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Parallel Implementation of the
Spectral Element Method with
Nonconforming Mesh

H.Feng'!, C.Mavriplis?

The Nonconforming Spectral Element Method (NSEM) solves PDEs in complex
geometries with high accuracy, however, it is an expensive method. Since parallel
computation is effective in decreasing CPU time, a parallel algorithm for the NSEM is
presented. Implementations on SGI Power Challenge using MPI are evaluated in terms
of measured speedup and parallel efficiency for schemes of one element and multiple
elements per processor.

Introduction

The Spectral Element Method (SEM) [Pat84] is a high order discretization scheme for
the solution of nonlinear PDEs. The method draws its strengths from the finite element
methods e.g.[SFT73] for geometrical flexibility and the spectral methods e.g.[GO77] for
high accuracy. The NSEM [MMP89], which allows nonconforming matching at element
interfaces, provides increased geometrical flexibility. The flexibility in turn provides
computational efficiency by allowing finer resolution in areas where physical variables
are changing rapidly.
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The NSEM is capable of solving complicated PDEs such as the Navier-Stokes equa-
tions for fluid flow with high accuracy. However, high accuracy is costly, i.e. it requires
long CPU times. Parallel computation is an effective way to decrease CPU time by
using multiprocessors to do computations simultaneously. Due to the heterogeneous
nature of the discretization, the SEM is naturally suited to concurrent implementation
[FHK*88, FP91]: the high accuracy within each element provides sufficient loading of
individual processors and the finite element approach decouples elemental work which
can be assigned to independent processors.

This paper presents a parallel algorithm implementation of the NSEM. First, the
implementation is based on a one element per processor scheme (OEPP). This work
is based on a previous investigation of Ebrat et al [EMD97]. From execution time
evaluations, we observe that the speedup and parallel efficiency are poor due to
the processor load being low and the communication taking a big part of the total
execution time. This paper therefore focuses on a scheme of multiple elements per
processor (MEPP). Mappings of two and four elements per processor are tested for
the algorithm, using message passing interface (MPT) on a SGI Power Challenge.

Spectral Element Method

SEMs are high-order weighted residual domain decomposition techniques based on
spectral expansions for solution of PDEs such as the Navier-Stokes equations for direct
simulation of fluid flow. The computational domain is broken up into macro-elements
within which variables and geometry are represented by high-order tensor product
polynomial expansions. The weak coupling between dependent variables for adjacent
elements result in symmetric, and relatively sparse assembled matrices, which help to
decrease the computational complexity in terms of memory requirements and process-
ing time.

A simple test Poisson problem is presented to illustrate the spectral element
discretization technique: —V2?u = f in Q, u = 0 on dQ which has the following
equivalent variational form: a(u,v) = (f,v), Vv € H{(2). The spectral element
method proceeds by discretizing the domain Q into k = 1,..., K subdomains QF.
The discretized equation is obtained from the Galerkin approximation with a finite
set of functions. Legendre polynomials are introduced as the basis functions and Gauss-
Lobatto quadrature is used to obtain the matrix equation

Au = Bf (1)

where A is the discrete Laplacian operator and B is the mass matrix [MP89].

Mortar Method for Nonconforming Mesh

While the SEM| in comparison with spectral methods, is better suited to modeling
complex geometries, the conforming geometric matching required between neighbor-
ing high-order elements leads to complications and inefficiencies in mesh generation,
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dynamic mesh refinement, and the treatment of moving boundaries. Allowing noncon-
forming matching at the element interfaces, the Nonforming Mortar Element Method
[MMP89, BMP94] greatly increases the flexibility of the spectral element domain de-
composition.

The method introduces a new mortar trace space which contributes to decoupling
the local residual evaluation and the transmission of elemental boundary, i.e.,
continuity conditions. The configuration of the discretization of a nonconforming
mesh is described in Figure 1(b) where each element is surrounded by a mortar
structure 4 with vertices v at each corner. In the conforming case, the discretization
space X, C H{(R); in nonconforming approximations, X}, is not a subspace of H{,
thereby introducing additional “consistency” errors. However, a carefully constructed
discretization space retains spectral accuracy and with corresponding basis functions
[MMP89], we obtain the fully discrete equations for the Poisson problem for the
nonconforming mesh

Q' AQu= Q" Bf (2)

where A and B represent the elemental conforming discrete Laplace operator and mass
matrix respectively and @) is a projection operator from the mortar to the elemental
structure (as shown in Figure 1(c)). The global Laplace operator is generated by local
operators “mortared” together by @ and Q7 operations, where the QT operator is the
algebraic form of the standard direct stiffness summation procedure.

The Nonconforming Spectral or Mortar Element method lends itself well to
efficient implementation on parallel supercomputers: it allows for the classification
and decoupling of the computational work into loosely coupled subdomains; it lays
the foundation for sparse inter-domain communication and preserves local structure
for fast evaluation procedures.

Parallel Implementation

The implementation is accomplished on a SGI Power Challenge with the intent
of testing and future implementation on a larger more powerful parallel platform.
Message passing between processors is achieved by MPI.

One Element per Processor Scheme (OEPP)

The simplest mapping of elements to processors is to assign each processor one
element. Figure 2(b) shows a simple form of element-processor mapping for a model
nonconforming mesh. Since each processor can only access the data of its own element,
aneighborhood investigation operation is performed first to establish an array for each
element recording the information about the neighborhood. After decomposition, a
local mortar is established based on the global mortar configuration. Each processor
retains only its corresponding portion of the global mortar. Figure 2 shows the
relation between global mortar and local mortar for both the sequential and parallel
implementation. All basic operators involved in spectral element discretization are



508 FENG AND MAVRIPLIS

Mortar Struct niNg e.\ Q@ # N
or a!u.c_:re . ¢ \ ¢Q /
$ ¢. f/ ry T
D \ i | ] %Iﬂl\.
dge ¥ N "
Element 2 vertices v g e \ pYSIL NG
a a :
Bp—a-<0 —| <
Element 1 ] @ Q
T p o de N e
]
Element 3 (=] Vertex Q ortar-to-edge
W\ 1\ i\u IH x +
H— — |
(a) (b) (c)
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Figure 2 The structure of the mortar: (a) the global mortar for sequential
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implementation, (b) the local mortars for OEPP, (c) the local mortars for
MEPP

formed in an initialization part of the program by all processors concurrently. The
projection operators @ and Q7 are then created separately. For edges which have
nonconforming matching, short communication with adjacent elements is necessary
in order to obtain information about the size and coordinates of the nonconforming
interfaces. Since the SEM generates a sparse linear positive definite system [MP89], the
use of a conjugate gradient iterative solver is effective. After each iteration, neighboring
elements exchange their edge information [EMD97]. Finally, a parallel I/O operation
is performed by all processors concurrently to report the solution.

Multiple Elements per Processor Scheme (MEPP)

From the execution time analysis (in section 55), it is clear that OEPP has some weak
points. Firstly, it is not practical since 1t requires the target machine to have the same
number of processors as the number of elements. For a practical problem with a large
number of elements, it is usually difficult to access that large number of processors.
And if the number of processors is less than specified, then some processors will have



PARALLEL NONCONFORMING SPECTRAL ELEMENT METHOD 509

PROCESSOR 1 PROCESSOR 6

— 12 12 10 12

12 || 1 . 1

4 PROCESSOR 5 3 9
3 PRPCESSOR.
PROCESSOR 1 PROCESSOR 2
PROCESBOR 3
6
PROCESSOR| 13 6
7 5 15 7
15 3 14 85
16 16

PROCESSORS PROCESSOR 3 PROCESSOR4

(a) (b)
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twice or more load than others. Load-balancing is then upset and the operating sys-
tem will spend all the time synchronizing MPI threads. Secondly, the OEPP scheme
spends more time on communication than computation. To achieve good speedup and
parallel efficiency, the computational load for each processor needs to be increased to
get an optimal balance between computation and communication. The MEPP scheme
is therefore developed as follows.

In the MEPP scheme, the same number of elements are assigned to each processor.
Figure 3 shows the two and four elements per processor mappings for a 16 elements
case.

As in the OEPP scheme, each element has an array recording neighborhood
information. Using the information from element-processor mapping, it is known
whether the adjacent elements are in the same processor or not. So in comparison with
OEPP, MEPP has an additional array recording the information indicating whether
the adjacent elements are located in the same processor or not. Thus, communication
will only be performed between processors, not elements. After decomposition, a
local mortar is established based on the global mortar configuration. Each processor
retains only its corresponding portion of the global mortar. The mortar is shared by
elements having adjacent interfaces in the same processor as shown in Figure 2(c).
All processors do the initialization concurrently. Within each processor, every element
does it sequentially. On each processor, the computation of @ and Q7 is performed
sequentially for each element if needed. The short communication necessary to
obtain information about size and coordinates of the nonconforming interface may be
eliminated if the adjacent elements are on the same processor. The size of the linear
system solved by conjugate gradient is proportional to NEP (number of elements
per processor) times that of OEPP. In that case, the local computational load is
increased N EP times (for a fixed number of C.G. iterations). After each iteration,
only adjacent elements located in different processors need to exchange their mortar
information. Otherwise, the mortar is updated locally, no message passing is needed.
Thus communication cost is decreased.
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Elements | Processors | Order | 7Tj(sec) | Tp(sec) % S 7
4 4 4 0.338 0.418 | 44.7% | 0.809 | 20.2%
4 4 6 0.820 0.564 | 34.0% | 1.454 | 36.3%
4 4 8 1.624 0.860 | 27.1% | 1.888 | 47.2%
4 4 10 2.865 1.182 | 21.0% | 2.424 | 60.6%
4 4 12 4.671 1.694 18.9% | 2.757 | 68.9%
8 8 4 0.625 0.751 | 68.1% | 0.832 | 10.4%
8 8 6 1.587 0.951 | 54.3% | 1.669 | 20.9%
8 8 8 3.234 1.179 | 43.6% | 2.743 | 34.3%
8 8 10 5.664 1.513 | 37.9% | 3.744 | 46.8%
8 8 12 9.267 2.003 | 24.7% | 4.627 | 57.8%

Table 1 Timing results for 250 conjugate gradient iterations for different

problem sizes and order of approximation with the OEPP scheme.

Elements | Processors | Order | Ty(sec) | T,(sec) | Speedup | Efficiency
16 8 4 1.254 0.843 1.488 18.6%
16 8 6 3.242 1.246 2.602 32.5%
16 8 8 6.528 1.900 3.436 42.9%
16 4 4 1.254 0.935 1.342 33.5%
16 4 6 3.242 1.585 2.045 51.1%
16 4 8 6.528 2.538 2.572 64.3%

Table 2 'Timing results for 250 conjugate gradient iterations of 16 elements
problem performed on 4 and 8 processors using MEPP scheme

Results and Evaluation

To test the correctness and effectiveness of the algorithm, error analysis and ex-
ecution timings are performed on a test 2D Poisson problem with solution u =
sin(2mz)sin(2my) on a square domain of side 4. Three cases of 4, 8, and 16 elements
for the same computational domain decomposition are tested. Tables 1 and 2 show
the speedup S and how parallel efficiency 5 varies with the number of elements and the
order of approximation where T, and T refer to the parallel and sequential running
time respectively and —“ refers to the percentage of the communication time in the
total running time. A ﬁxed number of conjugate gradient iterations is used for time
comparisons.

From these results, it can be observed that the speedup is not exactly proportional
to the number of processors allocated to the problem. For a fixed problem, using more
processors results in lower efficiency. Increasing the order of approximation for a fixed
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number of processors increases efficiency due to a decreasing percentage of the com-
munication time in the overall running time.

Table 2 presents the speedup and parallel efficiency on 8 and 4 processors with two
and four elements per processor respectively using the MEPP scheme. Obviously, the
more processors used, the higher speedup should be attained. However, if a large part
of the running time is spent on communication rather than computation, it will lead
to lower speedup. Thus for the 4th order cases, the speedup does not change much
even though twice as many as processors are used.

Conclusion and Future Research Direction

By the measured running time of the parallel algorithm, it can be observed that
speedup increases with an increasing number of processors. However, the increase is
not proportional to the number of processors. There 1s a limit beyond which speedup
will not continue growing by adding more processors, because the communication time
will dominate the execution time due to machine limitations.

Parallel efficiency decreases when more processors are used due to the increase of
the interprocessor message exchange, but increases with increasing order of approxi-
mation. This means, to achieve good parallel efficiency, we need to load each processor
with more computational work while minimizing the total interprocessor communica-
tion. Based on this observation, as well as the machine limitations (the number of
processors available), the MEPP scheme is developed and comparatively high parallel
efficiency is achieved. MEPP shows better performance than OEPP and will be the
practical algorithm used in future research.

To increase computational load while decreasing communication work, an advanced
data structure to deal with the connectivity information of the domain decomposition
is required. This new structure should lead to an optimal element-processor mapping
assigning adjacent elements to the same processor. To make the SEM more powerful
and increase computational efficiency, dynamic mesh refinement and adaptive order
of approximation assignment are needed. An adaptive sequential algorithm has been
developed in [HM97]. In parallel, decomposition of the computational domain will
be a dynamic problem which requires that the element-processor mapping also to
be dynamic during execution. A parallel algorithm associated with dynamic mesh
refinement and adaptive order of approximation will be the subject of future research.
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