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Domain Decomposition
Capabilities for the Mortar Finite
Volume Element Methods

Richard E. Ewing !, Raytcho D. Lazarov 2, Tao Lin 3, &
Yanping Lin *

Introduction

Since the introduction of the mortar method as a coupling technique between the
spectral and finite element methods (see, e.g. [BM97, BMP94, BMSL89]), it has
become the most important technique in domain decomposition methods for non-
matching grids. The active research by the scientific computation community in
this field is motivated by its flexibility and great potential for large scale parallel
computation (see, e.g. [BM94]). A good description of the mortar element method can
be found in [Bel97, BDM90, BMP94, Cas]. The nonconforming finite element mortar
method has been studied in [BMP94], where optimal order convergence in H'-norm
was demonstrated. Three-dimensional mortar finite element analysis has been given
in [BM97]. Non-mortar mixed finite element approximations for second order elliptic
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problems have been discussed in [AY97].

The above mentioned mortar elements are defined on non-matching grids with
non-overlapping subdomains. Recently, the overlapping mortar linear finite element
method was studied in [CDS99], where several additive Schwarz preconditioners
have been proposed and analyzed and extensive numerical examples to support the
theoretical results have been reported.

To the authors’ best knowledge, there has not been a study for the mortar finite
volume element method. In the past 10 years the finite (control) volume method has
drawn serious attension both form mathematicians, engineers, and physicists as an
attractive solution technique for various applied problems (see, e.g. [BV96]). Following
the notations and the approach of Ben Belgacem [Bel97], we apply the mortar
technique to derive two control volume schemes based on: (1) finite volume element
approximation of the solution in the subdomains and finite element approximation
for Lagrange multipliers on the interfaces; (2) finite volume approximations for both
the solution in the subdomains and the Lagrange multipliers on the interfaces. It has
been shown on variuous test problems that the latter schemes converge much faster
(5-6 times) than the former schemes. In this respect we have found evidence from
our numerical experiments and we believe that in the finite volume element methods
if r-th order piecewise polynomials are used on the subdomains, then (r — 1)—th
order polynomials should be used on the interface for the Lagrange multipliers. For
both types of schemes, we have obtained in [ELLL98] optimal order H'-norm error
estimates under the regularity assumption that u € H'*7(Qy) for 0 < 7, < 1 where
Q =UQy.

Mortar Finite Element Approximation

We shall use the notations from [Bel97]. We break up the initial domain © into K
non-overlapping subdomains {Qg }1 <g<x, which are assumed to be polygonally shaped
and arranged in such a way that the intersection of two subdomains €; N Q) as well as
the intersection 02N QY is either empty or reduced to a vertex or to a common edge.
If two subdomains Q and Q; are adjacent, T'g; is the common interface, and ny; is the
unit normal from Q to ;. Let k denote the set of all indices so that kl is meaningful.
For any k, let H!(Qg) denote the space H'(Qy) if the measure of 9 N OQ is zero;
otherwise it coincides with the subspace of H'(y) involving all functions whose trace
is zero over the set 0Q N 0Q:

Hl (Qk) = {vk € H! (Qk) : Uk|8ﬂknaﬂ =0, if meas(@Qk n 89) 75 0} .

Set the space

X={vel’(Q: w=uvlo, €H(%)}=]]H (%)

o 17
equipped with the norm: ||u||x = (Zle ||vk||12ql(nk)> . Let

Ho(div, Q) = {g € H(div,Q): q-n|sn=0},
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where H (div, Q) is the space of all vector-functions in (L%(2))? whose weak divergence
is in L2(Q). The trace of these function on the boundary dQ is understood in the
appropriate weak sense. The characterization of H}(Q) can be made:

K
Hy(Q) = {v € X: Z(q~n,v)agk =0, q¢€ Ho(div,Q)}.
k=1

Now we define the space M of those ¢ = (¢1,---,¢¥Kk) with components ¥ €

;1/2(0Qk) such that there weak traces on the boundaries represent a weak trace

of a function in Ho(div, Q), i.e.
M = {4 : there exists q € Hy(div,Q) s.t. for k=1,--- K, ¢y =q-ng}.
The space M is provided with the norm

||w||M:1nf{||q||H(d1v7Q) : qEHO(dlan)a Q'nk:¢kaVk};

where H*_l/z(@Qk) is the dual space of Hi/z(aﬁk) with < .- >, 9q, pairing,
HI?(0Qk) = H'2(0Q4) if 0% NOQ = 0 and HY/2(0Q) = HYL*(09% \ 09) if
O, N IQ # 0. Basically speaking the constraints on the distributions ¢y € M imply

that the jumps across the interfaces TI'y; vanish.
We now define the bilinear form: B : X x M — R by

K
B(v,¢) = Z < Uk, Ok >x,00,
k=1

so that it follows from Hahn-Banach Theorem that
Hé(Q) ={veX, B(v,¢)=0, ¢cM}.
Similarly, the bilinear form A : X x X — R is defined by

K
Au,v) = Z Vuy - Vugdz.
k=15

We consider the following model problem: find u € H{ () such that

Auyv) = (f,0), v € H(Q). 1)
Its primal hybrid formulation is therefore defined by: find (u, ) € X x M such that
A(u,v) + B(v,¢) = (f,v), v E X, 2)

B(u, ¢) = 0, o€ M.

We have the following equivalent result: Problem (2) has a unique solution (u, ) €
X x M, and the first component u € H}(Q) is also the solution of problem (1).
Moreover, we have

k= AVug g, k=1 K and  Jullma + Wl < Cllflla).
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Finite Volume Element Approximation

Let the triangulation 7, of each subdomain Q, 1 < k < K, be such that

Q= UTEThkTJ hg = THEl%i hr, and hyp = zs;l}E)T d(z,y).

For piecewise linear finite element subspaces of H](Qx) on 7, , we set
Xsgp ={vsk € C(Q): wvsplr € P(T), TETh., vskloanan, =0},
and the global finite element spaces
K
= H X5k, where d=(hy, hy, - hg).
k=1

Notice that the trace of the triangulation 7y, over Ty, 1 < k < K, 1 € k, with vertices
v1 k1 and vg g results in a regular triangulation denoted by tx;, where % is the class of
the indices | € k with | > k and k is denotes the set of all indices [ so that kl exist.
The trace space W of the functions in X is given by (see Figure 2):

Wikt = {050 € C(Trt) : tEtr, osr € Pi(t)},
the approximation of the local Lagrange multiplier is defined as
Msp = {bs 1 € Wspi: tE€tw, or ésm € Po(t) if wip or wym €t}
and the global finite element space on the interface is
K
= H H M g1 .
k=1 ek
We now define a bilinear form on X35 x Ms by
B(vs, ¢5) = Z<Uék;¢6k >4 00, = ZZ Gsk1(vsk — vsu)ds.
k=1,cf Tk

Thus, the mortar finite element approximation of the solution of (2) is defined by (see,

g. [Bel97, BDM90, BMP94)):

A(us,vs) + B(vs, 1s) (f,vs), wvs € Xs, 3)
B(us, ¢5) = 0, o5 € Ms. /

If the space Vs of nonconforming approximations of functions in H{ () is introduced
by:
Vei={vs € Xs: Blvs,¢5) =0, ¢s5€ Ms},

then the problem (3) is equivalent to the problem of finding us € Vs such that

A(us,vs) = (f,v5) vs € V5. (4)
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Now we shall introduce the mortar finite volume element approximation of the
model problem (3). For a given triangulation 7, , we construct a dual mesh 7," based
upon 7, whose elements are called control volumes.

There are various ways of introducing regular control volume grids 7. In the most
popular control volume partitions, the medicenter of the finite element 7" is connected
with the midpoints of the edges of T". These types of volumes can be introduced for any
finite element partition 75, and leads to relatively simple calculations. If the vertex is
on the interface Ty, then “half” control volume (shaded regions in Figure 1) is used.

Vi,

Vi | \ s

M Vau [y

Figure 1 TInterfaces I'y; and Ty with vy g1 and vy 1 as two end points,
triangulation 7;11: and ’Thl, and the volumes in Q; and ;. The triangulation tx; and

t1x are different on the interface due to non-matching grids.

For the finite element space X5 we can define its dual volume element space
X; =TI, X5, wh
5 =Il=s 5,k WHETE

Xip=1v € L*(Qx) : wk|v is constant over V € T, and vk|sq\a0, = 0}.

Obviously, X7 =span{xi (V) : V €7, }, where x; x is the characteristic function
of the volume V; . Let I, : C(Qk) — Xsr be the interpolation operator and
Iy C(Q) — ngk be the piecewise constant interpolation operator, that is

Iou= Z ui kXik(2), where u; = u(z;r).
Tik€Nhy

Then we set I5 = Hle I, and I} = Hle It . With the above preparation, we
can combine the finite volume approximation (see, e.g. [Cai91, ELL98, LC94, Mis98])
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with the mortar approach to define our mortar finite volume element method: find
(us,¥s) € X5 x Ms such that

Alus, I3vs) + B(vs,¥s) = (f. 13vs), vs € X5, (5)
B(us, ¢5) = 0, b5 € Ms,

where

A(us, Ivs) = Z Z U}k / x)Vusp - nyds,

k=15€Ns, Vi k

BT =3 Y ng/’ 1o

k= 1j€N},
This problem is equivalent to the following problem: find us € Vs such that
A(u<;,[§v5):(f,1'§v5), Vs EV:? (6)

Remark: We keep the same piecewise linear element spaces on the interfaces and
formulate our mortar finite volume approximations only on the subdomains. This
alone in fact is enough to preserve the basic feature of finite volume element method,
that is, both (5) and (6) are locally conservative. The weak compatibility condition of
the spaces X5 and M; are satisfied automatically:

{#5: Bl(vs,¢5) =0, Yvse€ X5} ={0}, (7)

which guarantees that there is no spurious modes generated for the normal derivatives
of the solution using this discretization. In other words, our mortar finite volume
element formulation has the nice properties of mortar finite element method.

In [ELLL98] we have introduced another formulation of the mortar finite volume
element method with piecewise constant volume element approximation on the
interfaces. The stability, convergence and error estimates for this type of scheme can
be obtained in the framework presented above. Similarly, methods for geometrically
nonconforming subdomains or overlapping domains as those shown on Figure 24 can
be introduced as well (see [ELLL9S]).

Error Estimates

The following error estimate has been proved in [ELLLIS]:

Theorem 1 Assume that Ts is regular, then the unique solution pair (us,is) €
X5 X Mg exists for the finite volume element mortar formulation and satisfies the
error estimates:

K K
[l —usl[x < €S hillull3r(Q%) + C S hil | Fllzay

k=1 k=1

A similar estimate is valid for the M -norm of the error in the Lagrange multipliers as
well.
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Figure 2 Teft: a function from Wi k15 right: a function from M ;.
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Figure 3 Overlapping subdomains.
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