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A Nonoverlapping Characteristic
Domain Decomposition Method
for Unsteady State
Advection-Diffusion Equations

Mohamed Al-Lawatia', Hong Wang 2

Introduction

Advection-diffusion partial differential equations (PDEs) arise in petroleum reservoir
simulation, subsurface contaminant transport and remediation, and many other
applications. These problems typically exhibit solutions with moving steep fronts
within some relatively small regions, where important chemistry and physics take
place. Furthermore, an identifying feature of these applications is the presence of
extremely large scale fluid flows coupled with transient transport of physical quantities
such as pollutants, chemical species, radionuclides, and temperature. Consequently, an
extremely refined global mesh is not feasible due to the excessive computational and
storage cost. Domain decomposition techniques prove to be a feasible and powerful
approach for the solution of these problems, because they allow a significant reduction
of the size of the problems and the use of different physical or numerical models on
different subdomains to model fluid flows more accurately. Furthermore, they are easily
parallelizable.

However, many domain decomposition methods that work well for elliptic and
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parabolic PDEs [SBG96] can perform very poorly for advection-diffusion PDEs. For
example, the well known Dirichlet-Neumann algorithm [BW86, MQ89], which assigns
a Dirichlet condition to one subdomain and a Neumann boundary condition to its
adjacent subdomain, and has been successfully applied to solve diffusion dominated
problems, could generate nonphysical layers at each iteration. The fundamental reason
is that these methods do not necessarily take into account the advection dominance
or the hyperbolic nature of advection-diffusion PDEs. In particular, even though the
Dirichlet-Neumann matching conditions are mathematically correct, they might not
respect the hyperbolic limit of advection-diffusion problems. The errors generated at
subdomain interfaces are then propagated into the interior domain and could destroy
the accuracy of the solutions on the entire domain.

Extensive research has been carried out on developing domain decomposition
methods for advection-diffusion problems. Cai [Cai91, Cai94] developed multilevel
additive and multiplicative Schwarz preconditioners for parabolic and unsteady state
advection-diffusion PDEs. On the other hand, the Adaptive Dirichlet Neumann (ADN)
and Adaptive Robin Neumann (ARN) nonoverlapping domain decomposition methods
introduced in [GGQI6, Cic96, Tro96] choose interface conditions to be adapted to the
local flow direction. These methods prevent the rise of artificial layers at subdomain
interfaces as the advection becomes dominant. While these methods could solve
the discrete algebraic systems with strongly nonsymmetric coefficient matrices fairly
efficiently at each time step, the underlying numerical methods used in these domain
decomposition algorithms are standard finite element/difference/volume methods or
upwinding methods with temporal discretization in time. Tt is well known that
standard finite element/difference/volume methods tend to generate solutions with
serious non-physical oscillations while upwinding methods often produce solutions
with excessive numerical dispersion and grid orientation effect when applied for solving
time-dependent advection-diffusion PDEs, unless the spatial grids and time steps are
chosen small enough such that the mesh Peclet number is around one and the Courant
number is less than or equal to one [CRHE90, WALT97, WDEESM)].

Characteristic methods (e.g. the modified method of characteristics by Douglas
and Russell [DR82]) effectively solve the advective component by a characteristic
tracking algorithm and treat the diffusive term separately. These methods symmetrize
the governing PDEs and generate accurate numerical solutions even if large time
steps are used. Unfortunately, many characteristic methods fail to conserve mass
and have difficulty in treating boundary fluxes when characteristics intersect the
boundary of the domain. This is one of the reasons why the few characteristic domain
decomposition methods developed so far are overlapping domain decomposition
methods [TJDE97]. The Eulerian-Lagrangian localized adjoint method (ELLAM),
which was first presented in [CRHE90] by Celia, Russell, Herrera, and Ewing,
provides a general characteristic solution procedure for the solution of advection-
diffusion PDEs with general boundary conditions in a mass conservative manner. Thus,
ELLAM overcomes the principle shortcomings of previous characteristic methods while
maintaining their numerical advantages. Our previous work [WALT97, WDEESM] also
show that ELLAM schemes generate accurate solutions even if very large time steps
and spatial grids are used, and often outperform many well received and widely used
numerical methods.

In this paper we present an ELLAM-based, nonoverlapping characteristic domain
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decomposition method for unsteady state advection-diffusion equations. With
the standard Dirichlet-Neumann interface condition, with which many domain
decomposition methods are known to generate poor solutions for advection-diffusion
PDEs, our domain decomposition method produces accurate and stable solutions that
are free of artifacts even if large time steps are used in the simulation. Numerical
experiments are presented to show the strong potential of the method.

An Underlying Numerical Method

In this section we briefly outline an underlying Runge-Kutta Eulerian-Lagrangian

localized adjoint method (RKELLAM) [WALT97, WDEESM] for the model problem
w4+ (V(x,t)u — D(x,t)ug)e = flx,t) x € (a,b), t€(0,7T], (1)

with an initial condition and any combination of Dirichlet, Neumann, or flux boundary
conditions at the two boundary points 2 = a and = b. V(2,1) is the velocity field
and D(z,?) is the diffusion coefficient, both of which are assumed positive.

Let T and N be two positive integers, we define a space-time partition: z; = a +iAx
(0 <i<I) with Ae = (b—a)/I and t, = nAt (0 < n < N) with At = T/N.
Multiplying Eq. (1) by a test function w that vanishes outside [a,b] x (#",#"*!] and
integrating the resulting equation by parts we obtain

b
/ u(.r,t”"'l)w(z,t”"'l)dac—{—/
a t

tn+1

+/t (Vu — Duy)w

tn+1

b
/ Dugzwy dxdt

n

tn+1

b b
dt — / / u(wy + Vwg) dedt (2)
b ’ ! t"+§n s 1
= / u(z, 1" )w(z, 17 ) dm-l—/ / fw dzdt,
a tm a

where w(z,t}) = lim;¢» w(x,t), which takes into account the fact that w(z,?) is
discontinuous in time at time t*.

Based on the weak form (2), we derive a RKELLAM scheme through the following
steps: (1) We approximate the characteristic curves of Eq. (1) by a second-order Runge-
Kutta approximation. (ii) We define the test functions w to be the standard hat
functions on [a, b] at time ¢"+! and at the outflow boundary {b} x[t?,#"*!], and extend
w constant along the characteristics into the space-time strip [a,b] x [t7,#"+1]. (iii)
We incorporate these test functions into the weak form (2) and evaluate the temporal
integrals in the second terms on both sides of Eq. (2) by the trapezoidal quadrature
along the characteristics, leading to terms defined on [a, b] at the time levels " and
t"*1 as well as on the outflow boundary {b} x [t",#"*1]. (iv) We incorporate the
inflow and outflow boundary conditions into the third term on the left-hand side of

weak form (2). (v) We approximate the solution u in Eq. (2) by a piecewise linear trial
function on [a,b] at time "' and at the outflow boundary {b} x [t",#"+1]. (vi) The
last (adjoint) term on the left-hand side of Eq. (2) is dropped since it only measures
the error of characteristic tracking which is within the desired order.

With the prescribed inflow and outflow boundary conditions as well as the solution
u(z,t™) which is known from the computations at the previous time level, the derived
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RKELLAM scheme solves for u(z,t"t1) and u(b,t) for t € [t*,t"t1]. The RKELLAM
scheme also symmetrizes the governing equation (1), generates accurate numerical
solutions even if large time steps are used, and conserves mass. Due to the length
constraint, we omit the detailed derivation of the RKELLAM scheme. We refer readers
to [WALT97, WDEESM] for details of RKELLAM and for its comparison with many
well received and widely used methods that shows the strength of this method.

A Nonoverlapping Characteristic Domain Decomposition Method

In this section we derive a mnonoverlapping characteristic domain decomposition
method for the model problem (1), based on the RKELLAM scheme in the previous
section. We choose the standard Dirichlet-Neumann matching condition at subdomain
interfaces, despite that many domain decomposition methods with the Dirichlet-
Neumann matching condition generate poor solutions for advection-diffusion PDEs.
The numerical experiments in the next section show that our method generates
accurate and stable solutions that are free of artifacts. This is due to the fact that
the underlying RKELLAM scheme symmetrizes the governing equation (1). In other
words, the governing equation (1) can be written as a parabolic equation without
any advective term along the characteristics. This is why our method is free of the
problems other methods suffer from. The detailed method is described below

Partition of the Domain
Decompose the spatial domain = [a, b] into a union of 2M subdomains
oM '
a=Je", aW=ld_,d], i=1,2. . 2M (3)
i=1

with
a=dyg<dy <dy<...<dypy =b. (4)

forn=0,1,...,N—1do

Initialize the iteration parameter [ = 0.
if ERROR > TOLERANCE then
l=1+1.
L1l. for:=1,3,...,2M — 1 do
A. Use the prescribed inflow boundary condition at z = a for Q1)
and the following relation

u(dF ) =u'=V(d_,,t), i=3,5,....2M -1 (5)

to define an artificial inflow Dirichlet boundary condition for

the subdomain Q) (¢ = 3,5,...,2M — 1). Here u(d;_,,t) and
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u(d; ;) represent the left- and right-limits of u at the point d;_1,
respectively, and u(o)(di__l,t_) is defined by

uO(d 1) = u(df_, (1), 1),  i=3,5,...,2M =1, (6)

where df_,(t) € Q0=1) ig the point at time level #” which the point
(di—1,t) backtracks to.
B. Use the relation

T

u(dy, ) =ul~V(df1),  i=13...2M-1 ()

to define an artificial outflow Neumann boundary condition for the
subdomain Q%) (1=1,3,...,2M — 1). Here uggo)(d;.",t) is defined
by

wlO(dF 1) = up (dF(1),17),  i=1,3,..

IM—1, (8)

where d; (1) € Q) is the point at time level " which the point
(d;,t) backtracks to.

C. With the inflow and outflow boundary conditions introduced in
Steps L1.A and L1.B, use the RKELLAM scheme presented in
Section 17 to solve equation (1) on the odd numbered subdomains
Q) (i = 1,3,...,2M — 1) in parallel, yielding the I-th iterative
solution TL(I)(.’IT,tn+1) on Q) and u(l)(di_,t) on the outflow
boundary of Q) for all the odd numbered subdomains Q() (1 =
1,3,...,2M —1).

end
L2. fori=2,4,...,2M do

A. Use the following relation

*)

u(df ) =uW(d_ 1), i=24,...2M (9)
to define an artificial inflow Dirichlet boundary condition for the
subdomain Q) (i =2,4,... 2M).

B. Use the prescribed outflow boundary condition at = = b for the
subdomain QM) and the relation

ull(dy 1) =uD(dF ), i=2,4,....2M -2  (10)
to define an artificial outflow Neumann boundary condition for the
subdomain Q) (1=2,4,...,2M — 2). Here

n+1 _
W@ 1) = waldi (0,6
Full (A (1), 174 (1)

where di*(t) € QU1 is the point at time level "1 which the
point (d;,t) tracks forward to.
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C. With the inflow and outflow boundary conditions introduced
in Steps L2.A and L2.B, use the RKELLAM scheme presented
in Section 17 to solve equation (1) on the even numbered
subdomains Q() (¢ = 2,4,...,2M) in parallel, yielding the (-
th iterative solution u(l)(x,t”‘*'l) on Q) and u(l)(di_,t) on the
outflow boundary of Q® for all the even numbered subdomains
QW) (i=24,...,2M).

end

else
Define u(z,t"t1) = u(l)(x,t”‘*'l) on Q) fori=1,2,...,2M.
endif

end

Numerical Experiments

In this section we apply the domain decomposition method to two standard test
problems to observe the performance of the method developed.

Example 1. This example considers the transport of a Gaussian pulse in a variable
velocity field given by V(z,t) = 14 0.01z, the diffusion coefficient is D(z,t) = 10~*.
The spatial domain is [a, b] = [0, 3.2]. The initial Gaussian pulse is located at the inflow
boundary « = 0, with a unit height and a spread or standard deviation of o = 0.0316.
In the experiments, six subdomains are used (i.e. M = 3)

[0,3.2] = [0,0.5] U [0.5, 1]U[1, 1.5] U [L.5,2] U [2, 2.5] U [2.5, 3.2]. (12)

Az = 0.01 and At = 0.02. Tn the numerical experiments, four iterations are used.
In Figure 1(A), the numerical solution is presented against the analytical solution at
time instant ¢ = 0.5,1,1.5,2, and 2.5, when the numerical solution is located at the
interfaces. The Ly and L; norms of the absolute error at ¢ = 2.5 are 4.53 x 10™* and
1.92 x 10™*, respectively.

Example 2. This example considers the transport of a diffused step function. All
the parameters are the same as those in Example 1 with the only exception that the
velocity field is V' (x,t) = 1. The initial configuration is a box function of a unit height
supported on the interval [0.1, 0.4]. The numerical solution is presented in Figure 1(B).
The Ly and Ly norms of the absolute error at t = 2.5 are 1.33 x 10~ and 5.80 x ]0_4,
respectively.

Conclusion

In this paper we develop a nonoverlapping characteristic domain decomposition
method for the solution of advection-diffusion equations, using the standard Dirichlet-
Neumann matching conditions at subdomain interfaces. The numerical results show
that the developed method generate accurate and stable solutions without noticeable
artifacts even if large time steps are used, leading to greatly improved efficiency.
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Solutions at t=0.0, t=0.5, t=1.0, t=1.5, t= 2.0, t=2.5; with dx=0.01, dt=0.02
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(A) Solutions of Example 1
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Figure 1 Solutions at time instance t= 0 (initial), 0.5, 1, 1.5, 2, 2.5



