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Domain Decomposition with Local
Fourier Bases applied to Frontal
Polymerisation problems

M. Garbey , D. Tromeur-Dervout ' 2

Introduction

This paper describes a domain decomposition technique and high order accurate
method that allows solving a nonlinear system of reaction diffusion equations coupled
with Navier Stokes equations in a channel with local Fourier approximations. The
present method is a generalization of the Israeli et al (1993) method which applies
domain decomposition with local Fourier bases to the Helmoltz’s problem. In the
present work several new difficulties occur. First the problem is an unsteady and non
linear problem which makes the periodic extension delicate to construct in terms of
stability and accuracy. Secondly we use a stream function biharmonic formulation of
the incompressible Navier Stokes equation in two space dimensions: the application
of domain decomposition with local Fourier bases to a fourth order operator is
more difficult to achieve than for a second order operator. This present work is a
generalization of our previous work on combustion by the authors [GTD97] and the
use of Fourier bases to solve non periodic problems [GTD98a][Gar97].

Our previous 2D numerical simulation of quasi-planar frontal polymerization
(FP) used an adaptative domain decomposition method based on a piecewise C'!
Chebyshev polynomial approximation in the direction of propagation of the front
and a Fourier approximation in a direction parallel to the front for periodic as well
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as nonperiodic boundary conditions. This adaptative method is very efficient and
accurate but it requires a priori knowledge of the structure of the solution. We refer
to [GTDI7, GTDI8b] for the parallel efficiency and the numerical accuracy of this
method.

In this paper we use the same problem as a test case, but the methodology that
we develop is based on a totally different philosophy. We do not use adaptivity and
compute the solution with (local) pseudo-spectral Fourier approximations in such
way that we can use a fast direct solver per subdomain and a large total number of
discretization points efficiently on a parallel computer. In particular, by introducing a
non-overlapping domain decomposition, we avoid the problem of global transposition
of matrices induced by a two dimensional fast Fourier transform on a parallel computer.
In addition, we use no a priori knowledge on the structure of the solution since there is
no space adaptativity but possibly filtering to remove spurious oscillations. We expect
the question of adaptativity to be resolved as a separate issue, using appropriate
numerical generation of a 2D mapping applied to a regular grid structure [J.A98]
[LMS98].

The outline of this article is as follows. Section 26 describes the governing equations
of the model problem. Section 26 ( Section 26) describes the algorithms for the stream
function solution without domain decomposition ( with domain decomposition).
Section 26 deals with the numerical accuracy and stability of the method. Section
26 presents a numerical result obtained with the new methodology for a non-planar
flame front. Our conclusions are given in Section 26.

Governing Equations

We consider a model that couples a reaction-diffusion system for the temperature 7'
and the reactant concentration C', describing a one-step exothermic chemical process,
with the incompressible Navier-Stokes equation using the Boussinesq approximation;
it is worth noticing that we use the biharmonic formulation of Navier-Stokes with ¥
as the stream function. We refer to [GTD98b] for the precise statement of the problem
and parameters, and we simply recall the basic equations

OT /0t + (0/92)(0T/0x) — (0¥ /9z)(dT/dz) = AT 4 Cexp H(gz(%ﬂ
AC /0t + (8% /92)(8C 9x) — (00 /02)(8C/9z) = eAC — C exp %

OAV /0t = (0¥ /0x)(0AY /Dz) — (0¥ /0z)(OAY/Iz) + AAT — RPF.VT, (1)
T—=0,C—>1,¥¥—>0,asz— -0, T—>1,C—>0,¥—=>0, asz—>+oco

U(0,2) =0, 0¥/0x(0,2) =0, ¥(L,z) =0,0¥/dz(L,z) = 0,YVz (2)
0T /0x(0,2) =0, 0T/0=(L,z) =0, 9C/0x(0,2) =0, 0C/0x(L,z) =0, ¥z

Many different possible nonlinear regimes of the solution exist. In addition, the systems
have a well-known one dimensional traveling wave solution (Ty(z), Co(z), ¥ = 0). The
existence and stability of these solutions depend on the specific value of the bifurcation
or control parameters, such as the Zeldovich number Z or the Rayleigh number R.
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In addition Z is large, thus making the problem difficult to compute. We are mainly
interested in using this problem as a nontrivial test case to demonstrate and validate
the feasibility of our approach with local Fourier bases.

A First Algorithm without Domain Decomposition to Solve the NS
Equation

We consider the following semi-implicit Euler scheme for the time discretisation of
equation (1) as in [GTDY8b):

AT GAAT = dt (997 /02) (OAW™ [z) — (9U™ /92) (DAY /dx)
+AU" — dt f(zazatﬂ)a (l‘,z)E(O,L)X(—H,H), (3)
\IJ”‘H(O,z) =0, (6\11”"’1/8.1')(0,;) =0, z¢€ (—H, H); ’
Yt (L 2y =0, (09™t/dz)(L,z) =0, z€ (—H,H).

We look for a z-periodic solution of period H with H large. As a matter of fact
¥ vanishes exponentially when |z| goes to infinity and if H is large enough for the
boundary conditions to have no influence on the dynamic of the combustion wave. For
simplicity of notation, we will assume in the following that H = w. f and ¥ at time
t, are approximated by the following discrete Fourier expansion:

F@ o) = Syl we fo(@) W (5 t) = B ow s (@) Y,

with y = g%)—" Let F"(z,z) be the right hand side of equation (3). From the
approximation,

(09™/0x)(OAT™ [Dy) — (0¥ /Oy) (OAT" D)
e [ Sy gz (U7, ko (W7, — R3O ) — U k(U7 — k307 )]

~

~iY
“p==2

)

we obtain the discrete Fourier expansion of F”. We then have to solve the uncoupled
fourth order N, ODE’s at each time step. For k = 0, we have:

Lo[ﬁ,g+1] _ (ﬁ,g+1)// _ dt (ﬁ,g-{—l)//// — ﬁw(?’ x € (0,1), (4)
wpt(0) = (L5t (0) = ¥ (L) = (T5H) (L) = 0,
and for k # 0:
LU = () — B ()
—2K2(UPTNY 4 RN = B 2 € (0, 1), (5)
UEtH(0) = (EH)(0) = Wpt (L) = (FEH)(L) = 0.
In order to compute \TJZ“ (z) with a Fourier transform in the z direction as well as in
the z direction, we use the technique as in [GTD98b] ( see also [TVA93] [TVA94a)
[TVA94b]) based on the superposition principle and the construction of a smooth
periodic extension of the right hand sides. We split the unknowns as follows:

\Ifkn+1(a:) _ \I;k;+1(x) + ‘l;kr(zj+1($)’ z €[0,L] (6)



LOCAL FOURIER BASES APPLIED TO FRONTAL POLYMERISATION 245

This splitting is efficient because one can use a fast Fourier transform to compute

\I;k;“ and analytical formulae for \I;kz:l-l. In what follows, we will omit subscript &
and n+ 1 to simplify the notations. Let d > 0,d € R, and let [0, L 4 d] be an extension
of the domain (0, L). Let Fk(w) be a smooth periodic extension of Fk(x) on the interval
[0, L + d]. We look for the L 4 d periodic solution of the nonhomogeneous problem

Li[¥rp]=F, z € (0, L +d), Uy L+ d periodic, Up € C"(R) (7)

Then we retrieve the homogeneous Neuman and Dirichlet boundary conditions
satisfied by \IIZ'H by computing the corrector term W . These corrector terms satisfy
the ODE problems

{Lk[\llc]—o .EE(O L) A R R R .
Ve(0) = —r(0), (e)'(0) = =(¥rp)(0), ¥e (L) = =Vr(L), (c) (L) = —(¥r)'(L)

Since the operators Ly are fourth order linear operators with constant coefficients, one
can compute the basis functions for the four dimensional vector space of the solutions
once and for all. The solution is written as Upo = vy (2) + Brwr(z) + yere(z) +
drsk(z), and the bases functions are explicitely given with formulae, for k£ = 0:

vo(z) = exp(—

(z=0)), wo(z) = exp(—(ﬁ@—m)), ro(z) =z, so(z) = (L —2),
(8)

_
3l

and for k # 0:

w(z) = cop(—\[K2 4 (= 0)  wple) = eap(—\ /2 + - (L))

ri(z) = exp(—|k| (x — 0)) sk (x) = exp(—|k| (L — x))

The coefficients (ag, Bk, Yk, dx) are the solution of four-by-four linear systems that are
solved at each time step. The boundary conditions on the left and on the right are
numerically decoupled when the wave number £ is large enough. The derivatives of
Vo are readily computed from the previous formula. The derivatives of \I’k follow
from its discrete Fourier expansion. We assemble the right hand side of equation (3)
at each time step using the splitting (6) for the derivatives as well.

Our approach differs from that of Israeli et al in the way we compute a sufficiently
regular periodic extension of the right hand sides. Let us recall that the smoothness
of this extension is the essential limitation on the spectral accuracy of the method.
More precisely, if the right hand side has regularity C'?, the numerical scheme is of
order ¢ + 4 at most.

When the right hand-side is a given analytical function that can be defined for the
interval [0, L + d], one could use a so-called bell function B (as in Israeli et al) that is
equal to one in [O,L] and zero in the vicinity of L 4+ d/2. B times the right-hand side
is then a smooth periodic function of period L 4 d. [IVA94b] [IVA94a] show evidence
of the accuracy of this method for the Laplace equation or the Helmoltz problem.
However, in our computation the right hand side is given numerically at each time
step only within the physical domain of computation. We therefore use a numerical
procedure to derive a smooth extension of this function. We proceed as follows.
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We consider the exact or computed values of the derivatives of Fj up to order ¢ at
z = 0 and & = L. The classic Hermite interpolation allows us to define a polynomial
function P on [L, L+d] of degree 2q+1 that interpolates function Fj with the following
conditions:

for j=0,...q, PO(L) = (1), PO(L+d) = F0).
The extended right hand side is then

— [ F,, Yzel0,I]
F’“_{ Pk(a:), Ve €]L, L +d]. 9)

In practice we require a C? continuity condition at the end points x = 0 and x = L+d
and the derivatives are computed by using sixth order one sided finite differences.

Domain Decomposition Algorithm

The next step is to introduce a domain decomposition in the z direction for each k-
mode equation (1). We split [0, L] into nd nonoverlapping subdomains of equal sizes,
which we denote generically as (0,1).

For each subdomain we apply the same splitting of the unknowns as described
above, and in addition we impose C?3 continuity on the solution at the artificial
interfaces. We compute the extension of the right hand sides for each subdomain
and its corresponding periodic solution with a local Fourier discrete approximation.
This part of the algorithm is exactly what we had for the single domain case, but it
is applied for each subdomain in parallel.

Note that for mode 0, the operator with a periodic boundary condition is singular.
The solution is then defined up to a shift. However the corrector term substracts this
shift and the superposition principle gives the unique solution of (4).

We compute the corrector term for each subdomain in order to retrieve the Cs
continuity of the solution at the artificial interfaces. Let us denote by (vi, w1, 77, sy)
the set of basis functions for the corrector in each subdomain j and by (ai, i, 7%,5%)
the corresponding coefficients; in the local coordinate system of the subdomain, the
basis functions are identical to the monodomain basis function. With two subdomains
for example, the matrix of the interface problem for the unknown coefficient vector

2 (1 a1 1 51 2 g2 2 snNT :
T—(akaﬁk;7ka5kaakaﬂka7ka5k) writes

vi(0)  wi(0) 7 i(0) s 4(0) 0 0 0 0

v k(0)  w' x(0) 7' (0) 5" k(0) 0 0 0 0

vil)  wi()  ri() si(l) —vi(0)  —wi(0)  —ri(0)  —si(0)

o ) w () R s () = k(0) —w' k(0)  —r'k(0)  —s'k(0)

v () w” () ") ") =" (0)  —w”(0)  —r" }(0)  —s"}(0)

U/// i(l) w/// i(l) T”I }lc(l) s/// i(l) —U“’ i(o) _wm i(o) r/// i(o) s//1 i(o)
0 0 0 0 v 3(1) w i(l) r i(l) s i(l)
0 0 0 0 () I 1() B 1 () B 1()

Note that for large wave number k, the local interface problems are fully decoupled
because of the exponential decay of the basis function. In such a case, the domain
decomposition algorithm only requires local communication between node processing
adjacent domains.
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Numerical Accuracy of the Domain Decomposition Method

We now consider the accuracy of the domain decomposition with respect to the number
of Fourier modes and the number of subdomains. It is important to notice that
problems (4, 5) are singular perturbation problems when the time step df is small
and/or the wave number k is large. The sensitiviy of the method with respect to
dt and k will also be tested. In order to test the numerical accuracy of our domain
decomposition method, we consider each fourth order wave equation analogous to (5)
with k replaced by kJ; separately and choose the right hand side ﬁ’g such that the
fourth order polynomial 2% % (z — 47)%/(16 * 7*) is the exact steady solution. The size
of the domain of computation is given by H = 25 and L. = 2. In the following, we use
the time marching scheme starting from the trivial initial condition until convergence
to the steady solution is reached. We measure the difference between the converged
numerical solution and the exact steady solution in maximum norm.

Table 1 gives the error in a maximum norm for the computed solution corresponding
to the wave number £ = 0 and k& = 1 with a space step of order 0.05 and several
numbers of subdomains. The total number of discretisation points in a physical domain
is 2N,. The number of discretization points used for the extension is 2N, for each
subdomain. The number of Fourier modes per subdomain depends on the number of
domains ng and it is Ny /ng + N,.. The time step is dt = 0.1

We see in all cases that N, = 16 gives better results than N, = 8. More precisely
the accuracy depends strongly on the size of the extension only for large number of
subdomains. This means that if the number of Fourier modes per subdomain is large
enough the accuracy is not so sensitive to the size of the extension. The results of this
table for mode k = 1 are always better than the corresponding results for the zero
mode no matter what the shift is.

In particular, the error decreases with the number of subdomains for mode one. We
observe the inverse for the zero mode except when N, = 256 and N, = 16, which is
when the number of Fourier modes per subdomain is large.

Let us now consider four subdomains and study the sensitivity of the method to
the time step, wave number k and the size of the extension per subdomain. Table 2
gives the error in maximum norm depending on the percentage of the extension 1i.e
100 x d/(L + d) and the number of Fourier modes N, for different couples (k, dt) of
time steps and wave numbers. N, is the number of Fourier modes per subdomain
including the extension.

First we observe that the accuracy of the method deteriorates when the time step
goes to zero: this is no surprise since the problem becomes increasingly singular as
dt goes to zero. Eventually the time dependant schemes diverge for the zero mode
equation if the space step is larger than the boundary layer thickness v/dt or if the
extension is not large enough. The comparison between results for k = 1 and k£ = 10
or 30 with the same time step shows that accuracy deteriorates when k grows. The
thickness of the boundary layer of the wave equation is 4/ k% + dt and this phenomenon
can be interpreted as above. However the amplitude of the solution ¥ should decrease
with the wave number k£ in two dimensional problems and this phenomenon should
not significantly affect the accuracy of the overall solution.

In all cases it is also significantly better to take a large extension of the subdomain
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0 10 20 30

Figure 1 Superposition of the stream function contour lines to the hot spot
formation; localization of the front is given by the thick line

rather than a small one. We speculate that small extensions lead to stability problems
of the time marching scheme.

The method is at least of order 5 for mode 0 and for d/(L + d) = 50% or 25%. The
order of the method for the higher modes 0 is less dependant on the value d/(L + d) ,
but differs with the mode value: (order 3.2 for k=30, order 4.3 for k=10). Nevertheless
the decrease of the order of convergence is compensated for by the fact that the module
of the Fourier coefficients decreases steeply with increasing mode value.

Results on FP process in Liquid (i.e R=0.5)

In order to solve our model problem in Frontal polymerization given in Section 26,
we have combined the domain decomposition algorithm given above for the Navier
Stokes equation with the analogous algorithm for a second order system of reaction
diffusions describing the exothermic one-step chemical process [GTD98a]. We refer to
that paper for preliminary results on the efficiency of our parallel algorithm. A detailed
description of the implementation and parallel efficiency of the domain decomposition
will be reported elsewhere. We have applied this methodology to compute non-planar
flame front.

Figure 1 shows the effect of hydrodynamics on the structure of the flame front when
the channel is horizontal. Thin solid lines represent the temperature isovalues while
dash lines represent the stream function isovalues. The thick solid line represents the
location of the front, centered on the level set C' = 0.5. The computation was done with
a total of Ny = 112 by M, = 256 modes on a physical domain of size [0,47] x [0, 90].
The Zeldovich number is equal to 6., the Rayleigh number is equal to 1.5, the Prandlt
number is P = 1, the mass diffusion is given by ¢ = 0.02, and the time step is set to
dt = 0.01. This solution is a travelling wave moving toward the left with a hot spot
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close to the top wall of the horizontal channel. Gravity is vertical. The location of the
hot spot and the front curvature of the concentration profile are closely related to the
circular motion of the flow.

Conclusions

We have developed and implemented a domain decomposition methodology based on
local Fourier approximations and the superposition principle to solve incompressible
Navier Stokes equation in two space dimensions.

This approach has been generalized to solve a frontal polymerisation model. It allows
us to tackle complex two D nonlinear regimes without any a priori hypothesis on the
structure of the flame front.
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Mode 0 number of subdomains Mode 1 number of subdomains

Nz=256 2 4 8 16 Nzy=256 2 4 8 16

N,=16 4.6e-5 | 1.9e-5 | 1.3e-5 | 9.3e-6 || N,=16 4.2e-7 | 2.6e-6 | 8.8e-7 | 4.2e-7

N,=8 4.6e-5 | 4.6e-4 | 7.7e-4 | 1.4e-3 || N, =8 1.2e-5 | 5.5e-6 | 2.6e-6 | 1.3e-6

=128 2 4 8 16 N,=128 2 4 8 16

N,=16 7.7e-5 | 8.8e-5 | 1.1e-4 | 1.3e-4 || N, =16 1.8e-5 | 1.0e-5 | 4.5e-6 | 2.4e-6

N,=8 1.6e-4 | 6.3e-4 | 1.2e-3 | 2.0e-3 || N,=8 7.9e-5 | 3.9e-5 | 1.8e-5 | 9.9e-6

Table 1 accuracy with respect to the number of subdomains

k=0,dt=0.1 k=1,dt=0.1
Ny 50% 25% 12.5% 6.25% 50% 25% 12.5% 6.25%
16 7.55e-3 | 4.33e-1 div 5.3%-1 || 1.65e-4 | 8.59e-4 | 5.80e-3 | 9.70e-3
32 8.42e-5 | 7.62e-3 | 4.05e-1 div 6.73e-6 | 3.47e-5 | 3.02e-4 | 2.46e-3
64 2.52e-6 | 1.56e-5 | 7.04e-3 | 3.94e-1 || 2.44e-7 | 1.02e-6 | 1.07e-5 | 1.20e-4
128 6.00e-7 | 1.24e-6 | 4.77e-6 | 6.74e-3 || 7.75e-9 | 2.77e-8 | 3.41e-7 | 4.46e-6

k=0,dt =0.01 k=1,dt =0.01
Nz 50% 25% 12.5% 6.25% 50% 25% 12.5% 6.25%
16 3.75e-2 | 1.22e-0 div div 3.30e-4 | 1.73e-3 | 1.13e-2 | 1.98e-2

32 7.90e-4 | 7.49e-2 | 8.37e-1 div 1.48e-5 | 7.57e-5 | 6.51e-4 | 5.31e-3
64 2.45e-5 | 1.54e-4 | 7.17e-2 | 8.46e-1 || 5.53e-7 | 2.27e-6 | 2.38e-5 | 2.66e-4
128 6.05e-7 | 4.77e-6 | 5.38e-5 | 6.90e-2 || 1.73e-8 | 6.14e-8 | 7.58e-7 | 9.91e-6

k=0, dt = 0.001 k=1, dt = 0.001
Ny 50% 25% 12.5% 6.25% 50% 25% 12.5% 6.25%
16 div div div div div 7.27e-3 div div
32 3.34e-3 | 6.61e-1 div div 7.10e-5 | 4.11e-4 | 3.57e-3 | 2.87e-2
64 1.67e-4 | 1.42e-3 div div 3.67e-6 | 1.39e-5 | 1.48e-4 | 1.65e-3
128 5.26e-6 | 4.48e-5 | 5.30e-4 div 1.14e-7 | 3.86e-7 | 4.85e-6 | 6.38e-5
k=10, dt = 0.1 k=30, dt =0.1
N, 50% 25% 12.5% 6.25% 50% 25% 12.5% 6.25%

16 2.92e-4 | 1.72e-3 | 8.37e-3 | 2.09e-2 || 2.89e-4 | 1.66e-3 | 7.06e-3 | 2.20e-2
32 3.74e-5 | 2.29e-4 | 1.46e-3 | 8.74e-3 || 3.99e-5 | 2.54e-4 | 1.55e-3 | 7.52e-3
64 3.79e-6 | 2.05e-5 | 1.38e-4 | 1.04e-3 || 5.02e-6 | 3.23e-5 | 2.18e-4 | 1.45e-3
128 2.56e-7 | 1.05e-6 | 7.02e-6 | 6.06e-5 || 5.57e-7 | 3.26e-6 | 2.19e-5 | 1.62e-4
k =10, dt = 0.01 k =30, dt =0.01
N, 50% 25% 12.5% 6.25% 50% 25% 12.5% 6.25%
16 2.96e-4 | 1.74e-3 | 8.45e-3 | 2.10e-2 || 2.90e-4 | 1.66e-3 | 7.07e-3 | 2.20e-2
32 3.79-5 | 2.32e-4 | 1.48e-3 | 8.82e-3 || 3.99e-5 | 2.55e-4 | 1.55e-3 | 7.53e-3
64 3.84e-6 | 2.07e-5 | 1.40e-4 | 1.05e-3 || 5.02e-6 | 3.23e-5 | 2.18e-4 | 1.45e-3
128 2.59e-7 | 1.07e-6 | 7.12e-6 | 6.15e-5 || 5.57e-7 | 3.26e-6 | 2.20e-5 | 1.63e-4
k =10, dt =0.001 k =30, dt =0.001
N 50% 25% 12.5% 6.25% 50% 25% 12.5% 6.25%
16 3.32e-4 | 1.94e-3 | 9.22e-3 | 2.23e-2 || 2.94e-4 | 1.69e-3 | 7.15e-3 | 2.22e-2
32 4.23e-5 | 2.58e-4 | 1.64e-3 | 9.60e-3 || 4.05e-5 | 2.58e-4 | 1.57e-3 | 7.61e-3
64 4.29e-6 | 2.33e-5 | 1.57e-4 | 1.18e-3 || 5.09e-6 | 3.28e-5 | 2.21e-4 | 1.47e-3
128 2.93e-7 | 1.22e-6 | 8.12e-6 | 6.97e-5 || 5.65e-7 | 3.31le-6 | 2.23e-5 | 1.65e-4

Table 2 Sensitivity of the methods to parameters k and dt



