, RTk1 (01; Th 1 ) C H(div; 01), k1 ~ 0, for the approximation of the flux 
j1 in 01, the space of piecewise polynomials of order k1, Wk 1 (01; T,-.1) := { v E 
£ 2(01) I vir E Pk1 (T), T E 7hJ for the approximation of the primal variable u1 in 
01, and conforming Pk2 finite elements Sk2 (02; Th2) c HJ;r2 (02) in 02. Associated 
with this discretization is the following discrete saddle point problem: 
Find (h!,uh!,Uh2) E Rn1(01;7h,) X wkl(01;7h,) X sk2(02;7h2) such that 

(3) 
a1(h1 , Qh) 
b(h1 ,wh) 
-d(h1 ,vh) 

+ b(qh,uh,) - d(qh,Uh2) 
- c(uh 1 ,Wh) 

0, Qh E RTk1 (01; Th,), 
-(f,wh)o;~ 1 , Wh E Wk1(01;7h,), 
(!, vh)0;~2' Vh E sk2 (02; Th2 ). 

It can be easily seen that the discrete Babuska-Brezzi condition is satisfied with 
a constant independent of the refinement level. In addition, the kernel of the 
discrete operator Bk1 is a subspace of KerB. Therefore, an upper bound for the 
discretization error is given by the best approximation, and we obtain the well 
known a priori estimate, see e.g. [19], 

IU - jh1ll~iv;~ 1 + llu- Uh~ll6;~ 1 + llu- Uh2lli;~ 2 
(4) 

::; c ( hi(k! +1) (llullt +1;~ 1 + IUII%1 +1;~ 1 + II JilL +1;~J + h~k 2 11ull% 2 +1;~ 2 ) 
if the problem has a regular enough solution. In fact, the constant Cis independent 
of the ratio of h1 and h2 and there is no matching condition for the triangulations 
Th 1 and Th2 at the interface required. 

4. An Equivalent Nonconforming Formulation 

It is well known that mixed finite element techniques are equivalent to noncon-
forming ones [8]. Introducing interelement Lagrange multipliers, the flux variable as 
well as the primal variable can be evaluated locally and the resulting Schur comple-
ment system is the same as for the positive definite variational problem associated 
with a nonstandard nonconforming Crouzeix-Raviart discretization [19]. In addi-
tion, the mixed finite element solution can be obtained by a local postprocessing 
from these Crouzeix-Raviart finite element solution. 

We now restrict ourselves to the lowest order Raviart-Thomas ansatz space 
(k1 = 0). To obtain the equivalence, we consider the enriched Crouzeix-Raviart 
space NC(01; 7h,) := CR(01; 7h,)+B3(01; 7h,) where CR(01; 7h,) is the Crouzeix-
Raviart space of piecewise linear functions which are continuous at the midpoints 
of the triangulation 7h1 and equal to zero at the midpoints of any boundary edge 
e E £h1 n 80. B3(01; Th,) is the space of piecewise cubic bubble functions which 
vanish on the boundary of the elements. Then, we can obtain equivalence between 
the saddle point problem 

(5) a1(h~'qh) + b(qh,Uh1 ) 

b(h1 , wh) - c( Uh 1 , wh) 
d(qh, Uh 2 ), Qh E RTo(Ol;Th1) 
-(f,wh)o;np wh E Wo(OI;7h,) 
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and the positive definite problem: Find \}ihl E NCU"2(0l;Thl) such that 

(6) aNc(Wh 1 ,'1fh) = (f,Ilo'1fh)o;n 1 , '1/Jh E NC0 (0l;Th 1 ). 

Here, aNc((/lh, '1/Jh) := LTET. f1, Pa-l (a\1(/Jh)\l'lj;h +biio¢h Ilo'I/Jh dx, and ITo stands hl 
for the L2-projection onto Wo(01 ; Th 1 ). Pa-l is the weighted L2-projection, with 
weight a -l, onto the three dimensional local Raviart-Thomas space of lowest order, 
and NC9 (0l;Thl) := {'1/Jh E NC(Ol;Thl) I fe \}ihl da = fegda, e E £h, nr}. 

Using the equivalence of (5) and (6) in (3), we get: 
Find (Wh 1 ,Uh2) E NCuh2(01;Th,) X Sk2(02;Th2 ) such that 

(7) 
aNc(Wh, '1/Jh) 
a2( Uh2, vh) + d(Pa-' ( a\1\li h1 ), vh) 

= (f,Ilo'I/Jh)o;n, '1/Jh E NC0 (01;Th,), 
(f, Vh)o;n2, Vh E Sk2(02; Th2). 

Note that the ansatz space on 0 1 depends on the solution in 0 2 . 

For the numerical solution, we transfer (7) into a saddle point problem where 
no boundary condition has to be imposed on the ansatz spaces at the interface. 
It can be shown that the Dirichlet problem (6) can be extended to a variational 
problem on the whole space NC(0 1;Th1 ). In fact, we obtain 

(8) aNc(Wh, '1/Jh)- d(Pa-l (a\!Wh 1 ), '1/Jh) = (f, l1o'I/Jh)o;n 1 , '1/Jh E NC(01; Th, ). 

Let M(r; £h 1 ) := {11 E L2 (f) I 11le E Po( e), e E £h, n r} be the space of piecewise 
constant Lagrange multipliers associated with the lD triangulation of r inherited 
from Th 1 • Then, the condition Wh 1 E NCuh2(01;Th 1 ) is nothing else than Wh, E 
NC(01;Th1 ) and 

(9) 

THEOREM 1. Let (whl,Uh2) E NCUh2(0l;Thl) X sk2(02;Th2) be the solution 
of (7). Then, UM := (lllh 1 ,Uh2) and >w := Pa-l(a\llllh 1 )lr is the unique so-
lution of the following saddle point problem: Find ( UM, AM) E (NC(01; Th,) x 
sk2(02;Th2)) X M(f;£hl) such that 

a(uM, v)- d(AM, v) = f(v), v E NC(Ol; Thl) X sk2(02; Th,), 
d(11, uM) = o, 11 E M(r; t:h,). 

(10) 

Here the bilinear and linear forms are given by: 

a(w, v) := a2(w, v) + aNc(w, v), v, wE NC(Ol; Thl) X sk2 (02; Th,), 
d(11, v) := fr 11( vln 1 - vln 2 ) da, 11 E M(f; £h 1 ), 

f(v) := (f,v)o;n2 + (f,Ilov)o;n 1 • 

Taking (8) and (9) into account, the assertion is an easy consequence of (7). 
Theorem 1 states the equivalence of (3) and (10) in the case k1 = 0 with h 1 = 

Pa-'(a\luMin 1 ), uh, = IlouMin 1 and Uh2 = uMin2 • In fact, (10) is a mortar finite 
element coupling between the conforming and nonconforming ansatz spaces. The 
Lagrange multiplier AM = h 1 nlr is associated with the side of the nonconforming 
discretization, and it gives an approximation of the Neumann boundary condition 
on the interface r. 

REMARK 2. For the numerical solution, we will eliminate locally the cubic 
bubble functions in (10). In particular, for the special case b = 0 and the diffusion 
coefficient a is piecewise constant, we obtain the standard variational problem for 
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Crouzeix-Raviart elements where the right hand side f is replaced by IIof. Then, 
the nonconforming solution 111 h1 is given by 

5 3 
whllr =Uhlir+ 12 L h;i IIoflr(>'1>.2>.3), T E Thl 

i=l 

where >.i, 1 :::; i :::; 3 are the barycentric coordinates, and he; is the length of the 
edge ei c aT, 1 :::; i :::; 3. Here, Uhl stands for the Crouzeix-Raviart part of the 
mortar finite element solution of (10) restricted on (CR(D1; 7hJ x Sk2 (D2; Th 2 )) x 
M(f;EhJ· 

5. Numerical algorithm 

The numerical approximation of (2) is based on the equivalence between mixed 
and nonconforming finite elements. Thus, we use the variational problem given 
in Theorem 1, where additional Lagrange multipliers at the interface are required. 
We recall that the cubic bubble functions in the saddle point problem (10) can be 
locally eliminated. Thus, we obtain finally a reduced saddle point problem defined 
on (CR(n1;7hJ X sk2(n2;7h2)) X M(f;Ehl). 

The construction of efficient iterative solvers for this type of saddle point prob-
lems has often been based on domain decomposition ideas; see e. g. [2, 3, 21]. 
This approach involves a preconditioner for the exact Schur complement. Here, we 
apply standard multigrid methods with transforming smoothers. The analysis of 
transforming smoothers for mortar finite elements is similar to the analysis for the 
Stokes problem given in [16, 23]. The technical details for the mortar case will be 
presented in a forthcoming paper. 

In contrast to the Stokes problem, the Schur complement for mortar elements is 
of smaller dimension. It is associated with the one dimensional interface. Thus the 
Schur complement of the constructed smoother can be assembled exactly without 
loosing the optimal complexity of the algorithm. In addition, the condition number 
of the Schur complement of the smoother is bounded independent of the meshsize. 
And our numerical results indicate that optimal order convergence also can be 
obtained with an approximate Schur complement. 

We present two numerical examples implemented using the software toolbox 
UG [9, 10] and its finite element library. Two different model problems are 
considered. We consider -div (a'Vu) = 1 on (0; 2) x (0; 1) with homogeneous 
Dirichlet boundary conditions and a discontinuous coefficient a. On subdomain 
D2 := (0; 1) X (0; 1), a is equal to 1, and on subdomain D1 := (1; 2) X (0; 1), a is 
equal to 0.001. This example shows the effect of nonmatching grids with different 
stepsizes and a piecewise constant discontinuous diffusion coefficient. In addition, 
the triangulation on n2 is slightly distorted. Whereas the second example is a 
simple model for a rotating geometry with two circles which can occur for time 
dependent problems. Here, we solve -llu = sin(x) + exp(y) with homogeneous 
Dirichlet boundary conditions on the unit circle, and D1 is the interior circle (see 
Figure 1). 

To apply multigrid algorithms to mortar finite elements, we consider a hierarchy 
Xo, X1, X2, ... , Xk of finite element spaces, where 
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FIGURE 1. Triangulation for example 1 (left) and example 2 (right) 

and hit~l) = 2hit), h~t~l) = 2h~t). Note, that the finite element spaces are nonnested 
in the first component. 

The fine grid problem is of the form 

(11) K = ( Ak Bk ) 
k Bk 0 ' 

where the matrix Ak corresponds to the bilinear form a of Theorem 1, and the 
matrix Bk describes the mortar finite element coupling corresponding to the bilinear 
form d. Starting with a vector z~, the multigrid iteration for the solution of (11) 
consists of preconditioning steps 

i+l i i . . 
zk = zk + Mk(dk) with di., = fk- Kkzk, 

where the multigrid corrections 4 = Mk(dU are defined recursively. On the coarser 
levels, l = 0, ... , k- 1, we need the stiffness matrix Kt and the restricted defect dt. 
Appropriate grid transfer and smoothing matrices are required: 

The prolongation matrix Pt corresponding to the grid transfer Vz_ 1 -----+ Vi 
can be constructed as a block diagonal matrix for the three ansatz spaces. On 
S1 (02, Th 2 ) we choose piecewise linear interpolation. In case of problem 2, we re-
place the piecewise linear elements on n2 by piecewise bilinear elements, and use the 
bilinear interpolation operator. On CR(01 , 7h 1 ), we use the averaged interpolation 
introduced by Brenner [18], and for M(f; EhJ a piecewise constant interpolation. 
The restriction matrix is the transposed operator Rt = P?'. 

For the smoothing process of the correction vector 

(12) m+l m K- ~!(d K m) Cz = Ct + l t- tCt ' 
we consider a smoothing matrix of the following form 

Kt := ( ~: Bl ) = ( ~: -~t ) ( ~ Aj~ B?' ) , 
where At := (diag(At)- lower(At))diag(At)- 1 (diag(At)- upper(At)) is the sym-
metric GauB-Seidel decomposition of At. The construction of the approximated 
Schur complement St is motivated by the following Lemma. In case of the Stokes 
problem, it is given in [16], (Lemma 3.2). 

LEMMA 3. If St := Bt Aj 1 B7', then the iteration (12} satisfies the smoothing 
property 

IIKt(Ct- cr')ll :s; ciiAtll llctll 
m 

where c? is the start iterate and Ct := Kt- 1dt denotes the exact correction for the 
given defect dt on level l. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



COUPLING OF :\IIXED AND CO="FORI\II:.JG FINI'LE ELEMENT DISCRETIZATIONS 5S3 

TABLE 1. Asymptotic convergence rates (average over a defect 
reduction of 10- 10 ) 

Example 1 Example 2 
number of elements number of elements 

01 02 conv. rate 01 02 conv. rate 
2048 32 0.24 1024 1024 0.22 
8192 128 0.23 4096 4096 0.22 

32768 512 0.19 16384 16384 0.21 
131072 2048 0.21 65536 65536 0.19 

For H 2-regular domains, a L 2-estimate can be derived and similar to [17] the 
approximation property can be obtained. This proves W-cycle convergence for the 
multigrid method. Note, that due to the nonconforming part in the discretization 
the Galerkin property does not hold (K,_ 1 -=/=- R,K,P,) and standard methods for 
the proof of V -cycle convergence fail. 

For our numerical experiments, the Schur complement B1 A[ 1 B[' of the 
smoother K1 is replaced by the damped symmetric Gaui3-Seidel decomposition of 
the approximate Schur complement 

A 1 T 
Sz = Bz diag(A,)- B1 • 

Now, de can define the multigrid V-cycle c, = Mk(d1). 

For l = 0, 
set co = K01d0 . 

For l > 0, 
set cf = 0, 
define c}, ... , c~ 0 by the smoothing iteration (12), 
restrict the defect d1_ 1 = R1(dl- K 1 c~ 0 ), 

apply the coarse grid correction ct'+1 = c~ 0 + PzMz_ 1(dz_J), 
and post smoothing steps c~o+l, ... , c~o+l+u,; 
set Cz = ctJ+l+u,. 

In the computations, we use v0 = v1 = 2. 
The convergence rates are given in Table 1. In both cases robust results and 

asymptotic convergence rates independent of the refinement level are obtained. 
Multigrid V-cycles with transforming smoothers are efficient iterative solvers for 
saddle point problems arising from mortar finite element discretizations. 
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