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On the convergence of the
generalized asynchronous
multisplitting block two-stage
relaxation methods for the large
sparse systems of mildly nonlinear
equations

D.J. Evans', Zhong-Zhi Bai?

Introduction

Consider the mildly nonlinear system
Az = G(z), (1)

where A € R"*" is a large sparse nonsingular matrix and G : R® — R"” is a nonlinear
mapping of certain smooth properties.

To solve this system efficiently, Bai [1] established a class of sequential two-stage
iterative methods by taking into account concrete properties of the involved matrix
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and mapping. Then, based on the matrix multisplitting technique, Bai [2] presented
efficient parallel generalizations of the above sequential two-stage iterative methods.
To exploit the parallel efficiency of the high-speed multiprocessor systems as far as
possible, Bai and Huang [7] further proposed the asynchronous multisplitting two-
stage iterative methods. These asynchronous methods have the potential of converging
much faster than their synchronous counterparts in [2], in particular, when there is
load imbalance. When the matrix A € R™*” is a point H-matrix and the mapping
G :R"™ — R" is a point P-bounded mapping, the convergence of the afore-mentioned
two-stage iterative methods were discussed in detail in [1], [2] and [7], respectively,
under suitable conditions imposed upon the multisplittings of the matrix A € R"*".
Moreover, several different models of asynchronous multisplitting block two-stage
relaxation methods for solving the mildly nonlinear system (1) were proposed in
[11], and their global convergence properties were studied in depth for the case
when the matrix A € R"*" is a block H-matrix of different types and the mapping
G :R" — R" is a block P-bounded mapping. All these results favoured a variety of
practical sequential and parallel methods for solving the large sparse block system
of mildly nonlinear equations (1), and they also have reliable theoretical guarantees
for the convergence of these methods. We remark that the parallel multisplitting two-
stage iterative methods for the large sparse systems of linear equations were discussed
in [8], [10] and [13].

In this paper, based on the above existing results we will discuss a class of generalized
asynchronous multisplitting two-stage block relaxation methods for solving the block
system of mildly nonlinear equations (1). For the convenience of our statements, we
assume that the matrix A € R"*" is partitioned into N x N blocks Ay € R72 X7

N
with E n; = n, le.,
j=1

AEL,—L:{AER“XH |A:(Azj),Azj ERntxnj,lgf,jSN}

and Aj; being nonsingular for j = 1,2,..., N, and the vectors z and G(x) are
partitioned into subvectors z; € R™ and Gj(z) € R™, j = 1,2,...,N, in a way
conformally with the partition of A, i.e.,

ceVa={ecR" |z=(a],...,25)7 z; ERY,1<j< N}

We will study convergence properties of these generalized asynchronous multisplitting
block two-stage relaxation methods for the nonsingular matrices including block H-
matrices of different types (see e.g., [3], [4], [5], [6] and [12]), and nonlinear mappings
including block P-bounded mapping (see e.g., [11]). Therefore, the two-stage relaxation
methods for solving the large sparse systems of mildly nonlinear equations (1) and their
corresponding global convergence are dealt with in a unified manner.

The rest of this paper is organized as follows: We describe the new generalized
asynchronous multisplitting block two-stage relaxation methods in section 23; Some
preliminary results used in this paper is presented in section 23; In section 23, we
analyze the global convergence of these generalized asynchronous multisplitting block
two-stage relaxation methods.
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Establishments of the new methods

Assume that the multiprocessor system consists of a processors and consider the
splittings A = B; — C;, i = 1,2,...,a, and a set of block diagonal nonnegative

o

matrices F;, 1 = 1,2,..., «, such that ZEI = I (the identity matrix). Let TZ(Z)(p)
be a nonnegative integer that represenfuslthe index of the ¢-th block element of a
currently available global iterate which the i-th processor uses to compute its p-th local
approximation, and J;(p) be a nonempty subset of the integer set N = {1,2,... N}
that satisfies £ € J;(p) if and only if the i-th processor starts its computation of the
£-th block element of a new iterate at the p-th step. As is customary in the descriptions
and analyses of asynchronous methods, we assume that the superscripts Tl(z)(p) and
the subsets J;(p), p € No = {0, 1,2, ...}, satisfy the following conditions:

(a) Tz(i)(p) <pforallie{l,2,...,a}, L& N and p € Ny;
(b) lim Tz(i)(p) =oo foralli e {1,2,...,a} and £ € N; and

p—>00
(c) The set {p € Ny | £ € J;(p)} is infinite for all i € {1,2,...,;a} and £ €
N.

Moreover, to describe the new asynchronous multisplitting block two-stage
relaxation method we let v, and w,(# 0), £ € N, be two groups of relaxation parameters

and for i = 1,2,...,a, D; = Diag(B;) be the block diagonal matrices of B; = (BZ-)) €

L, L;i = (LZ-)) € 1, be strictly block lower triangular matrices and U; = (Ul(;)) €Ly,

block zero-diagonal matrices, satisfying B; = 1; — L; — U;. Denote by F; =
Dz'ag(Eﬁ),Eézz), cee EJ(\Z,)N) Then the new Generalized Asynchronous Multisplitting
Block Two-stage (GAMBT) Accelerated OverRelaxation (AOR) method, or in short,
the GAMBT-AOR method, can be described as follows.

THE GAMBT-AOR METHOD: Given an initial vector 2% € R™. Supposing
we have approximations z°, z',... 2P to the solution z* € R™ of the block

system of mildly nonlinear system (1). Then the next approximation zP+! =

((1:117+1)T, (m§+1)T, Cey (m‘?\,‘*'l)T)T is obtained element by element from
A= N B N ERel, t=12,..N, (2)
ieN, (p) i¢Ne(p)

where for each £ € J;(p), m‘Z'H’Z = le;,z,s,(p) is computed from the recursive formula

- )= i) pi iy )
AU = BT e Y He ) Y Eay
J<tj€dilp) j<tieN
R C) PO
e Z ng)mjj (r) +W£ZU4(J-)1‘J-J (r)

i< ieN\J:(p) j#e (3)
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. i)
with the starting point xﬁ’z’o = ac;‘('(p); and Ne(p) = {i | £ € Ji(p),i = 1,2,...,a}
for all £ € N and p € Ng. Here, v, and wy, £ € N, are relaxation and acceleration
parameters, respectively.
Some important special cases of the GAMBT-AOR method are:

(a) the asynchronous multisplitting block two-stage Gauss-Seidel method,
which corresponds to the case of taking the relaxation parameter pair
(72, we) to be (1,1);

(b) the asynchronous multisplitting block two-stage SOR method, which
corresponds to the case of taking the relaxation parameter pair (e, wy)
to be (w,w);

(c) the asynchronous multisplitting block two-stage AOR method, which
corresponds to the case of taking the relaxation parameter pair (e, wy)
to be (vy,w); and

(d) the generalized asynchronous multisplitting block two-stage SOR
method, which corresponds to the case of taking the relaxation
parameter pair (ye,we) to be (ws,we).

. 20

Define J:Zl?’z’k =z, ®) for all ¢ eMN\Ji(p),ie{1,2,...,aland k € {0,1,...,s(p)—
1}. If we introduce the projection operators P, : V,, — R™ (¢ = 1,2,...,N) by
Pe(x) = & for any x € V,,, and the matrices

Mi(ye,we) = 2-(Di —eLi),
Ni(ye,we) = g7 (1 —we) D + (we — ye) Li + wels)

i=1,2,... «

) KENa

then after direct calculations, the GAMBT-AOR method can be briefly expressed in
the matrix-vector form:

A= 3T EDP Y+ YD ERab, £=1,2,.. N, (4)
ieN,(p) i¢N, (p)
where
yp+1,z,£ _ (Mz(’Y ,Wl)_lNi(’)/l,wl))s (p) x-r(’)(P)
si(p)—1 ‘
+ Y0 (Milgewn) ™ Vil we) " Mi(ye,00) 7 (Ci™ P 4 G(a70)))
k=0
and Dy ) ()5
20 (1:11 ’ (p),x;;, (p)’ . a:j{," (P))T. (6)
Preliminaries

The orderings and the point absolute values in R™ and R"*" are defined according to
elements, respectively. A nonsingular matrix A € R™*" is called an M-matrix if it has
non-positive off-diagonal entries and it is monotone (i.e., A1 > 0). Let D4 = diag(A)
be the point diagonal matrix of A and Ba = Da — A. Then A is an M-matrix if and

only if D, is positive diagonal, B4 is nonnegative and p(DElBA) < 1.
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Define
L, ={A = (Ag) €L, | Ay € R™*™ nonsingular, £ =1,..., N},

which is a subset of L,. For a matrix A € L, let D(A) = Diag(411,...,AnnN), Le.,
its block-diagonal part. Thus, A € Ly, 7 if and only if A € L, and D(A) is nonsingular.

For any matrix A € L, 1 we define its type-I and type-II comparison matrices (A) =
((A),;) € RM*N and ((A)) = (((A)),;) € RY* N as (A),, = (|45 |71, (A)y; = —[1 441,

£# j, and ((A)),, =1, <<A>>£j = —||AZ£1A2J~||, L#34,0,j=1,2,... N, respectively.
For A € 1.,, we define its block absolute value by [A] = (||Alj||) e RYXN The
definition for a vector v € V,, is analogous. Here || - || is any consistent matrix norm

satisfying ||I|| = 1. Note that these concepts directly reduce to the corresponding point
ones in the literature when they are understood in the pointwise sense. We refer to [3]
for the detailed properties about these block absolute values.

A € L, s is said to be a Type-I (Type-II) block H-matrix if (A) (((A))) is an M-
matrix in RV*V (A€ HL (A€ HLN). Tt follows that HL C HL with the inclusion
being strict. For A € L, 1, a splitting A = M — N is called an HL-compatible (HL-
compatible) splitting if

(4) = (M) = [N] (((4)) = (M) = [D(M) 7' N)).

A mapping G : R — R" is called block P-bounded if there exists a nonnegative
matrix P € RY*N quch that

[G(z) — G(y)] < Plz — ]

holds for all z,y € R™. We refer to [3] for the concrete properties about the HL and
HET matrix classes.
The following two lemmas are very useful for proving the global convergence of the

GAMBT-AOR method.

Lemma 1 [11] Let A € R™" be nonsingular. Then the block system of weakly
nonlinear equations (1) has a unique solution provided either of the following two
conditions holds:

(a) A€ HL, G is block P-bounded, and p(<A>_1P) < 1.

(b) Ae HY, G is block P-bounded, and p(((A))™'[D(A)~']P) < 1.

Lemma 2 [9] Let {ngi)}peND (1=1,2,...,«) be sequences of nonnegative matrices in
RNV*N E; = diag(?{gz),ég”, . .,E(J\z,))(i =1,2,...,a) be nonnegative diagonal matrices

in RN*N satisfying Z E; <1, and {P},cn, be sequence in RN defined by

i=1
1 T(i) 1
6;24.1: Z é{lz)e/ (p)+ Z 3{4)5}2; ¢=1,2,...,N, p=0,1,2,...
ielN, (p) i¢N,(p)

with {No(p) }peno (€ = 1,2, ..., N) and {7 (p)}peny (£ = 1,2,...,N,i = 1,2,..., )
being described as in section 23. Then lim ¢ = 0 holds for any ° € RN, provided

p—>00 )
there exist a constant 6 € [0,1) and a positive vector v € RN such that Hé”v < fv
(i=1,2,...,a,p€ Ng).
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The global convergence theory

In this section, we will prove the global convergence of the GAMBT-AOR method
when the matrix A € I, is a block H-matrix of different types and when the mapping
G :R"™ — R" is a block P-bounded mapping.

Theorem 1 Let A € HL (HE) C 1L, ;. Let the splittings A = B; Cz, i=1,2,...,«a
be HL-compatible (HL -compatible) such that D(B;) = D(A), i = 1 2,...,q, the

splittings B; = D; — L; — U;, i = 1,2,...,«, satisfy (B;) = (D;) — ,] UG =

1,2,...,a) for Type-T case (and ((B;)) = I — [D;'L;] = [D7'U;](i = 1,2,...,a) for

Type-II case), and the weighting matrices F;, i = 1,2,... «, satisfy Z[EZ] < 1.
i=1

Assume further that G : R™ — R" s a block P-bounded mapping such that
P(A)TTP) <1 (p(((ANTIID(A)TIIP) < 1).

Then, the GAMBT-AOR method converges to the unique solution of the system of
mildly nonlinear equations (1), for any initial vector z° € R™ and any sequence of
numbers of inner iterations s;(p) > 1, it =1,2,...,a, p € Ngy, provided the relazation
parameters vy; and wy, £ € N, satisfy 0 < v < wy (£ € N) and

: (
(DL (Biay + P))

2
0<we < ), /e N.

0< <
S 1+ p(Bi(ay + [D(A)1]P)

Proof: By Lemma 1 we know that there exists a unique vector z* € R™ such that
Ax* = G(«*). Thus, if we let e = 2P — 2* be the error at the p-th iteration of the
GAMBT-AOR method, then according to (4)-(6), {e” }pen, satisfies

et = Z Eu (y =) + Z E/E?E}L? (7)
ieN.(p) i¢N. (p)
for all £ € N, where

yHht et = (M (VZ,Wz)_lN (’M,wz))si(p) e ()
-1

+ Z (e, we) T N (32, we)) " Mi(ye,w0) ™ (8)
(c O G ) - G(a")).
Let us denote by pP= [D(A)~P,and fori=1,2,...,0,

B; :D(A)_lBi, CZ-:D(A)‘lCZ-, Zi:D(A)_lLi, ﬁi:D(A)_lUi

and

{ Mi(ye,w) = L(T—%L), fen

Ni(ye,we) = (10— we)T + (we — ve) Li + weTi),
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Then we have

{ (Mi(ye,w0)) = (Milye,w0))) = (1 = [Li) = Milye,00),

[Ni(ve,we)] < (11— wel T + (we — v0)[L] + we[T5]) = Ni (e, we) ®)

fori=1,2,...,a and £ € N. By using these last inequalities, taking block absolute
values on both sides of (7), applying the block P-bounded property of G, writing
C; = [C;] and P = P, and noticing that M;(ve,ws) (1 = 1,2,...,a,f € N) are M-
matrices in RV N we know from (8)-(9) that the error {”},en, of GAMBT-AOR
method satisfies

< S0 EDTTEOE @11 Y [ERE), e, peNa  (10)
ieN,(p) i¢N, (p)

for both Type-T and Type-IT cases, where e; € RY is the f-th unit basis vector, and

wz)_]/\fi(w,wz))si(m

1 k 1 (11)
+ (Mi(ye,we) ' Ni(ve,we))” Mi(ve,we) ™ (Ci + P).

For Type-I case, similarly to [11] we can demonstrate that there exist a constant
6 €[0,1) and a positive vector v € RN such that

Tp(il)vsgv, 1=1,2,...,a, LEN, pE No.

Now, defining the sequence {e’},¢n, according to ¢” = [°] and

€;£+1: Z éﬁi)eng@,z)erm(p)_‘_ Z Eﬁ“ef, ¢=1,2,...,N, p€ Ny,
ieMNe(p) i¢N. (p)

where

By = diag@ &) &)y =R, i=1,2,..., 0,

we can immediately deduce that {€P},¢n, is a majorizing sequence of {[e”]},en,. That
is to say, [e’] < € holds for all p € Ng. By making use of Lemma 2 we know that

lim €? = 0. Therefore, lim [¢?] = 0 and then, lim ¢’ = 0.
Quite analogous to the proof of Type-I case we can also get lim ¢ = 0 for Type-I1

p—roo
case.

Theorem 1 immediately leads to the following convergence theories for the
asynchronous multisplitting block two-stage Gauss-Seidel; SOR and AOR methods,
as well as the generalized asynchronous multisplitting block two-stage SOR, method.

Theorem 2 Let A € H; (HE) C Ly 1. Let the splittings A= B;—C;, i =1,2,...,q,
be HL-compatible (HE -compatible) such that D(B;) = D(A), i = 1,2,...,a, the
splittings B; = Dy — Ly — U, 1 = 1,2,...,«, satisfy (B;) = (D;) — [Li] — [Ui](i =
1,2,...,a) for Type-I case (and ((B;)) = I — [D7'L;] = [D7'U)(G = 1,2,...,a)
for Type-II case), and the weighting matrices E;, i = 1,2,..., a, satisfy Z[EZ] <

)
i=1
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I. Assume further that G : R"™ — R" is a block P-bounded mapping such that
p(<A>_1P) <1 (p(<<A>>_1[D(A)_1]P) < 1). Then for any initial vector z° € R"

and any sequence of numbers of inner iterations s;(p) > 1, it =1,2,...,a, p € No:

(a) the asynchronous multisplitting block two-stage Gauss-Seidel method
converges to the unique solution of the system of mildly nonlinear
equations (1);

(b) the asynchronous multisplitting block two-stage SOR method converges
to the unique solution of the system of mildly nonlinear equations (1),
provided the relazation parameter w satisfies

2

2
I<w< — <0 <w< ) ;
1t (D5 (Biay + P)) L+ p(Bay + [D(A)-1]P)

(¢) the asynchronous multisplitting block two-stage AOR method converges
to the unique solution of the system of mildly nonlinear equations (1),
provided the relaxation parameters v and w satisfy 0 < v < w, and

2 2
I<w< — <0 <w< ) ;
L+ p(D) (Biay + P)) 1+ p(Byay + [D(A)=1]P)

(d) the generalized asynchronous multisplitting block two-stage SOR method
converges to the unique solution of the system of mildly nonlinear
equations (1), provided the relazation parameters wy (¢ € N) satisfy

2 2
< 0<wy < ) , LeN.
L+ p(D,) (Biay + P)) < © ™ 1+ p(Byay + [D(A)-1]P)

0<wy
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