2

A Multigrid Method for the
Complex Helmholtz Eigenvalue
Problem

Tilmann Friese!, Peter Deuflhard?, Frank Schmidt?

Introduction

The paper deals with the solution of the eigenvalue problem of the complex Helmholtz
equation. We present an adaptive multigrid method for solving the nonselfadjoint
algebraic eigenproblem arising from discretization with finite elements. A technological
relevant numerical example, the simulation of an integrated optical component
containing Multi Quantum Well layers, is included.

The task is to find a few eigenvalues A and corresponding eigenfunctions u of the
Helmholtz equation with Dirichlet boundary condition

—Au(z,y) — f(z,y)u(z,y) = Au(z,y), (z,y) €Q
U(.’E,y) = 0; (ff,y) € 9Q ’

where the region Q is an open, bounded, and connected subset of R2, and the function
f 1s bounded and in general complex valued. As usual, we transform this problem in
its weak formulation: determine u € H{ () \ {0} and A € C, such that the relation

a(v,u) = X (v,u) Yo € Hy(Q) (1)
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with the sesquilinear form a(v, u) = (Vv, Vu) — (v, fu) is fulfilled. The inner product
(-, ) is herein given by the L? scalar product. In the special case of a pure real valued
function f the eigenvalue problem (1) is selfadjoint. In the general case of a complex
valued function f we have to solve a nonselfadjoint eigenproblem. Finally, in many
cases the eigenvalues with lowest real parts and the corresponding eigenfunctions are
of interest.

By using the Rayleigh quotient

we can conclude from a simple computation [Sch95] that the eigenvalues A lie in a
half stripe ¥ of the complex plane as shown in Figure 1. Furthermore, from a general

—infoSf

Y=

—supq Sf
—supg Nf

Figure 1 Position of the eigenvalues in the complex plane.

completeness result of KATSNELsON [Kat67] we obtain the following

Theorem 1. Let the region Q and the function f be given as above. Then the
spectrum of the associated Helmholtz operator is discrete, and there exists a basis
{u;}52, of L%(Q), such that the relation

a(v,u) = Ay (v, ) + 3 7y (v, s) Vo € Q) 2)

holds. The eigenvalues fulfill the inequalities RA1 < RAa < ... — 0.

Remark 1. 1In the special selfadjoint case the COURANT minimax principle [CH53]
shows that this basis is even orthonormal. In addition, the values 73; are zero, i. e.,
the basis consists only of eigenfunctions.

The statements of Theorem 1 enable us to carry out a perturbation analysis as for
matrix eigenvalue problems; see, e. g., [GV89]. It turns out that the sensitivity of the
eigensolutions with respect to perturbations in f depends on the spectral gap, 1. e.,
on the separation of the eigenvalues from the remaining part of the spectrum. We can
conclude that we should determine the interesting eigensolutions in terms of invariant
subspaces.

The discretization of (2) with finite elements leads to the generalized matrix
eigenvalue problem

AU = BUT (3)
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with the sparse system matrix A, the sparse, selfadjoint, and positive definite mass
matrix B, and the unknown matrices U and 7. The column vectors of the matrix
U represents a basis of the interesting discrete invariant subspace. From the partial
Schur decomposition of matrices [GV89] we see that the matrix U may be chosen
orthonormal, 1. e., U*BU = 1, and that the matrix 1" is upper triangular with
the discrete eigenvalues in the diagonal. It can be shown [Fri98] that the discrete
eigenvalues lie also in the half stripe ¥ of the complex plane. Furthermore, in the
selfadjoint case the upper triangular matrix T reduces to a diagonal one. Hence the
discrete problem (3) reflects all properties of the continuous problem.

A Multigrid Method for the Helmholtz Eigenproblem

In this section we present a multigrid algorithm for the efficient solution of the discrete
eigenproblem (3). We restrict ourselves to conforming methods, i. e., we assume a
nested sequence of finite element spaces

SoCSiC...CS

max

C Hq(Q)

We begin with the description of the multigrid principle for the special selfadjoint
case. The starting point of our considerations is the following minimal property of the
invariant subspace corresponding to the ¢ lowest eigenvalues: the matrix U is given as
the minimal point

R(U) = mvin R(V)

of the generalized Rayleigh quotient R(V) = trace((V*BV)_l(V*AV)), where the
matrix V' has ¢ columns and full rank. This characterization leads to the following
general algorithmic idea: given an approximation U of U and search directions
P, determine a new approximation U by minimization of the generalized Rayleigh
quotient over the subspace spanned by the column vectors of the matrices U and P,
i.e., by R B B

R(U) = man R(U® + PU) (4)

22

where the matrix (3) has ¢ columns and full rank. If we iterate this procedure we

obtain an algorithm which traces the solution of the original large scale problem back
to the successive solution of low dimensional problems of the same type. This general
method produces a sequence of invariant subspace approximations with decreasing
functional values, 1. e., it is a monotone method.

From this general principle we can derive a multigrid algorithm for the selfadjoint
case. The resulting method 1s a generalization of the multigrid minimization of
ManbpEL, McCorMIicK [MM89] to invariant subspace computations. In the smoothing
step we apply a classical Rayleigh quotient minimization method such as, e. g., a
simultaneous gradient [LM80] or conjugate gradient method [D6h82]. This means,
the matrix P of search directions is formed by the gradient or by a generalized
conjugate gradient of the Rayleigh quotient. The numerical experience shows that
these algorithms have a smoothing property. Furthermore, in the coarse grid correction
step the matrix P is given by the usual prolongation matrix which describes the
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transition between the coarse and the fine grid. Hence both parts of the multigrid
algorithm are based on the above described minimization principle which implies the
monotonicity of the method. This property ensures a high numerical robustness of the
algorithm.

Remark 2. Optimal complexity results for a variant of the described method
with a different smoothing procedure were given by McCorMIick [McC94] and Cal,
MANDEL, McCorMIick [CMM97]. A different proof of optimality has been suggested
by CHAN, SHARAPOV [CS96] in connection with domain decomposition techniques. A
numerical comparison between the multigrid minimization and the multigrid method
of HackBuscH [Hac85] in the context of adaptive generated meshes may be found in
[DFS196]. Tt turns out that, on one hand, the above described method is more robust,
and, on the other hand, the two methods have asymptotically the same convergence
rates.

For the generalization of the above method to the nonselfadjoint case we use the
fact that the solution of the minimization problem (4) is equivalent to the solution of
an eigenvalue problem B o

A© = BOA
with the projected matrices

i=(7 P)a(0 P) ad B=(0 P)B(0 P)

The essential idea for the extension of the multigrid minimization to nonselfadjoint
problems is to replace these projected eigenvalue problems in each smoothing and
coarse grid correction step by projected Schur problems

A0 = BOT

By this modification, we obtain the following smoothing algorithm which resembles a

Block Arnoldi method [Saa92].

Algorithm 1.

e Initialization:

% given a (N x ¢)-matrix U with U*BU = I, U*AU =Ty
* set P=R=—(AU — BUTy)

o Iteration:

* set V = ( U P )
* solve
(V*Av
©*(V*BV
with (A1) < ... < R(A) < R(Ag41) < ... < R(Agg)
xset (U P)=VO
* compute R = —(AU — BUTy)
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* determine X from
X1y —TpX = P*(AR — BRTy)

with Tp = P*AP
¥ set P= R+ PX

A detailed description of this procedure is given in [DFS97, Fri98]. Again, the
numerical experience shows that this method has a smoothing property. Furthermore,
as above, the search directions in the coarse grid correction step are given by the usual
prolongation matrix. Since, in particular, the arising coarse grid problems are of the
same type as the original problem (3), a recursive application of a multigrid procedure
as given in Algorithm 2 is possible.

Algorithm 2.
(U1, 7] = MGM (A, B, Ui, 1o, 1)

1. presmoothing using Alggrithr/r\l 1. U —>A(71, T — fl
2. coarse grid correction: Uy — Uy, T} — T}

e compute A;—1 = V* AV, and B;—1 = V* BV}, where in case
(5 n)
~ 0
(o h)
o if

[ ~
% 1> 10 [U_1,Ti—1] = MGM(A;_1, B;_1, ( 0 > JT,1—1)

* [ = 1: solve

* | = lhax:

V) =
*l<lmax:W:

A()U() = BoUp1y
UgBolUp = I

o set Uy = ViUi_y, T, = Ti_4

3. postsmoothing using Algorithm 1: U, — Ui, T =T,

In Algorithm 2, the matrices A; and B; are the (augmented) system and mass matrix
corresponding to the finite element space S;. The matrix U; with ¢ columns and
the upper triangular matrix 7; are the matrices of unknowns. The matrix P; is the
prolongation matrix for the interpolation between the spaces S; and Sj_1.

Remark 3. Note, that this multigrid method for the nonselfadjoint case is not
based on a minimization principle. An elaborate theoretical investigation of the
method, especially a proof of optimality, is an open topic for future research. However,
numerical experiments as presented in the following section suggest the optimal
complexity of the algorithm.
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Numerical Example
For the illustration of the performance of the above described multigrid algorithm we

have computed the guided modes of an integrated optical component which is invariant
in z-direction. The cross section of the interesting structure is drawn in Figure 2. The

Figure 2 Cross section of an integrated optical structure with zoom.

function f can be represented as f(z,y) = kin?(z,y), where kg is the vacaum wave
number of light, and the function n(z,y) is given by the refractive indexes of the
materials. The refractive index is complex valued and parameter dependent in the
Multi Quantum Well (MQW) layers (the narrow stripes in the zoom of Figure 2),
complex valued in the metal layer, and real valued otherwise. The exact parameters
of the structure are technologically relevant and therefore not documented here.

For the construction of the hierarchy of meshes we used a nested iteration technique
in connection with a triangle based error indicator. At first, for each triangle ¢; a
relative L? error ¢; with respect to the whole invariant subspace was determined by
computation of a correction in the edge midpoints of the current triangulation with
a scheme analogously to the Jacobi method for linear systems. Then, the triangles #x
with

1
€k > imax €5

were refined uniformly, and neighbouring triangles were divided by a bisection method
to remove hanging nodes.

In a first experiment, we were interested in the two eigenvalues with lowest real
parts and their corresponding Schur functions. A difficulty of this problem was to
find a proper starting triangulation. Since we must resolve the very thin MQW
layers with normally sized triangles, the coarsest mesh (shown in Figure 3) consists
already of 2515 nodes and 4956 triangles. The final triangulation with 15246 nodes and
30396 triangles reached after 6 refinements is also given in Figure 3. The numerical
experiments have been performed with a tolerance tol = 1072 for all multigrid levels.
The whole computation with a MATLAB program took 16 minutes on a SUN UrTrA 1
workstation. The coarsest grid problems were solved with a Block Arnoldi procedure
[Saa92]. Logarithmic contour plots for the resulting Schur functions on the final mesh
are represented in Figure 4. The convergence history of the full multigrid run is given
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Figure 3 Starting and final triangulation.

0,001

Figure 4 Logarithmic contour plots of |u;|? and |uz|?.

Table 1 Number of inner points and number of multigrid iterations per grid.

Grid |t [ 2 | 3 | 4 | 5 | 6
Inner points 2564 | 2888 | 3987 | 5536 | 9422 | 15152
MG Tterations 3 3 4 4 4 4
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in Table 1.

In a second experiment, we carried out a parameter study to demonstrate the
dependence of the eigenvalues on the imaginary part of the refractive index in
the MQW layers. We computed the invariant subspace corresponding to the four
eigenvalues with lowest real parts for the parameter values a = 0,0.25,0.5,0.75, 1.
The computed eigenvalue trajectories are shown in Figure 5. The two eigenvalues

from the previous computation are marked with arrows. This type of diagram is of
technological interest.
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Figure 5 Dependence of the eigenvalues on the imaginary part of the
refractive index in the Multi Quantum Well layers.
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