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Optimal Convergence for
Overlapping and Non-Overlapping
Schwarz Waveform Relaxation

M.J. Gander', L. Halpern?, & F. Nataf®

INTRODUCTION

We are interested in solving time dependent problems of parabolic and hyperbolic type
using domain decomposition techniques. Contrary to the classical approach where
one discretizes time to obtain a sequence of steady problems to which the domain
decomposition algorithms are applied (see [Cai91, Meu91, Cai94] for parabolic and
[BGTY97, WCK98] for hyperbolic problems), we formulate algorithms directly for
the original problem without discretization. We decompose the spatial domain into
subdomains and solve iteratively time dependent problems on subdomains, exchanging
information at the boundary. Thus the algorithm is defined as in the classical Schwarz
case, but like in waveform relaxation, time dependent subproblems are solved, which
explains the name of these methods. In [Gan96, Gan97b, GS98] and [GK97] the
overlapping version of such an algorithm has been studied for different types of
parabolic problems. We investigate the algorithm applied to two new problems in
this paper, the wave equation

Ly (u) = up — ug, = flz,t), ¢>0
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and the linear convection reaction diffusion equation
Lo(u) = us — Vugy — aty — bu = f(z,t), v >0, a,beR

on IR x [0, 7] with appropriate initial conditions. Without loss of generality we assume
for the convection reaction diffusion equation a > 0. We first analyze the convergence
behavior of the overlapping Schwarz waveform relaxation algorithm applied to the
above problems. We then show that the Dirichlet conditions at the artificial interfaces
inhibit the information exchange between subdomains and therefore slow down the
convergence of the algorithms. Using ideas introduced in [Hal86] and [NRAS95] we
derive optimal transmission conditions for the convergence of the algorithms. These
transmission conditions coincide with the absorbing boundary conditions studied in
great detail to truncate computational domains in [EM77] for hyperbolic problems and
in [Hal86] for convection diffusion problems. They lead to non-overlapping Schwarz
waveform relaxation algorithms which converge in a finite number of steps, identical
to the number of subdomains. In general however the exact absorbing boundary
conditions are not available or expensive to compute. Similar to the approach for
stationary problems in [NR95] and [Jap96] and for control problems in [Ben97]
we approximate the exact absorbing boundary conditions locally. We optimize the
convergence rate including an overlap in the optimization if desired. Numerical
experiments show that the convergence rates are improved by orders of magnitudes.

OVERLAPPING SCHWARZ WAVEFORM RELAXATION

We decompose the spatial domain IR into two overlapping subdomains (—oo, L] and
[0, 00). By linearity it suffices to analyze the overlapping Schwarz waveform relaxation
algorithm for the homogeneous problems with zero initial conditions,

Ei(vk-l_l) = Oa S (—OO,L)
Rt = wk, r=1L 1
L) = 0, z€(0,00) W
whtl = r=0

)

for i = 1,2 and prove convergence to zero. Existence and uniqueness of the iterates is
easily ensured by classical methods.

Theorem 1 For the wave equation, i = 1 in (1), the algorithm converges in a finite
number of iterations, v?*+t! = w?*! = 0 as soon as

Te
k> .
- 2L

Proof Applying the Laplace transform with parameter s € €, R(s) > 0, we find the
transformed solutions to be

*tl(z,5) = @ (L,s)e@D)e (2)
wk+](aj,5) = f)k(O,s)e_”/C (3)
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Figure 1 Regions where the iterates of the overlapping Schwarz waveform
relaxation algorithm for the wave equation vanish due to the finite speed of
propagation.

Evaluating (3) at iteration step k for # = L and inserting it into (2), evaluated at
z =0, we find
f)k‘+1(0, s) = e_QSL/Cf)k_l(O, s).

—2sL/c

Defining the convergence rate p := e we find by induction

82%(0,5) = p"2°(0, 5). (4)

A similar result holds for @?*(L, s) and thus the iteration converges for all frequencies
with R(s) > 0. To obtain the convergence result for bounded time intervals, we back-
transform (4). Since

E—ZkLs/c:/ e~ t5(t — 2k L/c)dt
0

we find on using the convolution theorem of the Laplace transform
¢
v2k(0,) = / §(t — 1 —2kL/c)v°(0,7)dr = v°(0,t — 2kL/c).
0

A similar result holds for w?*(L,t) and hence if k > g—f the transmission conditions
imposed are identically zero and thus the next step leads to convergence. |

Figure 1 shows intuitively why the overlapping Schwarz waveform relaxation
algorithm for the wave equation converges in a finite number of steps. It is due to
the finite speed of propagation: the iterates are identically zero before the arrival of
the first disturbance from the artificial interfaces.

Theorem 2 For the convection reaction diffusion equation, i = 2 in (1), the
asymptotic convergence rate is superlinear and governed by the diffusion parameter v,

[[v*(0, ) + w** (L, )|Ir
||U0(0, ) + wO(L, )||T

< Cerfe( jf_T)
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with the constant C' = max(1, e(b_“2/4”)T),

Proof We take again a Laplace transform in time with parameter s € C, R(s) > b
and find the transformed solutions to be

—aty/a244v(s—b)
Rt (z,s) = wk(L,s)eW(ﬁ_m (5)
—a—vaZtau(=h)

whtl(z,s) = o7(0,s)e £ . (6)

Evaluating (6) at z = L for iteration index k, inserting it into (5) and evaluating at

z =0 we find
@k+1(0, s) = e~V 4'1'_2"'#]“@]“_1(0, s).
Defining the convergence rate p := ¢V 5t L e find by induction
8250, 5) = p"3°(0, 5). (7)

A similar result holds for @?* (L, s) and thus the additive Schwarz method converges
for all frequencies R(s) > b. To obtain the desired convergence result for bounded
time, we back-transform (7) on noting that [AS64]

[ee]
e~ VI — / e K (z,t)e” " dt
0

where the kernel K is given by

x 2

T et

<t

K(z,1)

We find on using the convolution theorem for the Laplace transform

v (0,1) = /t K (QkL t— T)e_(a2/4”_b)(t_")v0(0 T)drT.
s b, 0 \/;; ) 3

Taking the supremum in time on a bounded time interval 0 <t < 7',

[v*#(0, )|z := sup [27*(0,1)]
0<t<T

and estimating the exponential with max(1, e(b_“2/4”)T) we get

T
2 2k L
[10%(0, ) |Ir < max(1,e® /4")T)/ Ko(—=,T —7)dr|[v’(0, )]I.
0 '\/;

Now applying the variable transform y = kL//v(t — 7) in the integration leads to

2 kL
[19%(0, )7 < max(1, e®=* /)T )erfe(

T 10l

By a similar argument for the second subdomain, the result follows. |
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Figure 2 Snapshots of Ul(.'[}, t) (dash-dot) and w? (z,t) (dashed) in the wave
equation case, together with the exact solution (solid) showing the erroneous
reflections caused by the Dirichlet transmission conditions.

4/2// «2// _ «2// LT
o - T o - o -

Figure 3 [Iterates v*(z, T) (dash-dot) and w**t'(z, T') (dashed) at the end of
the time interval for £ =1, 3,5 in the convection reaction diffusion case together
with the exact solution (solid) showing how the Dirichlet transmission

conditions inhibit the information transport.

Both results differ from the classical linear convergence of the overlapping Schwarz
method for elliptic problems. The convergence in a finite number of steps in the
wave equation case and the superlinear convergence in the convection reaction
diffusion case depend both on the time interval under consideration. For the wave
equation it 1s evident that the convergence rate does not depend on the number of
subdomains, whereas for the convection reaction diffusion equation one can show that
the convergence rate depends only lower order on the number of subdomains [Gan97a].
This shows that coarse grid preconditioners are not necessary in this case.

In both cases however the Dirichlet transmission conditions at the interfaces are
responsible for slow convergence, as one can see in Figure 2 where wrong reflected
waves are created and in Figure 3 where the convection and diffusion of the information
across the interface is inhibited. We are thus looking for a remedy of this by

investigating the transmission conditions in the next section.
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NON-OVERLAPPING SCHWARZ WAVEFORM RELAXATION

We are using the same algorithm as before, but with different transmission conditions,
namely

L;(vFtY) = 0, z € (—o0, L)
ALY = Wb A (0F), =1 8
Li(wFtt)y = 0, z € (0,00) (8)
whtt 4 Ay (WPt = o AL (0F), = =0,

where A, and A, are linear operators acting along the boundary in time. Well-
posedness is ensured in the case 1 = 1 by [EM77] and in the case i = 2 by [Hal86].

Theorem 3 For the wave equation, i = 1 in (8), the algorithm converges in two
iterations, independently of the size of the overlap, if

1 1
AU = —at, Aw = ——8t.
C c

Proof Taking a Laplace transform of the above equations for i = 1 with parameter

s, R(s) > 0, we find

52'{)k+] — CQ@I;:]’

05T H(L,8) + M (8) (MU (L, 8)) = g (L, s) + Ao (5) (F (L, 5)),
521Z}k+1 — 62121k+1

w0, 5) + A () (@°F1(0,5)) = #5(0, 5) + Au(5) (2 (0, 5)).

Solving for w at iteration k for = I and inserting into the solution for #**+! one

obtains after evaluating at x = 0

SRS VN DI W .
10, 5) = §C++A1, ' _C§++ o0
A similar result holds for ﬁ)k‘*'l(L, s). Thus choosing A, = % and A, = =% the iteration

converges in two steps, v> = w? = 0, and the factor e~2¢L stemming from the overlap

becomes irrelevant. Back-transforming this choice, the result follows. |

Theorem 4 For the convection reaction diffusion equation, i = 2 in (8), the above
algorithm converges in two iterations independently of the size of the overlap, if the
operators A, and Ay, have the corresponding symbols

/\y:i—F a’?+4v(s—b) )\w—i Va?+4v(s —b)

2v 2v ' Y, 2v

Proof Using the Laplace transform as before with parameter s € €, R(s) > b, we
find

siFtt = el a4 bt

DL, 8) + Ao (5) (7 F1 (L, 5)) iy (L 8) + X (s) (0" (L, 5)),
st = vl 4 aagt 4 bt

@0, 5) + Mo (5) (@1 (0,5) = #5(0,5) + A (s) (8 (0, 5))
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k+1

Solving for w at iteration k for # = L and inserting into the solution v one obtains

after evaluating at « = 0

Ao+ A, A+
k41 _ N2 v oM W (Aa=X1)L k-1
" T(0,8) = S Wl vers /\we 7770, s)

where Ai5 denote the characteristic roots,

a a’+4v(s—b)
Ag=—— £+ ¥ — 7,
T Ty 2
A similar result holds for w**? (L,s). T huq by choosing A, = —Xs and A, = —A; the
algorithm converges in two steps, v? = = 0, independently of the overlap. |

Note that in this case however, the symbols lead to nonlocal operators in time, which
are more expensive to implement in an algorithm than the local ones found for the
wave equation. It is therefore of interest to approximate the nonlocal operators by local
ones, whose symbols are polynomials. We propose here four different approximations:
Taylor approximations of zeroth and first order

a+ Va2 —4vb A _ai\/a2—4ubi 1 ot
2v ’ ve 2v Va2 — 4vb

and optimized constant and first order polynomials

atp a++a?—4vb

q
Apy=———— + =0t
% , +—0

2v 2v

(qs —+ \/Cl2 —4vb— \/612 + 4V(S B b))2 - L a2+4u(s—b)
6 v
(gs +Va? —4vb+ \/a®> + 4v(s — b))?

Avw =

Avw =

where we optimize the convergence rate using p in

(p a +4V( b)2 —% a?44v(s—b)

(p++a?+4v(s

min max
p>0 5)>0

and ¢ in

min | max .
g>0 \ R(s)>0

The optimization is performed numerically to obtain the convergence results in the

next section.

NUMERICAL RESULTS

We show numerical results for the parabolic problem to test the effectiveness of the
approximately absorbing transmission conditions. We consider the model problem

1
ut:um—2u$+§u 0<z<b, 0<t<T =2

with given data

u(o,t) =0, u(6,t) =0, u(x, 0) _ 6_3(%_$)2
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Figure 4 [Iterates v*(z,T) (dash-dot) and w**t!(z, T) (dashed) at the end of
the time interval for & = 1,3 in the convection reaction diffusion case together
with the exact solution (solid) using optimized first order transmission

conditions.

and to compare the performance with the Dirichlet case, we employ an overlap of
2%. Figure 4 shows the iterates v!(z,T) and w?(z,T) on the left and v®(z,T) and
w*(z,T) on the right at the end of the time interval with the optimized first order
transmission conditions and should be compared with the results in Figure 3. Clearly
the information is now convected and diffused across the artificial interface with the
new transmission conditions. Figure 5 shows the performance of the same algorithm
when the transmission conditions are changed from Dirichlet to the new approximately
absorbing transmission conditions.
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Figure 5 Convergence rates of the classical Schwarz with Dirichlet
transmission conditions compared to the same algorithm with the new

transmission conditions.
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