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Domain Decomposition Methods
for a System of Coupled Acoustic
and Elastic Helmholtz Equations

Peter Cummings', & Xiaobing Feng?

Introduction

This paper develops some parallelizable non—overlapping domain decomposition
iterative methods for a system of coupled acoustic and elastic Helmholtz equations
which describes the interaction of an inviscid fluid and an elastic solid in the frequency
domain. Two classes of iterative methods are proposed for decoupling the whole
domain problem into fluid and solid subdomain problems. The crux of the methods
is to replace the physical interface conditions with equivalent relaxation conditions as
the transmission conditions. The utility of these methods is established by showing
their strong convergence in the energy norm of the underlying fluid—solid interaction
problem. Numerical experiments are provided to validate the analysis and to show the
effectiveness of the methods.

The problems of wave propagation in composite media have long been subjects
of both theoretical and practical studies. Important applications of such problems
are found in inverse scattering, elastoacoustics, geosciences, and oceanography. For
some recent developments on modeling, mathematical and numerical analysis, and
computational simulations, we refer to [Bou87, DOAGI1, FLW97a, FLW97b] and the
references therein.

Because of existence of the physical interface, it is natural to use non-overlapping
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domain decompositions method to solve the fluid—solid interaction problem. In fact,
non-overlapping domain decomposition methods have been successfully used to solve
several coupled boundary value problems from scientific applications. See [QPV92]
and the references therein. The non—overlapping domain decomposition methods
developed in this paper are based on the idea of using convex combinations of the
original physical interface conditions to transmit information between subdomains. See
[BF97, Des91, Fen97, Lio90, SBGI6] for expositions and discussions on this approach
for homogeneous problems. It is more delicate to apply the idea to the heterogeneous
fluid—solid interaction problem because using straightforward combinations of the
original interface conditions as transmission conditions may lead to divergent iterative
procedures. An implementation issue is also addressed in the paper (cf. [BF97]); we
show that the difficulty of explicitly computing fluxes on the interface can be avoided
through a simple modification.

The organization of this paper is as follows. In Section 2, the system of coupled
acoustic Helmholtz equation and elastic Helmholtz equations is introduced as a
special form of the fluid—solid interaction model proposed in [FLW97b]. In Section
3, two classes of non—overlapping domain decomposition algorithms are proposed for
solving the coupled system. Strong convergence in the energy norm of the underlying
fluid—solid interaction problem is established for the iterative methods. Finally, some
numerical test results on the methods are presented in Section 4.

Description of the problem
Wave propagation in a composite medium consisting of a pure (acoustic) fluid part

and a pure (elastic) solid part is described by the following system of coupled acoustic
and elastic wave equations (cf. [FLW9T7b])

Csztt_AP:G‘f, iIl Qf, (1)
ps Uy — div(o(U)) = Gy, in Q,, (2)
%—prn ‘ng =0, on T, (3)
o(U)n, — % =0, on T, (4)
Pt g =0, on I'y, (5)
AU, + O'(U)"s =0, on I, (6)
P(z,0) = Po(z), Pi(z,0) = Pi(z), in Qy, (7)
U(]," 0) = Uo(.’lf), Ut(iI,‘, 0) = Ul(I), i'ﬂ Qs, (8)
where .
a(U) = A, (divU) T + 2p,¢(U), £(U) = 5[VU + (VU)T. (9)

In the system Qf and Q, denote the fluid and solid domains respectively, and
Q=0Q;UQ; C RN (N = 2,3) denotes the domain of the whole composite medium.
[y =0Q;\I, T, =0Q,\T and ' = 0Q; N 0Q; is the interface between two media. P
is the pressure in Qf, U is the displacement vector in €y, and c is the wave speed in
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the fluid medium. p; (i = f, s) denotes the density of Q;, n; (i = f,s) denotes the unit
outward normal to 9€;. A, > 0 and p, > 0 are the Lamé constants of ,. Equation (9)
is the constitutive relation for Q. I stands for the V x N identity matrix. The boundary
conditions in (5) and (6) are the first order absorbing boundary conditions for the
acoustic and elastic waves respectively. These boundary conditions are transparent to
waves arriving normally at the boundary (cf. [EM79]). Finally, equations (3) and (4)
are the interface conditions which describe the interaction between the fluid and the
solid.

For many application problems, one is asked to find solutions of (1)-(9) of the form
U(t,z) = u(z)e“t, P(t,z) = p(z)e’“? (i.e. time harmonic solutions) for some given
time harmonic sources G; = g;e'! and G, = gye'". Substituting U(¢, z) = u(z)e™?
and P(t,z) = p(z)e™? into (1)-(9) yields the following system of equations

—4p— Ap=g;, in Qy, (10)
%"p—i—%: , on Ty, (11)
—w?pu—div(e(u)) = g,, in Q, (12)
iwAsu+o(u)n, =0, on Ty, (13)
:T’;-l-Mpru.ns =0, onT, (14)
o(u)n, —pny =0, on T (15)

Clearly, the above is the system of coupled scalar Helmholtz equation in the fluid
subdomain and the (elastic) vector Helmholtz equations in the solid subdomain.
The main objective of this paper is to develop some domain decomposition iterative
methods for solving the system. Before introducing our domain decomposition
methods, we first state the following existence and uniqueness results for the system.

Theorem 1 The boundary value problem (10)-(15) has a unique solution (p,u) €
H' () x H'(Q,) provided that g; € L*(;), gs € L%(Qs).

The proof of Theorem 1 is based the Fredholm Alternative Principle. Notice that
the coupled system is elliptic but not coercive. Due to space limitation, we will not
give the proof here. We refer readers to ([MIB95]) to see a proof of similar type.

Non-overlapping domain decomposition methods

Due to the existence of the physical interface and the heterogeneous nature of the
problem, it is natural to solve the coupled system using a non-overlapping domain
decomposition method. The goal of this section is to present some parallelizable
iterative procedures for the problem based on non—overlapping domain decomposition.
We show the utility of these iterative algorithms by establishing their convergence in
the energy space of the underlying fluid—solid interaction problem.

As in the comparable methods of ([BF97, Des91, Fen97]) , the main idea here
is to replace the original physical interface conditions (14)—(15) with the following
equivalent Robin type interface conditions
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%+ap:—w2pfu~n3—a0'(u)ns ‘ng, onlI,
0
o(u)ng - ns+ fu-n, = —p— wfpf%, on I,
o(u)ng, -7, =0, on I,

for any constant a, 3 such that a8 # w?p;.
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Based on the new form of the interface conditions, we propose the following iterative
algorithms. Algorithm 1 can be regarded as a Jacobi type algorithm, and Algorithm

2 as a Gauss-Seidel type algorithm.
Algorithm 1

Step 1V p¥ € Hl(Qf), u’ € H'(Q,).
Step 2 For k > 0, define (p*+1 u**1!) such that

2 k41 k41 :
—Sp = Attt =gy, in Qf,
iw, k41, OpFtt
o A e =0, on Ty,
apkt
gnf +apft! = —w?pruf ng — ac(uf)ng - ny, on T;
—w?pukt! — div((r(uk‘{“])) =gs, in Qg
iwAuFt 4 (r(uk'l'l)ns =0, on T,
k41 ) E+1 _ .k _ _ B op*
o(u*tHn, - n, + fu ns = —p" — —Lanf, on I,
(r(uk‘*'l)ns c1s = 0, on I

Algorithm 2
Step 1V u® € H'(Qy).
Step 2 For k > 0, define (p®,u**1) such that

—erpf — ApF =gy, in Qy,
iTwpk_l'%:Oa OIlFf,
% +ap® = —w?pruf ng — ac(uF)n, - ny, on T
—w?pukt! — div(o-(uk"'l_)) =g, in Q,
iwAuft 4+ (r(uk‘*'])ns =0, on I,
U(uk“)ns ‘ng + fuftt ong, = —pF — wfpf %, on I
O'(uk‘*'l)ns c1s = 0, on .

The main result of this section is the following convergence theorem.

Theorem 2 Suppose a = iwd, = iwfB where & > 0 and B > 0. Then the sequence

{(p*,u*)} generated by Algorithm 1 and Algorithm 2 satisfies

(1). p* — p strongly in H(Qy), (2). u* — u strongly in H ().
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Proof: Let r* = p — p™ and €” = u — u”. The proof follows the same idea used in
([BF97, Des91, Fen97]). Here the “pseudo—energy” FE, for Algorithm 1 is defined as

2 9 2
wop n n
+( ﬂf) (™), -1y + Be™ -yl
L2(T)

and for Algorithm 2 is given by

orn—1

8nf

2 prf

2
+ < 3 ) [lo(e™)n; - ng + Ge” ~ns||%2(r).
L2(I)

E, = H + ar?!

It i1s not hard to show that the “pseudo—energy” FE,, is decreasing, and it decreases
fast enough to guarantee the desired convergence of the iterates {(p”,u”)} when the
relaxation parameters are chosen appropriately. See [BF97] for the details of a similar
argument.

The above algorithms have a drawback with respect to implementation. For
instance, solving for (p*, u**1) in Step 2 of Algorithm 2 requires the normal derivatives

o(u*)ns -ns and g% on the interface. Consequently, one is forced to use non-standard

or hybrid finite element methods in order to implement Algorithm 1 and 2. This
drawback can be easily avoided through a simple modification. For example, the
modification to Algorithm 2 is given as follows.

Algorithm 3
Step 1 Vh? € LX(T).
Step 2 For k > 0, define (p®,u**1) such that

2 .
—pt — APt =gy, in Qy,
. k
iaph 4 22 =, on T,
8 k
az;f—i-apk:hk, onT,
hf:(_1+w—g,€f)Pk—w£pfh];; on T
—w?p,ubtl —div(e(u*tl)) = g, in Q,,
iwAs 0+ 4 g(uftn, =0, on Ty,
ot n, - ng + puftt . ng = bk on T,
o+, .7, =0, onT,

h?‘“ = (—w?p; + af)urt! . ng — ahk onT.

The equivalence of Algorithm 2 and 3 can be seen formally from the following
identity

0'(11k+1)ns cng + fuftt o, = BF = <_] + af )pk _ pg hfk

’ w?py w?py
ap k B 3Pk k) k B 3Pk
< * prf) UERY <3ﬂf Ter P L7y oy
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The modification to Algorithm 1 can be constructed similarly. Following the proof
of Theorem 2, it can be shown that the statement of Theorem 2 also holds for modified
algorithms.

Numerical Experiments

In this section we present the numerical results of two test problems in order to
validate the theoretical analysis established in the previous section and to demonstrate
the effectiveness of the proposed domain decomposition algorithms. To test the
domain decomposition algorithm, we perform two sets of numerical experiments.
In the first set, the true solution is known; in the second, the true solution is not
known explicitly. In all experiments, Q; = [0,1] x [0,1], Q, = [1,2] x [0,1] and
the mesh size is approximately 0.1. We use Algorithm 3 to generate all domain
decomposition solutions, and the piecewise linear finite element method is employed
as the discretization method in each experiment.
For the first set of experiments, we chose the following source functions

gs = 0.
gr = sin?(mx) sin?(7y) (472 — w?) — 2w%[sin?(7z) cos?(my) + cos? (mx) sin? (7y)].

Given the above sources, it is easy to show that the true solution is u(z,y) = 0,
p(z,y) = sin2(7rz) sinz(wy)

Domain Decomposition Solution, 20 lterations Exact Solution: p=sif (pi ) sin? (pi y) , u =0

f 7 YNNI
LI

R

W

ﬂi.,‘_&‘é“

Figure 1 Exact solution vs. domain decomposition solution

Figure 1 shows the true solution and the domain decomposition solution. Table 1
shows the L°®-norm and the L?-norm of the error. In table 1, (p,u) denotes the true
solution of (10)—(15). The numerical results indicate that after about 5 iterations the
domain decomposition solution already has the accuracy of the global finite element

solution (see [FLW97a] ).
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no P =plles | IP" = plles | (0™ =l | 0" —uflp«
5 | 00774713 | 00150090 | .00737340 | .00184845
10 | .00750596 | .00151935 | .00731775 | .00172242
20 | .00750852 | .00152213 | .00731816 | .00172427

Table 1 FErrors of domain decomposition solution

In the second experiment, we choose the source functions

gr(z,y) =2, g(e,y) = [ (1) ] :

In this test, because the true solution of the problem is not known explicitly and the
whole domain finite element solution is not easily obtained, we tested the accuracy of
our domain decomposition solutions by calculating the relative error of successive
iterates. Figure 22 shows the domain decomposition solution after 30 iterations.
Note that the graph shows the real part of the first coordinate of the solution u.
Table 2 shows the L?2-norm and the L°°-norm of the relative errors of the domain
decomposition solutions after 5, 10, 20 and 30 iterations, respectively.

Domain Decomposition Solution, 30 Iterations

Figure 2 Domain decomposition solution after 30 interactions
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S e | P e i PO | PRV O i | P
[ERHPD (RIS [EXA PR [P

5 00762755 01312341 00133775 00313325

10 6.825e-05 2.292e-05 1.697e-05 7.146e-05

20 6.103e-08 2.175e-07 1.736e-08 7.198e-08

30 8.856e-11 3.640e-10 2.442e-11 9.257e-11

Table 2 Relative errors of domain decomposition solution
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