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Lower Dimensional Interpolation in
Overlapping Composite Mesh
Difference Methods

Serge Goossens' & Xiao-Chuan Cai?
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Introduction

We propose a modified Composite Mesh Difference Method (CMDM) in which a lower
dimensional interpolation can be used along the interface of the nonmatching grids.
The advantage of this approach is that fewer interpolation points are needed while the
same order of global accuracy is preserved. This is important especially for distributed
memory implementations since smaller amounts of data need to be communicated
among the overlapping subdomains. A CMDM on two subdomains has been described
by Starius [Sta77], while Cai et al. [CMS98] have studied the case of many subdomains.
We focus on the 2D Poisson’s equation. Our results show that it is possible to obtain
global second order accuracy on nonmatching grids with a local coupling using only
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4 points at the interface in the discretisation equations. In contrast, the overlapping
nonmatching mortar method [CDS99] requires a global mortar projection involving
all the mesh points on the interface.

Composite Mesh Difference Method

We briefly describe our CMDM for solving the second order elliptic partial differential
equation Lu = f in Q with a Dirichlet boundary condition u = g on 99Q. Given a
domain Q consisting of p nonoverlapping subdomains Q; such that Q = UF_,Q;, we
independently construct a grid of size h; on each extended subdomain Q} of Q;. Due
to the extension of the subdomains these grids overlap. We denote by I'; = 9Q} N 9Q
the intersection of the boundaries 0€2} and €.

Assumption 1 The truncation error a;(z) = (Lp,up, — Lu) (2) is of order p;:

llilleo < Coihi*||ul

pl+2,oo,ﬂia (1)

where Cy, ts a constant independent of the mesh size h; and ||u||k7w7ni denotes the
Sobolev norm for the space WE ().

Assumption 2 The interpolation operator I; only uses values from U;2;Q; and no
values from . The interpolation error f;(x) = (u — Z;u) (x) is of order ¢;:

1Billeo < Cig;hif [[ullgs 00 (2)
Let Z; be the interpolation matrix and o; = |[|Zi||cc the norm of Z;. Note that
for piecewise linear or bilinear interpolation o; = 1 and for quadratic or cubic

interpolation, o; = 5/4 in 1D and o; = 25/16 in 2D. We denote by ¢ = max; o;
the largest of all the interpolation constants.

The global discretisation up = (up, , Un,, -+, un,) on the composite grid is obtained
by coupling the local discretisations through the requirement that the solution matches
the interpolation of the discrete solutions from adjacent grids. The system of equations
consists of p subproblems, each having the following form:

Lhup, = fn, in Qf,
Uh; = h, on I, (3)
up, = zh, = Ziup, on 0Q% \ T;.

Assumption 3 The local finite difference discretisations (3) are stable in the
mazimum norm and satisfy a strong discrete marimum principle, i.e. a constant K;
independent of h; and a constant 0 < p; < 1 exist so that

lunllco g, < Ki

Fhilloo, 0 + max{[|gn,[loo, v, pill2h, oo 00T, ) (4)

The contraction factor 0 < p; < 1 measures the error reduction. This can be seen by
considering the homogeneous problem, i.e. f =0 and ¢ = 0.
Assumption 4 The product of the interpolation constant and the contraction factor
is less than 1

7 = max; (pio) < 1. (5)
Under the above assumptions Cai et al. [CMS98] proved the maximum norm stability
of the global discretisation and showed that the following error bound holds.



COMPOSITE MESH DIFFERENCE METHODS 253

Theorem 2 The error in the discrete solution satisfies

P P P

a -
> len e < (1415 (Zﬂi az-||m+2||m||m). ()
i=1 i=1 i=1

Schwarz Alternating Method

Since the CMDM described above is a contraction mapping, the resulting system of
equations can be solved by repeatedly solving the p subproblems (3) in parallel, where
zp, 1s computed from the previous iteration. The convergence rate of this iteration is
bounded by the contraction factor r of the mapping.

Theorem 3 The iterates {u;n)} converge to the exact discrete solution uj, and

d(ugln),uh) < T”d(ugln),uh). (7)

Here d(wp, vy) = maxi{[|wh; — vn,||o q }-

This is a parallel variant of the Schwarz alternating method. Rather than using the
additive Schwarz method as a solver, it is better to use it as a preconditioner in a
Krylov subspace method. Convergence proofs of the Schwarz algorithm based on a
maximum principle can be found in [CMS98, Mil65].

We remark that when solving (3) using iterative methods, the total arithmetic
cost 1s determined by the subdomain mesh sizes, while the communication cost,
for implementations on distributed memory machines, depends on the interface
interpolation operators. The rest of this paper i1s devoted to the interpolation issue.

Interface Interpolation Schemes

In this section, we discuss several interface interpolation schemes. We restrict ourselves
to the two subdomains case, ie. Q@ = Q) U Q, where Q) = [0,[3] x [0,1] and
Qy = [l5,2] x [0,1]. We assume l; > 1 and I, < 1. The usual five-point finite difference
method is used in the two subdomains.

The standard stencil with bilinear interpolation

Since both the standard five-point stencil and bilinear interpolation are second order,
the error bound (6) shows that the resulting CMDM is also second order. However
this scheme does not satisfy the consistent interpolation condition defined by Goossens
et al. [GCRY8]. We describe the inconsistency present in this approach. Let (0,0) be
the local coordinates of a mesh point in Q) that is next to the interface. To define
the finite difference stencil, the value at (h,0) has to be obtained from Qy through
interpolation. More precisely, the stencil S at (0,0) has the form

S = —4u(0,0) + u(0, —h) + u(0, h) + u(—=h,0) + v, (8)
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Figure 1 The scaled local coordinates (¢,7) used in the interpolation.

where v is computed using a bilinear interpolation for u(h,0),1.e. v = (1-&)(1—n)u(h—
£k, — k) +(1—€)u(h—Ek, (1—n)k)+€(1—)u(h-+(1—E)k, k) +€nu(h+ (1), (1
n)k). Figure 1 shows the scaled local coordinates (£, n) used in the interpolation on
the overlapping meshes. Expanding (8) we find the inconsistent discretisation for the
nodes where the bilinear interpolation is used:

S y2
S (e + ) = 2 (60— e 11— Wugy) + O(h), (9
where v, = k/h is the ratio of the mesh sizes. Note that the scheme is consistent

only if £ and n are either 0 or 1, which implies that the two meshes match each other
on the interface. We show numerical results illustrating the effect of this inconsistent
discretisation.

Theorem 4 The standard stencil with bilinear interpolation results in a second order
scheme on every extended subdomain }:

2
lep| < C’¢amar{C’1, mazy ez (E(1 — &) upe + n(1 — n)uyy) 2»% } h? + Cph%+ O(h®),

2

(10)
Vp € Qi where C;r = (Myges + Myyyy) /(48E1) is a constant depending on
the derwatives Uppre and Uyyy,. The constant Cg, denotes the marimum of the
nonnegative function ® over the grid points where a Dirichlet boundary condition
is used for the subdomain Q) and Cp > 0 is a constant associated with the accuracy
of the Dirichlet boundary conditions on the internal boundaries 9Q; \ T;. The set J
contains all the points where the inconsistent discretisation (9) is used. The constants
E1 and EQ are lower bounds for Ly, .

Second Order Scheme on a Modified Stencil

In order to obtain a consistent discretisation, we construct a second order accurate
difference formula on the modified stencil depicted in Fig. 2. The idea is to slightly
modify the meshes along their boundaries so that the interpolation is needed only
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Figure 2 Modified stencil for the

Figure 3 Stencil for the second order
second order scheme.

scheme with 1D cubic interpolation.

in one of the directions in contrast to the standard bilinear method, which needs
information in both z and y directions. The mesh width & > h is selected so that a
grid line in the other mesh is matched and no interpolation along the z-axis is required.
The point u(—2h, 0) is needed to obtain a second order discretisation in the stencil

S = ¢o,0u(0,0)+co,—12u(0, —h)+ecq1u(0, h)+c_q ou(—h, 0)+c1 ou(k, 0)+c_g ou(—2h,0)

(11)
with co0 = -1 — 3/")%, Co—1 = Co1 = ], c-1,0 = 2(2—7k)/(7k+])g c1,0 =
6/(vk(ve + 1) (v +2)) and c_3 0 = (v — 1)/ (7% + 2). The truncation error is given as

2

S h?
nz (Uzz + “yy) = 12 ((3v% — 2)usrzs + Uyyyy) + 0(h3)~ (12)

Note that for 1 < v, < 2 this stencil satisfies a discrete maximum principle.

Modified Stencil with Linear Interpolation

We now consider the effect of replacing u(k,0) by an interpolation formula along
the y-axis. First of all we show that a consistent approximation exists when linear
interpolation is used, i.e. v = (1 — n)u(k, —nl) + nu(k, (1 — n){) is used instead of
u(k,0). We use the standard stencil and seek the coefficients in

S = Coyou(o, 0) + 007_1U(0, —h) + coylu(O, h) + c_170u(—h, 0) + ¢y v (13)

so that a consistent approximation to (uzy + uyy) results. Setting co 1 = o1 =

V=gt =my/(w(m + 1)), ec10 = 2/(w+1), o0 = 2/(3(w +1)) and cop =
20(1 = n)7? — (v + 1)/ (v (3% + 1)), where v = I/h, results in

S
77 (Uzz + uyy) = O(h). (14)
If v < 24/ (yx + 1) this formula satisfies a discrete maximum principle. For n equal
to 0 or 1 a first order discretisation on a modified five-point stencil is obtained.
Note that the difference formula has to be modified to account for the low order
interpolation.



256 GOOSSENS AND CAI

Modified Stencil with Cubic Interpolation

The interpolation along the z-axis can be avoided by using a modified stencil. We
show that cubic interpolation along the y-axis results in a second order scheme. This
is equivalent to constructing a second order accurate difference formula on the modified
stencil depicted in Fig. 3.

Theorem 5 It is not possible to obtain a second order accurate discretisation of
(Uze + uyy) at the center point (0,0) if only 3 or fewer points are used along the
line x = k and none of these points has a zero y-coordinate.

Theorem 6 The only second order accurate discretisation of (Ugy +1yy) at the center
point (0,0) using only 4 points along the line x = k with none of these points having a
zero y-coordinate, is the second order scheme (11} on the modified stencil with cubic
interpolation along the line x = k for the point (k,0).

We seek the coefficients in the stencil

S = 6070U(0,0) +Co7_1u(0,—h) +6071U(0,h) +C_170U(—h,0) —|—c_270u(—2h,0)+
cr,—u(k, —(1 4+ )l) + c1,0u(k, —nl) + c1 1u(k, (1 — 9)l) + c1,2u(k, (2 — 9)l).

(15)

Setting Co,0 = -1 - 3/’)%, Co,—1 = €Co,1 = 1, C_10 = 2(2 — ')/k)/(')/k + 1), C_20 =

(ve = D) /(w +2), 1,1 = =1 =n)(2 = n)/N, e10 = 3(1 = n)(2 - n)(n + 1)/N,
c1,1 =3(2-n)n(n+1)/N and 15 = —n(1 —n)(n+1)/N, where N = v (s +1) (v +2)

results in a second order accurate discretisation

7z (g + tyy) = (’)(h2). (16)

The truncation error for this scheme is

[y =2 (1 (2—n)(1 = n)n(n+ 1)y
o = Uppzr + | == —
12 12 Ay 4+ 1) (0 +2)

) uyyyy] R+ O(h*). (17)

It is clear that the coefficients ¢q _1, ¢1,0, ¢1,1 and ¢ 5 are equal to the product of the
coefficient ¢4 g in (11) and the cubic Lagrange interpolation polynomials.

Numerical results

Our testcase is taken from [CMS98] and concerns the solution of —V?u = f on
Q = Q UQy, where @y = [0,1] x [0,1] and Q5 = [1,2] x [0,1]. The r.h.s. f and
the Dirichlet boundary conditions g are chosen so that the exact solution is u(z,y) =
(sin(mz) 4 sin(mz/2)) sin(7wy). The overlapping subdomains are ) = [0,1.4] x [0, 1]
with hy = 0.2 x 270 and Q4 = [0.75,2] x [0, 1] with hy = 0.25 x 27%.

In Table 1 we list the Lo.-norm of the error for the standard stencil with bilinear
interpolation. For a second order scheme, the ratio between two successive error norms
should be 4 when the mesh size is halved. These results show ratios alternating
between 4.11 and 3.89 and between 4.18 and 3.83! This is due to the presence of
the inconsistency as shown by (9) which results in a dependency of the error on
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Table 1 Results for the standard stencil with bilinear interpolation.

3 ||en/1 [|,o ratio ||en; [|co  ratio
0.6 5.53e-2 6.34e-2
0.2 1.40e-2 3.94 1.31e-2 4.82
0.4 3.62e-2 3.88 3.47e-3 3.80
0.8 8.79¢-4 4.11 8.26e-4 4.19
0.6 2.26e-4 3.89 2.16e-4 3.82
0.2 5.50e-5 4.11 5.17e-5 4.18
0.4 1.41e-5 3.89 1.35e-5 3.83

DU W= O o~

Table 2 Results for standard stencil with bicubic interpolation (columns 2-5)
and for modified stencil with 1D cubic interpolation (columns 6-9).

||6n11||(x, ratio ||6n12||(x, ratio ||6n11||(x, ratio ||eQ/2||co ratio

5.20e-2 4.14e-2 4.98e-2 8.41e-2

1.34e-2 3.885 1.19e-2 3.4810 1.34e-2 3.7168 1.51e-2 5.5828
3.33e-3 4.0164 3.01e-3 3.9605 3.31e-3 4.0523 3.67e-3 4.0997
8.34e-4 3.9986 7.50e-4 4.0072 8.34e-4 3.9687 8.22e-4 4.4717
2.08e-4 4.0010 1.88e-4 4.0012 2.08e-4 4.0017 1.95e-4 4.2099
5.21e-5 4.0003 4.69e-5 4.0004 5.21e-5 3.9999 4.78e-5 4.0868
1.30e-5 4.0000 1.17e-5 3.9998 1.30e-5 4.0004 1.18e-5 4.0393

DU WK = O

&(1 — &), i.e. the relative position of the interface in the other mesh. For this testcase
the dominant term in the error bound (10) is e &~ (£(1 — &)ec1 + ¢2) h?, where ¢; and
cs are constants independent of ¢ and h. With this expression, we can estimate the
ratio v, between two successive error norms. When the mesh is refined by halving the
mesh size, i.e. hj11 = h;/2, we have

_ Meaglle e @O - 1B &G0 -&) +r
T ||En;”+1 oo er (Gipr (T =&ig1) +7e) iy &gl = &iga) + 7

g/ 4 (18)

where 7. = ¢a/c1. For Q) we find 7, = 2.7491 which results in ratios 7. of 4.11 and
3.89 while for Q4 we have v, = 1.6178 resulting in ratios 7. of 4.18 and 3.83. The
accuracy of the scheme depends on the relative position of the interface in the other
mesh. Apart from this phenomenon the scheme is second order, since fitting a power
of the mesh size [|eq: || & kh? yields A = 1.9929. The second order accuracy can also
be seen when the mesh is refined twice, i.e. the mesh size is divided by 4, in this case
the factor {(1 — §) does not change and we get ratios of 15.9973 (for ||eq: [|oo) and of
15.9966 (for ||eq: [|oo) between two successive error norms, which is very close to the
theoretical value of 16.

In Table 2 we show the results for the standard stencil with bicubic interpolation,
which is a very expensive interpolation since it requires 16 points, and for the modified
stencil with 1D cubic interpolation, which only requires 4 points. It is clear that both
these schemes are second order and that our method is as accurate as the classical
approach with expensive bicubic interpolation.

In order to see the effect of the overlap, we fix the mesh sizes to be h7' = 320
and h;l = 256 and vary the overlap according to §1 = 2 x 2Xhy and &3 = 2Xhy for
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Table 3 Effect of overlap on the convergence rate of the Schwarz method and
on the accuracy for the standard stencil with bilinear interpolation (columns
2-4) and for the modified stencil with 1D cubic interpolation (columns 5-7).

n Jleallo fleaslloe [[ 7 [lea,lloo [leasllo
846 4.00c-4  4.00e-4 || 369  L.3le-5  6.49e-6
436 1.89e-4  1.90e-4 || 300 1.31e-5  6.49-6
224 7.99e-5  7.93e-5 | 161 1.3le-5  6.48¢-6
116  3.12e-5  3.19e-5 | 96  1.3le-5  6.48¢-6
60  9.97e-6  1.04e-5 || 53  1.30e-5  6.5le-6
32 1.24e-5  7.47e-6 || 30  1.30e-5  6.73e-6
17 1.41e5  6.82-6 || 16  1.30e-5  T7.52e-6
10 1.33e5 6536 || 9  1.3le5  9.19¢-6

O Ul W= O

the values of x listed in Table 3. We list the number of additive Schwarz iterations
required to satisfy the convergence criterion of ||r,||2 < ]0—10”7,0”2 and the L.,,-norm
of the error in the nonoverlapping subdomains € and €25. From the results it is clear
that the global accuracy of the first method increases as the overlap increases, thus
necessitating substantial overlap, while our method reaches the attainable accuracy
even with minimal overlap. As expected the number of additive Schwarz iterations
decreases, as the overlap increases.

Concluding remarks

We have studied several interface interpolation schemes for overlapping nonmatching
grids finite difference methods. A scheme based on the combination of 1D cubic
interpolation and a six-point stencil is proposed and produces a consistent and globally
second order method. We have also shown numerically that minimum overlap is
required to achieve the accuracy, and that larger overlap reduces the number of
Schwarz iterations but does not change the accuracy. The method is cheaper than
the interpolation method required by the theory of [CH90] and the mortar based
method proposed in [CDS99].
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