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FETI-H: a scalable domain
decomposition method for high
frequency exterior Helmholtz
problems

Charbel Farhat, Antonini Macedo and Radek Tezaur '

Introduction

The finite element discretization of the exterior Helmholtz problem leads to a system
of equations that can be written as

Ku = f, where (1)

K = K-kM+ikMsg

Matrices K and M are the so-called stiffness and mass matrix of the problem, and f its
right-hand side vector. Matrix Mg is induced by the Sommerfeld radiation condition
and is non zero only at the degrees of freedom lying on the outer boundary of the
computational domain. In the absence of the Sommerfeld condition — that is, for the
interior Helmholtz problem — K = K — k?M is usually an indefinite matrix. In this
sense, K = K — kM + kMg is also often called an indefinite matrix. The large
scale systems of equations resulting from realistic acoustic scattering applications have
led to a great interest in the development of Krylov-subspace, multigrid and domain
decomposition (DD) based iterative methods [1, 2, 3, 4, 19, 20, 24] for solving problem
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(1).

Here, we present a Lagrange multiplier based two-level DD method for
solving iteratively large-scale systems of equations arising from the finite element
discretization of high-frequency exterior Helmholtz problems. The proposed method,
which is introduced in Section 25 and presented in its simplest form in Section 25
of this paper, is essentially an extension of the regularized version [11] of the FETI
(Finite Element Tearing and Interconnecting) method [13, 14, 15, 21] to indefinite
problems. Its two key ingredients are the regularization of each subdomain matrix by
a complex interface mass matrix, and the preconditioning of the interface problem by
an auxiliary coarse problem constructed in Section 25 to enforce at each iteration the
orthogonality of the residual to a set of carefully chosen planar waves. In Section 25, we
show numerically that the proposed method is scalable with respect to the subdomain
size, and the wavenumber.

Domain decomposition with Lagrange multipliers

The DD method presented in this paper is based on the two-level FETT method [13, 9].
Our focus on FETI is motivated by our experience with dual domain decomposition
algorithms, and justified by the optimal convergence properties of the FETT method for
second-order elasticity and fourth-order plate and shell problems [9, 13, 22, 21]. More
specifically, our objective 1s the extension of the FETIT method to exterior Helmholtz
problems.

For the sake of clarity, we consider first the case where Q is partitioned into two
non-overlapping subdomains Q' and Q2, and the formulation of the problem does not
include the Sommerfeld condition (i.e., the interior Helmholtz problem). In Section 25,
we generalize the proposed method to the case of arbitrary mesh decompositions and
the exterior Helmholtz problem. (In practice, it is the mesh associated with Q that is
decomposed into subdomains, and therefore in this paper we consider only subdomains
with matching interfaces).

Let K*, M?*, K® = K* — k2M?, and f* denote respectively the stiffness matrix,
mass matrix, problem matrix, and right-hand side vector associated with subdomain
Q% s = 1, 2, and let u’® denote the restriction to Q° of the solution of problem (1).
We partition each vector u® into two components

S
u;

w= ] @

where the subscripts 7 and b designate the internal and interface boundary unknowns
of a given subdomain, respectively.

Given an interface matrix 8, — that is, a matrix defined on the interface between
subdomains Q! and Q2 — we construct the following modified Lagrangian [11].

[,(v]',v2, ) — 1§V1TK1V1 Y S + %vaK2v2 _f27 2
+AT(B'v! + B*v?) + %(Vgstng - ng Spvi)

T T
= L(Vlavza)‘) + %(Vg Sbbvg_vg Sbbvg)
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where each of B! and B? is a signed Boolean matrix that extracts from a subdomain
vector its interface boundary component, A is a vector of discrete Lagrange multipliers
defined on the interface between Q' and Q?, and the superscript 7' designates the
transpose of a quantity.

Solving problem (1) is equivalent to finding the stationary points u' and u? of the
modified Lagrangian £. Indeed, L(v',v? )) is the classical Lagrangian function of
a two-subdomain problem, and the quantity %(ng S, v — ngSbbvg) depends only
on the traces of v! and v? on the interface between Q' and Q2. Since the vector of
Lagrange multipliers A enforces the continuity equation B'v! 4+ B2v? = 0 on the
interface between Q! and Q2, it follows that the stationary points u; and us of £ are
independent of the choice of the interface matrix S,,.

Let S§ denote the subdomain matrix defined as zero inside Q° and as Sy, on the
interface boundary between Q! and Q2. Using the same partitioning as in (2), % can
be written as

s |0 0 1
s,_[o Sbb] s = 1,2

The Euler equations associated with the modified Lagrangian £ are then given by

(K +Shu! = (K'—k2M!+Shu! = 1 - B\
(K2 —-s?u? = (K2—k'M?-S2)ju? = f2-B? ) (3)
B'u! +B%?u? = 0

The role of the interface matrix Sy, 1s now clear. For some given discretization
of both subdomains Q' and Q2 the prescribed wavenumber k may correspond to a
resonant frequency of Q! and/or Q2. In other words, k2 may coalesce with an eigenvalue
of either or both pencils (K', M') and (K?, M?). In such an event, either or both
local problems described in (3) become ill-posed when Sy, = 0. Hence, the purpose
of a carefully constructed S, is to prevent the singularity of the subdomain matrix
problems. We note that this issue has already been addressed in the literature, albeit
with a different perspective (for example, see [1, 4]).

However, we would like to emphasize that as far as the design of a DD based
iterative solver is concerned, it is not the potential singularity of a subdomain matrix
problem that is problematic as much as the characterization of this singularity. In
fact, for ill-posed Helmholtz subdomain problems, the solution of (3) can be written
using the generalized inverse of the local problems. For elasticity problems (k = 0),
the subdomain matrices can be singular, and as shown in [7, 13, 14, 21, 15], the ill-
posed nature of the subdomain problems can be exploited to construct an auxiliary
coarse problem. This “coarse grid” can then be used to propagate the error globally,
accelerate convergence, and ensure scalability with respect to the subdomain size H.

However, for Helmholtz problems, the null space of the local matrices cannot be
easily determined. Indeed, given a subdomain discretization, it is practically impossible
to determine whether k2 is a true eigenvalue of the pencil (K*, M?), or whether it is
numerically “close” to an eigenvalue of that pencil. Tt is not easy either to determine
the multiplicity of that eigenvalue. And most importantly, whether k% coalesces or
not with an eigenvalue of the pencil (K*, M?) depends on the size of the mesh A,
which complicates the issues further. For all these reasons, for Helmholtz problems, it
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is preferable to regularize the subdomain matrices K* with an interface matrix Sy as
proposed once in the regularized FETT method [11], rather than attempt to compute
a general form of the subdomain solutions using null spaces of subdomain matrices. It
remains to address the issue of how to construct a regularizing interface matrix Spp.

The regularized FETI method for complex problems

Previous work on stabilized finite element methods for the discretization of the
Helmholtz equation [16, 17] suggests that a good choice for Spp, is the complex interface
mass matrix
[Sep)im = k[Mpp|im = ik G1OmdE
Q1nQ2

where i = +/—1, and ¢; and ¢,,, are the finite element shape functions associated with
node ! and node m on the interface between subdomains Q! and Q2. Indeed, My is
positive definite, and it can be shown (see Theorem 1 in [12]) that

K* — k?M* + ikM}
where (4)

s = ik [ 8 N?bb ]

is non singular for any value of k£ and independently of the value of the mesh size h.

We now extend our consideration to multiple subdomains and the exterior problem.
For s = 1,..., N,, we define K* = K* if the subdomain Q, does not touch the
external artificial boundary and K* = K* + tkMj otherwise, where K* is defined as
in the previous section. The modified Lagrangian formulation presented here can be
related to alternative transmission conditions for the subdomain interfaces (see [12])
both within a FETT framework [3] and other approaches [1, 4]. For the case of N;
subdomains, this formulation becomes

1 7~

s=Nj
LA = (v KV -7 v) 407 3 By
s=1

gl

2
1

s s

1 T T
sT @s,q s 0" Q5,44
(Ve Sp've — vy Spi'vy)

NP

_|_

)
1l

1 QrnQa£{0}
where S;;7 is an interface matrix with nonzero values only on Q*NQ?, and constructed

as the mass matrix associated with the degrees of freedom lying on Q° N Q¢

S, = e%ikM;!
M), = [ e
QN9
P = -5 = +1

Using a notation similar to that of Eq. (4), the Euler equations associated with the
above modified Lagrangian can be written as

(K* +ikM)u® = £ — B ) (5)
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s s

i: B’u* = 0 (6)

3
—_

where

> e IMGT U
Q nQI£{0}

From Egs. (5,7) and Theorem 1 in [12], it follows that, if M7 has a constant sign —
that is, if Vg / @ NQ1 £ 0 2?7 =1,0r Vg / Q*NQ? £ D ¢ = —1 — the subdomain
problem matrix K* +1kM7 is non singular for any value of k and any value of the mesh
size h. Also, in [12] an algorithm is proposed to determine the signs of the interfaces
for arbitrary partitions that, in conjunction with Theorem 1 in [12], ensures that the
resulting subdomain problem matrices K' + tkMj are always non singular.

From (6), we find that the interface problem associated with the regularized
subdomain equations (5) is given by

F;A = d (8)

where

i
z

F, = B*(K® + ikM:)~!B*"
1

w
1l

»

1%

@

d = B* (K’ + ikM;})~'f*

1l
-

S

Note that F; is symmetric even if not Hermitian. For this reason, we choose the
generalized conjugate residuals method (GCR) (cf. [23]) to solve the interface problem

(8).

The FETI-H method

The methodology we follow here for preconditioning the regularized FETI method for
exterior Helmholtz problems is based on the ideas proposed in [8] and [10]. Essentially,
we propose to precondition at each iteration the interface residual generated by the
GCR algorithm, by solving an auxiliary second-level problem obtained by projecting
the interface problem (8) onto a suitable coarse space.

Let r* denote the k-th residual associated with the solution by the GCR algorithm
of the interface problem (8)

¥ = d-—F; )\

The convergence of the regularized FETI method can be accelerated by modifying the
GCR algorithm so that, at every iteration k, the interface residual r* is orthogonal to
a subspace represented by an interface matrix Q

Q"r* = 0 (9

Indeed, condition (9) is a weighted-residual weak form of r* = 0, and therefore its
effect at each iteration k is to reduce the error until r* — 0. For example, if ny
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denotes the size of the interface problem, constructing an interface matrix Q with nr
linearly independent columns guarantees that after modification to enforce at every
iteration Q”r* = 0, the regularized FETI method converges in one iteration. However,
the subspace represented by the interface matrix Q must be chosen “coarse” enough
to keep the overhead associated with enforcing QZr* = 0 affordable. Eq. (9) is called
in reference [10] an “optional admissible solution” constraint.

A straightforward approach to enforce this condition is to introduce the additional
Lagrange multiplier 4 = Q~, where 4 is a vector of additional unknowns, and modify
the GCR algorithm to compute

Substituting Eq. (10) into Eq. (9) gives
Q'F;Qy* = QT(d-F\) (11)

which shows that at each iteration k, 4* can be obtained from the solution of an

auxiliary “second-level coarse FETI” problem, which represents the projection of the

regularized FETI interface problem (8) onto the “coarse” subspace represented by Q.
From Egs. (10,11), it follows that A* can be computed as

A= PAF 40
where P is the projector given by
P = I-Q(Q"F;Q)"'Q"F,;
and \? is given by

A = Q(Q'F,Q)'Q"d (12)
which transforms the original regularized FETT interface problem into

PTF,;P) = F,;P) = PTd (13)
as PTF;P = F;P. We solve this problem by a projected generalized conjugate

residuals method with the initial approximation given by (12). We note that this can
also be interpreted as the GCR method for the interface problem (8) with a right
preconditioner P.

The coarse problem represented by Q is chosen in the form

Q = [ B'Q' ... B*Q* ... BM:QV: ]
where Q° i1s a matrix of local coarse vectors in subdomain Q. In each subdomain,
motivated by the fact that the solution can be approximated by a superposition of
planar waves, we define column j of the matrix Q° as

Q;(_) — eik@_'irx(—),

where — indicates a degree of freedom corresponding to a given interface point, x(—)
its nodal coordinates and @j is the unitary “coarse direction” vector. In 2D, we choose
the coarse directions as

®; = [cosf5,sinf;], where 03 =(j—1) x —
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Neumann
un=0
Dirichlet Sommerfeld
u=1.0 a=1.0 un-iku=0
1, a=1.0 ‘
Neumann
un=0

Figure 1 The guided wave problem

We choose Ny among even integers in order to include opposite directions.

The 3D coarse directions are generated using the following algorithm. At each
mesh node of coordinates [#n, yn, zn], we consider a cube centered at this node and
uniformly discretize its surface by points of coordinates [z;,y;,2;],7 = 1,..., Ns.
The coarse direction vectors @j; are then obtained by normalizing the vectors
[%; — Zn,¥; — Yn,2j — 2z). In this case, the choice of Ny is given by the number
of points on the surface of the cube.

We note that Q has N x Ny columns. Depending on the parameters of the problem,
some of them may be linearly dependent, in which case they are filtered out during
the factorization of the second-level problem matrix Q7 F; Q.

We refer to the regularized FETIT method for complex problems equipped with the
preconditioner presented herein as the FETI-H method.

Numerical results

To demonstrate the numerical scalability of the FETT-H method, we consider a guided
wave problem in two and three dimensions. The 2D version of this problem is depicted
in Fig. 25. The 3D version corresponds to a cube where one face is subjected to the
Dirichlet boundary condition, the opposite face to the Sommerfeld condition, and the
other faces to the Neumann boundary condition. We consider various configurations
of this problem and demonstrate numerically the scalability of the FETI-H method
with respect to the subdomain size H and the wavenumber k. Results concerning the
scalability with respect to the mesh size h can be found in [12].
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ka | Ng | Ng | Size of the coarse problem | Number of iterations
20 4 25 88 33
20 4 49 180 31
20 4 81 304 28
20 8 25 176 19
20 8 49 354 20
20 8 81 600 18
20 16 25 262 18
20 | 16 | 49 471 19
20 16 81 713 18
40 4 25 88 70
40 4 49 180 56
40 4 81 304 61
40 8 25 176 25
40 8 49 354 25
40 8 81 600 22
40 16 25 262 19
40 16 49 471 22
40 16 81 713 22
60 4 25 88 148
60 4 49 180 141
60 4 81 304 110
60 8 25 176 50
60 8 49 354 42
60 8 81 600 22
60 | 16 25 262 18
60 16 49 471 18
60 16 81 713 18

Table 1 The guided wave problem in 2D — h = 1/315, total size of the

problem = 99225 dofs

In both cases, we perform the same computations but for three different values of the
wavenumber corresponding to ka = 20,40, and 60 in 2D, and ka = 5,10, and 15 in 3D.
We also consider several 1/H x 1/H mesh partitions with 25, 49 and 81 subdomains.
We report the obtained performance results in Table 1 for the 2D case, and Table 2
for the 3D one. Note that in these tables, the size of the coarse problem is computed
as the number of linearly independent columns found during the factorization of the
second-level problem matrix QT F;Q. Hence, this size is less or equal to Ny x N,.

The results summarized in both Table 1 and Table 2 confirm the scalability of the
FETI-H method with respect to both the wavenumber and the number of subdomains.
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Size of the coarse problem | Number of iterations

x>~
Q
=
Oom\«
)

5 25 0 42

5 64 0 99
5 0 125 0 73
5 2 27 178 26
5 2 64 450 26
5 2 125 908 27
5 3 27 428 26
5 3 64 579 27
5 3 125 1211 29
5 4 27 461 28
5 4 64 602 28
5 4 125 1269 34
10 0 27 0 67
10 0 64 0 151
10 0 125 0 116
10 2 27 178 31

10 2 64 450 30
10 2 125 908 33
10 3 27 597 22
10 3 64 1276 31

10 3 125 2537 41
10 4 27 823 29
10 4 64 1441 36
10 4 125 2835 41
15 0 27 0 112
15 0 64 0 331
15 0 125 0 251
15 2 27 178 47
15 2 64 450 38
15 2 125 908 42
15 3 27 598 24
15 3 64 1471 27
15 3 125 2993 26
15 4 27 1067 23
15 4 64 1626 44
15 4 125 3118 47

Table 2 The guided wave problem in 3D — h = 1/60, total size of the problem
= 226981 dofs
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