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Domain decomposition for flow in
porous media with fractures

Clarisse Alboin', Jérome Jaffré?, Jean Roberts® &

Christophe Serres?

Introduction

We are concerned with flow in a porous medium such as granite or sedimentary rock.
Natural fractures occur in the rock and it is necessary to take them into account
because they have a profound effect on the transport of the fluid. One can distinguish
two types of fractures : numerous small fractures that can be treated with a double
porosity model [Arb90], [KPL94], and more important fractures that one may wish to
model individually using domain decomposition. The latter is the topic of this article.

The fractures that we are concerned with are filled with debris so we consider them
as porous media. The permeability in the fracture is large in comparison with that
in the surrounding rock, so the fluid circulates faster in the fracture. Thus we have
a highly heterogeneous porous medium. One idea that has been used to take this
into account is to treat the fracture as an interface and to assume that the fluid that
flows into the fracture stays in the fracture. In fact, in many models the contrast in
permeabilities is of such an order that the flow outside of the fracture is neglected.
However, here we are concerned with the situation in which the exchange between the
fracture and the rest of the domain is significant. To deal with this case we need to
model both what happens in the fracture and what happens outside the fracture. One
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idea is to use domain decomposition treating each fracture as a separate sub-domain.
This approach however, leads to well known difficulties due to the small width of a
fracture in comparison with the size of the domain. The idea presented here is to use
a domain decomposition model with the fractures as natural interfaces, and to model
what happens in the interfaces. In this article, we shall consider only the simplest case
with two sub-domains separated by one fracture.

This paper is organized as follows. In section 2, we indicate how the model is derived,
and in section 3, we show that the corresponding problem has a unique solution. In
section 4, we define the mixed finite element formulation and reduce the problem to
an interface problem. Numerical results are given in Section 5.

Model

Suppose that Q is a connected and simply connected domain in R*, n = 2 or 3,
with boundary I'. We assume that flow in Q is governed by Darcy’s equation and for
simplicity we suppose that we have a Dirichlet boundary condition on all of T

diva = g in Q
u = —KVp in Q (1)
p = 0 on T,

where p is the pressure, u the Darcy velocity, K the permeability, ¢ an external source.
We suppose that K is positive, bounded above and away from 0:

0< Kpmin < K(2) < Kpas almost everywhere in €.

Suppose that the fracture Qf, a connected, simply connected sub-domain of €, is
the intersection of Q with a hyperplane times an interval of length d and that Q;
separates € into two connected, simply connected sub-domains:

Q\Qf:QlUQQ, Q1 NQy = ¢.

Denote by I'; the part of the boundary of €; in common with the boundary of
Qi=1,2,f:
Fzzaﬂzmra i:1)2)fa

and by v; the part of the boundary of Q; in common with the boundary of Q;, 1 =1,2:
% =00;N00;,NQ, i=1,2.

Let n denote a unit vector in R” normal to the hyperplane of Q; and directed outward
from €4 on 71 and n an external, unit vector in R” normal to T' (see: figure 1).

If we denote by p;,u;, K;, and ¢; the restrictions of p,u, K, and ¢q respectively to
Q;, i=1,2, f, we may write the transition problem

dive; = ¢ inQ;, 1=1,2f
u; = —I{ini n Qi, 1= 1, 2, fJ
pi = 0 only, i=12f (2)
Pi = Dy on~y;, =12,

W -n = -u;-n on~vy;, 1=1,2
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Figure 1 The domain Q with fracture €2y

which is equivalent to (1).

To obtain a formulation in which the fracture is considered as an interface, we use
an asymptotic expansion, cf:[Lio73], [GF96] . With an abuse of notation, we shall write
Qyfor Quo={zx—dn:zcQ}, yforyy={r—dn:ze€v} QforQUQU~Y, Ty
for Ty 1 = 0, Ty for Ty 5 = 0Qy and Ty for Ty ; = 07 (see: figure 2).

m

951

Figure 2 The domain € with the fracture v as an interface

We introduce a real parameter ¢ (0 < ¢ < d) corresponding to the width of the
fracture of the model and destined to tends to 0. We write the solution as an asymptotic
expansion

[ee] [ee]
u = E Fuk pf = E it
k=0 k=0
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The equations involving the first terms p° and u® lead to the problem

diviu; = ¢; onQ; fori=1,2
u = —-K;Vp; onQ; fori=1,2
p; = 0 onl; fori=1,2
no= on (3
dividuy = dg;+(u;-n—uy- -n) on v
du; = —dK;V;ps on vy
pr = 0 on J7.

We define
diviv = divv—=V(v:n).-n and Vir=Vr—Vr.n.

The model depends on the width d of the fracture and the difference between fluxes
from sub-domains is a source term for the fracture cf:]AJRS98]. To obtain a weak
formulation of (3), we define the Hilbert spaces

W = {u=(uj,us,uy) € L2(Ql)” X L2(QQ)” X L2(7)”_1 : divu; € L2(Qi) i=1,2
divpduf — (u; -n—uy-n) € L2(7)}

M {p=(p1,p2,p¢) € L* () x L*(Qa) x L*(y)}.

(4)
and their norms
2

2 2 : 2 2 : 2
llalliv = Y (lwillfq, + [1div w5 o,) + [[uslf5 , + lldivedug — (w1 -n—uz-n)|[f,
231
Wiz = D lpills.a, + [psllE -
i=1

The weak formulation of (3) is given in terms of the bilinear forms
a:Wx W R and B - WxM-—=R
defined by

2
afu,v) = Z/ [(i_lui'vi+/dfﬁ';1Uf vy

i=1 S ¥
2
Z/ div u; ri-l-/(divf(duf_)—(u1~n—u2~n))rf
i=1 7S ¥

B(u,r)

and the linear forms L,(¢; -): M — R and defined by

2
La(Qar):Z/ qiri+/dqfrf;
i=1 /S gl

The weak mixed formulation of problem (1) is Find u € W,p € M such that

(u,V)—ﬁ(V,p) =0 YveWw

B(u,r) = Lo(g;7) Vr € M. (5)
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Existence and uniqueness of the solution

We introduce the subspace W of W by W = {(veW: :8(v,r)=0 Vre M}. To
show the existence and uniqueness of the solution of (1), it is sufficient to show that a
is W-elliptic and that 3 satisfies the inf-sup condition; cf:[BF91],[RT87]; that is there
exist constants C, and Cg such that

it 20V S o
vew |[|v]Ry
inf sup Blv,7)

— 2> (5.
reM vew |[rllar [[Vlfw = 7

To see that o is W-elliptic, we note that for u € W, [|u||3, = Z?:l ||ui||3,nl +
||uf||g7,Y so that

9
a(uju) = Z/ I{i_lui-ui-i-/fff_luf ‘uy
i=1 S v
2 (6)
> Kl (Z [ 15 0, + ||“f||gn)

i=1
= Knullulliy.

To see that 3 satisfies the inf-sup condition, given r € M, using the adjoint equation
we construct a v.€ W such that g(v,r) = [|r||3; and ||v||lw < C||r||a, where C is
the constant of elliptic regularity for the adjoint problem.

Forr = (ry,ra,7;) € M, let (1, 02, ¢5) € H*(Q1) x H%(Q2) x H?(7) be the solution
of

—Ap = 7 on Q
¢ = 0 on T,
where 7 € L%(Q) is given by 7|q, = r;;and
—Nppy = 1y on vy
ey = 0 0.
Pose vi = —Vyjq,,i = 1,2, and vy = —V;p; and note that divv, = r; €

L2(Q;),i=1,2, divy vy = r; € L?(y) and vin—von = 0. Thus v = (v, va,vf) € W
and it 1s easy to check that v has the desired properties.

Domain decomposition for the interface problem

In this section we wish to formulate a domain decomposition problem based on mixed
finite element methods; see [GW88, CMW95]. Toward this end, we introduce a quasi
regular triangulation 7; (of triangles and/or rectangles) of Q compatible with the
decomposition of Q into the subdomains €;, ¢ = 1,2. Note that in this case a
triangulation is induced on the interface v. We let My = Mp1 x Mp 2 x My ; and
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W, = Wy 1 xWp, 9 x Wy, ¢ be finite dimensional subspaces of Lz(Ql) X LQ(QQ) X LQ(V)
and H (div; Q1) x H(div; Qa) x H(div; ) respectively, such that the pair (M} ;, W ;)
is a Raviart-Thomas space of order k for €2;, i = 1,2, subordinate to the triangulation
Th i determined by 75; and the pair (M) ¢, W} ¢) is a Raviart-Thomas space of order k
for v associated with the triangulation 75 ¢ on v induced by 7. The mixed formulation
in the subdomain €; i = 1,2, is

dive; = ¢ in Q;,
u; = —[{val iIl Qi,
pi = 0 on I';, (7)
pi = Py on 7y

Introducing for each i, ¢ = 1,2, the bilinear forms

- =1 .
a;(u,v) = / ;7 v, u,veW,,;, Bi(v,r) = / divvr, veWy;, re M,
ﬂl‘ Qi

and, for ¢; € My ; and py € M}, ¢, the linear forms

La,i(qz';r):/ gir, 1€ Mp;, Lw,i(Pf;V):/PfV'n, veEW,,
~

i

we may write the weak form of (7):

w; € Wy, pi€Mp; '
a;(ui, v) = Bi(v, pi) = (=1)'Ly,i(ps;v) Vv E Wi (8)
Bi(u;, r) = Loi(qi;r) Vr € Mpy;.

Following [CMW95] we decompose u; and p; as follows:
_ s 0 _ . 0
u; = 0; +uy, Pi =Ppi +p;

with i1, p;, uf and p? determined by

0, € Wyi, pi€ My,

iy, v) = Bi(v.pi) = (=1)'Lyilps;v) Vve W, (9)
ﬂi(ﬁiar) =0 VTE Mh,i~
and
uz-0 € Wy, p? € Mp
ai(ud,v) — Bi(v,p?) =0 Vv e Wy, (10)
B; (11?, 7“) = Lgyi(qi; 7“) Vr e M}M'.
In the fracture we have the problem
divduy = dgf + uy -n—uy - n in -,
uy = —K;Vp; in -, (11)
pi = 0 on I'y.

Introducing the bilinear forms

af(u,v):/dKf_luv, u,veW,;, ﬁf(v,r):/dindvr, veEWys, m€ Mpy;
¥ ¥
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and, for gy € My ; and u; € Wy, ;, the linear forms
Lo ¢(qp;r) = / dqpr, r€ My, Lq (s r) = /ui ‘nr, 1€ M;
y y

we may write the weak form of (11):

ur € Wy p, pr € Mpy

af(ufav)_ﬂf(vapf) =0 VVEWhhf
By (uy,r) = Lot(qs;7)+ La,i(w;r) — Lo o(us;r) VrE(]\thf.
12

To obtain a problem defined on the interface 7, we also define, for i = 1,2, the
following bilinear form on My, ;:

Ai(sg,rp) = ai(i(sy), wi(ry)),

where (1;(sy), pi(sy)), respectively (1;(ry), pi(rf)) is the solution of (9) for the data
Ly i(sg; - ), respectively L ;(rs; -). Similarly we write (u;(sy),pi(sy)), respectively
(ui(ry), pi(ry)) for the solution of (8) for the data L, ;(sy; - ), respectively L ;(ry; ),
and we denote by (u?, p?) the solution of (10). Using the symmetry of the forms a;,
both equations of (9), and the decomposition of u; into 1, and u{ we have,

2

D Ailspory) = Y i), (sy))

1

V)

i=1 i

wo |l

= D (=) Lyi(rgi(sy))

i=1

= D (=1 Lyilrssw(sy)) — Z(—l)i Ly i(rs;aj)

i=1

wo |l

Then using the definitions of the forms I, ; and Lo ; and both of the equations of
(12) we have

2 2
Do Li(rsimi(sg)) = D (=1 Laiwi(sy)iry)
i=1 i=1
= —Bs(up(sy)irg) + Loys(agiry)
= —0s(styrs) + Loyglagiry),
where uy (s ) is the solution of (12) with L 1(uy(sf); ) — La,2(us(ss); ) as data and
where the bilinear form é¢(.,.) is

0p(sg,mp) =< BrA7'Bf sp,rp >

Ay and By are the linear mapping respectively associated to the bilinear form ay(.,)

and G (., .).

Combining the last two equations we obtain our interface problem:

sy € My

2 2 )
D Ailsporg) 4 05(spry) = Y (=) Lyi(rpiad) + Log(apsrs), rp € May.
=1 =1

(13)
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It is clear that the left hand side of the above equation determines a symmetric,
positive definite form on My ¢. Thus for a given source term ¢ = (q1,92,97) €
Mp 1 x Mp 2 x M}, ; there is a unique solution sy € My, r. We remark that in the absense
of a fracture, i.e. when the flux is continuous across the interface v, u; -n = uy - n,
the second term of each side of (13) vanishes (g7 is of course in this case equal to 0)
and we obtain the standard interface problem given in [GW88, CMW95] for the case
of two subdomains.

Numerical Results

To illustrate the model we consider an ideal dimensionless problem. The domain is
an horizontal rectangular slice of porous medium, of dimensions 2.1 x 1, with given
pressure on the left and right boundaries and no flow conditions on the top and bottom
boundaries. In the domain the permeability is equal to one. The domain is divided
into two equally large sub-domains by a linear fracture parallel to the x5 axis. The
permeability in the fracture x the width of the fracture is equal to 2. For example the
fracture could be of width 0.1 and could have a permeability equal to 20. Flow in the
fracture is driven by a pressure drop of 10 between the two extremities of the fracture
for the first example and a pressure drop of 5 for the second example.

Two cases are considered. A symmetric case where pressures on the left and on the
right boundaries of the domain are equal. So the flow is driven only by the fracture
and is symmetric. In the other case there is a pressure drop from the right boundary
to the left one. Then the flow is a combination of the flow in the fracture and that
going from left to right in the rest of the porous medium.

Numerical results are shown on figure 3. Arrows represent the flow field with length
proportional to the magnitude of the velocity. The gray scale represents also the
magnitude of the velocity with the lightest color corresponding to the largest velocity.
These results were obtained by solving equation (13) with a direct method. We see
that there is actual flow interaction between the fracture and the rest of the porous
medium. In particular one can observe that some fluid is coming out of the fracture
and then is coming back into it. In the nonsymmetric case we notice also that even
though most of the flow is attracted into the fracture, there is still some flow on the
left part of the domain pointing toward the left.

Conclusion

A model for flow interaction between a fracture and the rest of the porous medium
has been presented. In this model the fracture is an interface dividing the domain
of calculation into sub-domains. Existence and uniqueness of the solution has been
shown and the model has been reformulated as an interface problem. Simple numerical
experiments show actual flow interaction between the fracture and the rest of the
porous medium.

Extension to situations with several intersecting fractures is under way as well as
the study of efficient preconditionners.
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Figure 3 Calculated Darcy’s velocity for a symmetric and a nonsymmetric

flow pattern
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