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Quasi-Simultaneous Coupling for
Wing and Aerofoil Flow

E.G.M. COENEN'

INTRODUCTION

For the design and analysis of aerofoils and wings, a fast robust and accurate computer
code is an essential tool. These days the prediction of aerodynamic characteristics
is generally accomplished using Navier-Stokes simulation. Whilst this approach
potentially offers generality, the computational cost involved currently limits their use
for practical application. A possible alternative, is to use viscous-inviscid interaction
(VII), which is an application of Schwarz non-overlapping domain-decomposition with
Neumann-Dirichlet boundary conditions. VII methods have been shown to be very
computationally economical and for many cases of aerodynamic design VII methods
match the experimental data as well as Navier-Stokes simulation. However, despite
the likelihood of there being similar advantages for three-dimensional problems, only
a limited amount of research has been done in this area. The development of fully
three-dimensional VIT methods proves difficult [LW87].

The research described in this paper is preliminary work on two-dimensional quasi-
simultaneous VII, carried out as a first stage in the development of a general three-
dimensional viscous-inviscid interaction code. A Dirichlet interaction law has been
derived for the coupling of the boundary layer to a panel method for two-dimensional
incompressible flow that is more efficient than the well-known thin-aerofoil theory
interaction law.

Quasi-simultaneous coupling [Vel81] has also been implemented in the DERA
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Viscous Full Potential (VFP) program for the calculation of transonic flow over swept
tapered wings [AS85]. This is a case where the three-dimensional boundary layer
equations reduce to a system of ODE’s and the calculations are therefore performed
section-wise, similar to the 2D problem.

QUASI-SIMULTANEOUS COUPLING

Various coupling techniques have been proposed over the years and a comprehensive
review of the various viscous-inviscid interaction schemes can be found in Lock and
Williams [LW8T]. The technique used here to couple the boundary layer to the inviscid
region is the quasi-simultaneous (QS) method [Vel81]. QS has a very fast convergence
rate and is able to calculate in separated regions. The QS method is described in more
detail and put into a domain-decomposition context in the paper by Veldman and
Lai in these proceedings [VL99]. The QS coupling resembles the direct method, where
the velocity (or pressure) distribution is calculated in the inviscid region and then
used to determine the displacement effect from the boundary layer equations. There is
however a significant difference between direct and QS. The QS method performs the
boundary layer calculations simultaneously with a local representation of the external
flow, termed the interaction law.

This interaction law functions as a boundary condition to the boundary layer
equations. In this way, the problems the direct method encounters at separation are
avoided. The choice of interaction law is important since convergence speed depends
on how well this law describes the interaction with the outer flow.

In most papers [CHR95, VLDBS90] in which the coupling is described between the
boundary layer and the external flow, the interaction law used is based on thin-aerofoil
theory. This gives a symmetric and diagonally dominant interaction law matrix.
However, for most cases this interaction law is not close to the inviscid model, which
results in a loss of convergence speed.

This dilemma is also described in Arnold and Thiede [AT93]. They instead derive a
Laplace interaction law for the coupling of their Smith and Hess panel method [Kat91]
and boundary layer. This gives them a more accurate representation. However, because
of the panel method used, the calculations are performed in the panel midpoints
causing the interaction law matrix to become less well behaved.

Here a new interaction law is derived from the influence matrix of the Dirichlet panel
method [Kat91]. Tt allows the calculations to be performed in the panel endpoints,
which leads again to a well behaved interaction law matrix.

The other application of quasi-simultaneous coupling that is to be discussed in this
paper 1s of a swept tapered wing in transonic flow. For this case it is not easy to
find an approximation to the external flow, as it is governed by the transonic small
perturbation equation which is essentially non-linear. An interaction law based on
thin-aerofoil theory has therefore initially been applied, to show the use of QS for this
quasi-three-dimensional case. It is hoped to derive a more accurate representation in
the near future.
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DERIVATION OF THE DIRICHLET INTERACTION LAW

For the 2D steady incompressible case the interaction law will be derived from the
inviscid formulation. This will be explained here in more detail. The inviscid flow
solution is found by using a two-dimensional potential method [Kat91]. Along the
aerofoils surface a source sheet of strength o is distributed together with a doublet
sheet of strength p. The latter is also extended into the wake. With free stream
potential ¢, the total potential ¢* can be written as:

. 1 1 e}
" = ¢oo+ﬂ/5301nrds—_— ua—n(lnr)ds, (1)

27 Se+Sw

in which n is the vector normal to the surface in the direction of pg, s a coordinate
along the surface and r the distance between a point at s and a field point (z,y).
Furthermore, Sp and Sw are the contours of the aerofoil and the wake respectively.
For an enclosed region, equation (1) has a zero normal velocity boundary condition.
If there is however a boundary layer present, the outer flow does not see the real aerofoil
but sees instead a thickened one. To take this displacement effect of the boundary layer
into account the normal velocity boundary condition has to be changed. The normal
velocity at the boundary should be taken to be equal to the transpiration velocity V,:

9t Ous
on _Vn__as’ (2)

in which ¢* is the displacement thickness and wu. the velocity at the edge of the
boundary layer. The minus sign is a result of n being the inward normal on the body
and pointing down in the wake. Physically, the above transpiration velocity represents
the stream wise rate of change of mass defect, m = u.d*.

In the wake, the displacement effect is a jump in normal velocity, AV, across a
convenient line that divides the flows coming from the upper and lower surfaces of the
aerofoil:

8 « 8 *
AV = %(ueupper‘gupper) + a(ueloweraloweT)' (3)

However, for simplicity the wake is modelled as just one layer, with thickness §* =
Onpper T 0lpwer and tangential velocity ue = ue, .. = Ue,,,.,-

Instead of using the Neumann boundary condition (2), the Dirichlet boundary
condition is used, by specifying the potential inside the body surface ¢7,, on the

boundary. For collocation points inside the body, the internal potential is:
o boo + = Inrds — - O (tnr)d (4)
it = oot — oclnrds — — p——(nr)ds. v
i 27 Jsp+Sw 27 Jsp+Sw In

With the Dirichlet boundary condition ¢3,, = ®int + ¢oo = Poo, Where ¢;,;, the
perturbation potential is set to zero, equation (4) simply becomes:

1 o 1
ﬁ/SB_FSW/‘%(lnT‘) ds = o SB+SW0'1nrd5. (5)
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Consequently the source distribution ¢ is found which is, along the aerofoil’s surface:

0¢in; 09" du.d”

on on . ds (6)

The term Jud6*/ds on the right hand side is an effect of the presence of the boundary
layer. It’s value is to be determined from the boundary layer equations. In the wake
(6) holds with Us - n omitted.

To determine the problem uniquely, an implicit Kutta condition is used to define
the doublet strength in the wake. The final result is a system of algebraic equations
for the unknown doublet strengths on the surface of the aerofoil.

Discretisation

To determine the unknown doublet strength, the aerofoil’s surface and wake are
discretised into a number of straight line panels, with N nodes on the aerofoil and
N, nodes in the wake. Each panel will have a constant doublet strength, p, and a
constant source strength, o, as defined previously. The collocation points are taken
in the midpoints of the panels since defining them in the endpoints would lead to
singularities.

From equation (5), after discretisation and manipulation, a relation for the doublet
strength can be determined in the midpoints of the panels. However, as the tangential
velocity of the outer flow (OF) is the gradient of the doublet strength, a relation for
ueor can be found in the endpoints:

N+4N, -1
ueor, = ueo,+ Y D(i,j)ue.5;. (7)
j=1

In the above expression, uq 1s the real inviscid velocity and the second part on the
right hand side represents the disturbance caused by the presence of the boundary
layer. Matrix D also contains the central discretisation over a panel of the gradient
Ou.d*/Js. The values of u.or at the trailing edge points are obtained by extrapolation.

In the wake, where the dividing streamline is taken parallel to the free stream, the
velocity is obtained with the total potential:

ucor, = Vo -tf;

with ¢ the vector tangential to the surface. As ¢* is defined in the midpoints of the
panels; u.or in the wake is calculated there as well. By simple averaging, the value
of ueor can be found in the endpoints. After discretisation and manipulation, an
equation similar to (7) is found for u.oF in the wake region.

The now determined influence matrix D has a suitable structure, being diagonally
dominant and with off-diagonals having equal and opposite sign.

A simple interaction law, u. & I[d*], containing only the local influence, can now
be derived from the above determined equations for u.or on the surface and wake.
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Ue, A Ueo, + D(i,1— Vue,_ 0] 1 + D(3,i)uc, 67 + D(4,i + 1)ue,,, 07y,
i1
N o, + Y T(i,4)ue;03,

j=i-1
where I(i,j) is the tridiagonal interaction law matrix, containing the main and off-
diagonal values of matrix D. The above interaction law equation together with the
integral boundary layer equations are to be solved with a Newton method to give a
new displacement thickness.

Results NACA4412 aerofoil

Calculations with the Dirichlet QS program Viscous-Inviscid Boundary Layer Analysis
(VIBLA) have been performed for several aerofoils. Here results will be presented for
the NACA 4412 section at Re = 4.17 x 10%. The results shown in figure 1 are compared
with experiment and calculations from Hastings and Williams [HW87].

In the first figure the lift coefficient is shown. Up to an incidence of 11° the results
correspond very well with experiment and with the results of Hastings and Williams.
However, near stall the prediction is slightly less accurate as Cl,,,, is obtained too
early. After an incidence of 12.6° no calculations could be performed.

In the figure top right the pressure distribution is compared with experimental
results at an incidence of 12.5°. The results are in good agreement. Only in the trailing
edge region, where there is separation, do the results differ. In the figure bottom left
the displacement thickness is shown and compares very well with experiment. Near the
leading edge the displacement thickness is slightly under predicted, which is possibly
a result of not having modelled the presence of the transition strip. The shape factor
is shown 1in the figure bottom right. In the region of separation, i.e. H > 4, the shape
factor is over predicted. The poor shape factor predictions are due to the empirical
closure relation for Hj. Separation took place at /¢ = 0.8, which was also predicted
by experiment.

DERA-VFP CODE FOR SWEPT, TAPERED WINGS IN
TRANSONIC FLOW

The DERA Viscous Full Potential (VFP) code [Smi89] is based on a viscous-coupled
method for computing the compressible flow over wing-body combinations. It combines
a full-potential flow solver and an integral boundary layer method. The boundary layer
equations are derived in a local co-ordinate system for each chord wise strip on the
wing. This derivation assumes that each section of the wing behaves as if it were part
of a larger simply-tapered wing with the same leading and trailing edge sweeps as the
local section. Ashill and Smith [AS85] show that, for conventional wings, this gives
results for the boundary layer development that are very similar to those obtained
using a fully three-dimensional version of the boundary layer equations.

In the original code, the interaction between the external inviscid flow and the
viscous regions was governed by the boundary-layer equations through the semi-inverse
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(SI) method. The aim of the work described here was to replace the semi-inverse
method with a quasi-simultaneous (QS) coupling method. The motivation for this
study was the, already observed, improved performance (in terms of convergence rate
and robustness) of the QS scheme when compared with the ST method (e.g., King and
Williams [KW88]) for two-dimensional flows.

The interaction law VFP-QS

As previously explained, the QS method requires a suitable locally linearised
representation of the external flow to be defined. For incompressible flow the most
commonly used interaction law is derived from thin-aerofoil theory. For subsonic
flow (M < 0.7, say) the thin-aerofoil representation is still valid if a compressibility
correction term, such as the Prandtl-Glauert rule, is used [VLDBS90]. The linear
relation between u. and ¢* can be found as follows,

/
Ue, = Uen, + U;,

where ugq is the inviscid velocity and u’ is the velocity perturbation induced by the
boundary layer. Now, by the Prandtl-Glauert law:

1
u,
I incompr
11’. i3 p

T /1-MT
may be found locally with the thin-aerofoil theory solution,

u I~ l/mlﬂ —V”d€

itncompr T (-Ti — E))
i—1 ’

1
and ulincompr

in which V,, is the transpiration velocity.

It would be more computationally efficient to use an interaction law that takes
account of the local flow conditions, including the local Mach number of the external
flow. For transonic flow it i1s not easy to find a more accurate interaction law based
on a linear representation for the external flow from the transonic small perturbation
(TSP) equation. Not least because the TSP equation is essentially nonlinear. However,
the function of the interaction law within a QS procedure is not to define the solution,
but to ‘point’ the solution in the right direction. The more accurate the interaction
law is in representing the outer flow, the better it can point the solution in the right
direction and the faster the method will converge. As the interaction law described
above for transonic flow is not representative, a penalty is probably introduced in
terms of slower convergence.

Runge-Kutta-4 versus Newton in VFP

A four-stage Runge-Kutta (RK4) method is used in the original VFP program to
solve the set of boundary layer equations which is not suitable for use with a QS
scheme. As described above, an extra equation, the interaction law, has to be solved
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simultaneously with the boundary layer equations if QS coupling is applied. This
would have to be applied at each stage of the RK4 scheme (i.e. at each of the four
stages between grid points). To avoid the calculation of an interaction law at all the
intermediate stages between grid points, a Newton iterative scheme has been used.

The use of a Newton scheme however has the disadvantage that the scheme is first-
order accurate (using upwinded differences), whereas the RK4 scheme is fourth-order
accurate. This consequently leads to a loss of formal accuracy.

Results W4 wing

Results are shown in figures 2, 3 and 4 for M = 0.78, Re = 13.3 x 10° at an incidence
a = 1°. Comparing solutions from the SI and QS versions of the VFP code, the
agreement is generally good, particularly in view of the quite different integration
procedures being used to compute the boundary layer in each case. In particular the
shock is predicted by the QS method to be at the same location as predicted by the SI
method. The solution of the QS scheme differs only slightly at the trailing edge and
in the wake.

The calculations for both the ST scheme and the QS scheme took similar computer
time, with the number of iterations being fixed. However, little experimentation has
been carried out with the numerical parameters of the QS scheme, and there is scope
for optimisation of these to reduce the run time.

CONCLUSIONS

Quasi-simultaneous coupling has been applied successfully for two-dimensional
incompressible flow and quasi-three-dimensional transonic flow. For the 2D
incompressible case a new Dirichlet interaction law has been derived and for the
transonic case a thin-aerofoil theory interaction law with compressibility correction
term has been used. For the latter case it 1s hoped to improve the interaction law by
finding a more suitable approximation, to speed up convergence. The methods used
are to be extended to the development of a fully three-dimensional interaction method.
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Figure 1 Results for NACA 4412 at Re = 4.17 x 10°

COENEN



VISCOUS/INVISCID COUPLING

PRESSURE COEFFICIENT PRESSURE COEFFICIENT

PRESSURE COEFFICIENT

-15

05 /
0

05

QS-COUPLING ——
'S-COUPLING -

A/

0 0.2 0.4 0.6 0.8 1

XiC

Figure 2 Results W4 wing at n=0.132, Re = 13.3 x 10°, M = 0.78
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Figure 3 Results W4 wing at n = 0.
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Figure 4 Results W4 wing at n = 0.988, Re = 13.3 x 10°, M = 0.78
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