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Domain Decomposition for
Indefinite Weakly Singular Integral
Equations

N. HEUER '

INTRODUCTION

We propose and analyze a preconditioner based on domain decomposition for the p-
version of the boundary element method in three dimensions. We consider indefinite
weakly singular integral equations on surfaces and use quadrilateral elements for the
boundary discretization. The GMRES method is used as iterative solver for the linear
systems. For a non-overlapping method, we prove that the numbers of GMRES-
iterations (which are required to solve the systems up to a given accuracy) grow
only polylogarithmically with the polynomial degree.

Solving first-kind weakly singular integral equations by the Galerkin method does
not require continuous ansatz functions. Therefore, without performing any Schur
complement technique, simple non-overlapping methods are sufficient to define efficient
preconditioners. In [Heua] this is shown in the symmetric, positive definite case and
here we extend those results to the more general situation of indefinite operators.
For this extension we follow the ideas of Cai, Widlund [CW92] (who deal with
finite element systems) and Stephan, Tran [ST98] (who deal with boundary integral
equations on curves). In this paper, we consider problems in the three-dimensional
space. That means we have to deal with integral operators on surfaces.

As model problem we consider the Dirichlet problem for the scalar Helmholtz
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equation exterior to a screen. The problem reads as follows. For given g € Hl/z(F)

find u € HL _(Q) with Q = R’ \ T satisfying

(A+EHu=0 in Q, u=g on T, (1)

= |z| — oc. (2)

g—”j—iku:o(r_l) for kK#0 or
u=0(r"") for k=0 @

Here, T is a plane surface with polygonal boundary such that it can be decomposed
into quadrilaterals. We note that our method also works for polyhedral surfaces and
triangular meshes. We consider wave numbers k with S(k) > 0 and |k| small. The latter
condition is to ensure the existence of a Garding inequality with moderate constants
for the boundary integral operator Vj, i.e. the costant 5 in (4) is not much smaller
than ~q, cf. [Ste87]. If this were not the case our method would require a very small
coarse mesh size H, cf. Lemma 3 below.

The Dirichlet screen problem (1), (2) appears in the scattering theory of acoustic
fields u by obstacles. From [Ste87] we know that for &(k) > 0 this problem is uniquely
solvable. Further, u € H|..(Q) is the solution of the Dirichlet screen problem if and
only if the jump [3u/3n] of the normal derivative of u across I' is the solution to the
weakly singular integral equation

w2 [[R] oS s =) @en. @

Moreover, by [Cos88, Ste87], Vi is continuous,
Vi : H=Y2H5(0) > HY2H5(T) (=1/2< 5 < 1/2)

and strongly elliptic, i.e., it satisfies a Garding inequality: There erist constants
1,72 > 0 such that for all v € H—1/2(r)

R(Viv,v) > y||v ||H 1/2(T —72|lv ||H 1y )

Here, (-,-) denotes the L?(T)-inner product. The space H=*(T) for s > 0 is the dual
space of H*(T') which is the usual Sobolev space for integer s and is obtained by
interpolation for non-integer s, see, e.g., [LMT72]. The operator V := V}, which is the
main part of Vi, is symmetric, positive definite and induces an equivalent norm in
ﬁ_l/Q(F). The remainder Vi, — V is of lower order than Vj and is, as well as its adjoint

V! — V, bounded:
(Ve = V)or, v9)| < emin{|[oa|l g1 pyllvall -2y Norllg-1ra oy llvellg-1 oy} (5)

for any vy, vs € H™1/2(T), see [Ste87).
We define boundary element spaces S}?(Fh) of piecewise polynomials of degree p on

quasi-uniform quadrilateral meshes T'), = ijl f‘j of size h:

Sy(Tw) = A{f € L*(I); fIr, € Pp(Ly),i=1,....,J} C H™'*(T)
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Here, P,(I';) denotes the set of polynomials on I'; which are at most of degree p in
each of the variables. The Galerkin scheme for the numerical solution of the integral
equation (3) then is: Find uny € SS(Fh) such that

(Vkun,w) = (g,w) forany we€ Sg(I‘h), (6)

Here, the subscript N is used to denote the dimension of Sg(l"h). By the strong
ellipticity of Vi this method converges quasi-optimally.

Since Vi 1s a first kind integral operator of order minus one the spectral condition
number of the stiffness matrix A in (6) behaves (when using standard basis functions)
like O(h='p?), cf., e.g., [HWT7T7, Heu96]. Especially for the p-version we are considering,
a preconditioner is necessary for the efficient solution of (6). The stiffness matrix A
is in general non-Hermitian and indefinite and we use the GMRES method [SS86] as
iterative solver. For real linear systems the rate of convergence of the GMRES method
depends on the two numbers

a(v, Av)

Ag= inf ————= and A; = sup .
e al, 1) o ol

The quantity Ag is the minimum eigenvalue of the symmetric part of A and Ay is the
matrix norm of A which is induced by the norm || - ||4. In the complex case we have
to consider, instead of Ag and Ay as defined above, the expressions

A Av||a
Ag = inf R———= a(v, Av) sup [[Av] .
'UE(DN CL(’U ’U) ’UE(DN ||’U||a

, and Ay =

For a(-,-) we use the inner product which is given by V, i, a(:,-) = (V. ) ~
[| - ||H 12 (n . From [EES83] we cite the following result: If Ag > 0 then the GMRES

method converges and for the residual corresponding to the jth iterate r; = g — Au;

there holds N
il2
rilla < (1= =2 rollq.
Il < (1= 38) "

Here, g is the right hand side vector of the linear system (6). In order to reduce the
number of iterations of the GMRES method we need to find a preconditioner for the
matrix A which bounds the ratio Ag/A; from below.

Throughout the paper ¢ denotes a positive generic constant.

NON-OVERLAPPING ADDITIVE SCHWARZ METHOD

In order to define our preconditioner we need to decompose the boundary element
space. This is done by introducing a coarse mesh I'y = U7_, G} (H > h) which must
be compatible with T',. We note that the case 'y = 'y, is included. Now we decompose

SS(Fh):X0+X1+"'+Xn (7)
where X is the space of piecewise constant functions on the coarse mesh T'g and

X ={vlg;; v e Sg(Fh), (v, 1>L2(GJ-) =0}, j=1,...,n.
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We define the projection operators P; : SS(Fh) — X;, 5 =0,...,n, and P; :

SS(Fh) — Xj,j=1,...,n,such that, for given v € Sg(Fh),
(ViPjo,0) = (Vev,¢) Vo€ X; and (VFPju,¢) = (Vev,4) Yo € X;.

Two types of the additive Schwarz operator are now defined by P = Po+P1+---+P,
and P = Pyg+ P14+ - -+ P,. The additive Schwarz method consists in solving, instead
of the system (6), one of the equations

Puny = f1 or Pun = fo.

The right hand sides f; = (Po+ P1+ -+ Ppluy and fo = (Po+ P+ -+ P)un
can be computed without knowing the solution uy of the original Galerkin system (6)
since only (Viuy, @) for ¢ € Sg(Fh) needs to be known. But Vyuy = g when testing
against functions of the ansatz space Sg(Fh). The operators P; (j > 0) are computed
by locally inverting the indefinite operator Vi, whereas for P; we only need to solve
positive definite problems for V.

The efficiency of the additive Schwarz operators P and P is proved by the following
theorem.

Theorem 1 There exist positive constants c1,cs,cs, hg such that, if 0 < H < hg,
there holds for p > 0 and for any u € Sg(Fh)

R(VPu,u) > ¢; (02(1 + log(%(p-l- 1_)))_2 — (1 +log 1/H)1/2H1/2) (Vu, u)

and
1Pl fr-1r2(ry < esllull g-rszry-

Analogous estimates hold for the operator P.

Technical details for the proof of this theorem are given in the next section.

TECHNICAL DETAILS

We collect all the technical details which are needed to investigate the decomposition
(7) within I—NI_I/Q(F) and we show how these results apply to indefinite operators.
For the generalization of efficient decompositions within H~'/?(T) (which is the
symmetric, positive definite case) to efficient preconditioners for indefinite operators
on surfaces we extend the theory for integral operators on curves of Stephan and Tran
[ST98], see also [CW92]. The sketch of a proof of Theorem 1 is given at the end of
this section.

The first lemma, which we cite from [Heua], proves that the non-overlapping
decomposition (7) is almost optimal within the space ﬁ[‘lﬂ(f’). This is equivalent
to the boundedness of the spectral condition number of the additive Schwarz operator
(defined by this decomposition) when considering symmetric, positive definite weakly
singular integral operators.
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Lemma 1 [Heua] Let X, ..., X, be the subspaces of the non-overlapping decomposi-
tion (7). There exist constants c1,ca > 0 such that for any u € SS(Fh) with arbitrary
representation u = Z;zn vj (with v; € X;) there exist u; € X; with u = Z;'L:o uj and

kel

—9 i
4 D)7 S Ml < Halyovroqry < 2 0 1rngry
j=0 j=0

H
c1 (1 + 1og(f

The constants ¢1,c9 > 0 do not depend on the mesh size h or the polynomial degree p.

The following lemma is used to estimate the coarse grid component of the additive
Schwarz operator.

Lemma 2 There exists hg > 0 such that, for all H € (0, hg), the projection operator
Pq : Sg(Fh) — Xg 1s well defined. Moreover, there exists a constant ¢ > 0 such that,
for H € (0, hg), there holds for any u € Sg(Fh)

Poullg-1s2ry < cllullg-1s2(r)

and
it = Poll sy < o(1 +10g1/H)'/2H 2 ull gsss oy

Proof. The projection operator Pq is the standard h-version Galerkin projection
operator (restricted onto Sg(rh)) with respect to Vi. Since Vi is strongly elliptic
the boundedness of Py and the convergence

||u _P0U||I§—1(F) < C(G)H1/2_6||u||ﬁ—1/2(F) for any wu € SS(F;,,)

(e > 0) follows by standard arguments, see, e.g., [Wen90, Ste87]. Here, ¢(¢) is a constant
which is not bounded when ¢ — 0, in general. This is due to the reduced regularity
of the solution to the equation Vyu = f near the boundary of a screen, even for
smooth right hand side f. This regularity is used in the Aubin-Nitsche trick which
give error estimates in lower norms than the energy norm H=1/2(T), cf. [CS88, Wen90].
When one uses precise norm estimates of the singularities appearing in the images of
V7!, then the Aubin-Nitsche trick yields ¢(¢) = O(¢~1/2?) (see [Heub]) and taking
¢ := —1/log H this proves the second assertion of the lemma.

The next lemma will be used to bound the lower order norm in the Garding
inequality (4) for functions with small support. This gives the positive definiteness
of the real part of Vi on local subspaces of Sg (Th).

Lemma 3 Let u be a function from any one of the local subspaces X1, Xo, ..., X, in
(7), that means diam(supp(u)) = O(H). Then there exist ¢, C, hg > 0 such that, for
any H € (0, hg), there holds

llull =1y < CHl/QH“Hﬁ—l/z(r) (8)

and

R(Vieu, u) > C||“||?:1—1/2(r)'
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Proof. The subspaces X are constructed such that fF udS =0forue X; (j >0). For
functions with integral mean zero the H~*-norms (0 < s < 1) are scalable with respect
to the diameter of the supports, see Lemma 3 in [Heua], and this proves assertion (8).
The second assertion follows from (8) by Garding’s inequality (4) choosing H small
enough.

The following result is used to prove Theorem 1. It is based on the previous lemmas
and extends the almost-optimality result of Lemma 1 to the indefinite situation of the
operators P and P.

Lemma 4 There exist c1,c¢a, hg > 0 such that, for H € (0, ho) and p > 0, there holds
for any u € Sg(Fh)

N
(1 +log(ﬁ(p—|—l )) ” ”H 1/2(T ZH'P UHH Ty = < 62”“”1251—1/2(F)'
j=0

The same estimates hold if one replaces P; by P; for j > 0.

Proof. This lemma is the counter part to Lemma 2.5 in [ST98] and for a proof we
refer to that reference. The main ingredients are provided by the previous Lemmas 1,
2, 3 and by Garding’s inequality (4).

Proof of Theorem 1. Using the technical details provided in this section Theorem 1
follows analogously as in [Heub] where hypersingular operators are considered. In fact,
one only needs to substitute Fll/z(r) by H_l/Q(I‘) and L%(T) by ﬁ[‘l(F) in the proof
of the main theorems in [Heub]. All the needed details are then given by Lemmas 1,
2, 4 and by (5) and (8) above. See also the proof of Theorem 2.1 in [ST98] where the
details for integral operators on curves are given.

NUMERICAL RESULTS

We consider the Dirichlet screen problem (1), (2) for the homogeneous Helmholtz
equation with I' = (0,1)? x {0} C IR3. As right hand side g in (1) we simply take the
function 1. This choice does not influence the behavior of the resulting stiffness matrix.
For the definition of the ansatz space Sg(rh) we use uniform meshes I', consisting of
squares and take piecewise polynomials of degree p that need not be continuous across
element interfaces. As basis functions we use tensor products of Legendre polynomials
which are scaled to have unit LZ-norm.

For the non-overlapping additive Schwarz method we simply take the coarse mesh
Ty = Ty, ie., H/h = 1. Figure 1 shows the parameters Ay and Ay for different
wave numbers and full local solvers (“I”, additive Schwarz operator P) and positive
definite local solvers (“P”, additive Schwarz operator P). In these cases Theorem 1
proves an asymptotic bound like (1 + logp)~? for the minimum eigenvalue Ag of
the real Hermitian part of the preconditioned stiffness matrix. The norm A; of the
preconditioned stiffness matrix is proven to be bounded. Both theoretical estimates
seem to be confirmed by the numerical results. The requirement of Theorem 1 that
the mesh size h must be small enough does depend on the actual polynomial degree.
In particular, to ensure convergence of the GMRES method, we must have Ay > 0,
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i.e., h must be small enough such that
eo(1 4 logp)=2 — (1 +log 1/h)Y/2n1/2 > 0.

Here, ¢s is an unknown constant and, nevertheless, there is no problem to satisfy this
condition since the dependence on the polynomial degree is only logarithmic. Our
numerical experiments do not reflect the theoretically needed dependence of h on p
in this situation. The condition on the mesh size is of asymptotic nature and may
become a restriction for higher polynomial degrees and for larger wave numbers.

Table 1 presents the numbers of iterations of the GMRES method for different values
of k which are needed to reduce the initial residual by a factor of 107%. The results
demonstrate that the dependence of the iteration numbers of the GMRES method on
the wave number is rather weak. Indeed, the numbers increase only slightly with &
(and p) and are almost constant in h.
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Figure 1 Values of Ay and A; (p-version, hl = 2) with full local solvers (I)
and positive definite local solvers (P).

Table 1 Numbers of GMRES iterations (different wave numbers, full local
solvers and positive definite local solvers (I, P)).

k: 0 5 10
N b p | B M (P [ (P
4 2 0 2 2 2 2 2
36 2 2 7 7 7 7 7
100 2 4 9 9 9 9 11
196 2 6 9 10 9 10 11
324 2 8| 10 10 10 10 11
36 2 2 7 7 7 7 7
144 4 21 13 14 14 15 15
324 6 21 13 15 15 17 17
576 8 2113 | 14 14 | 17 17
900 10 2| 13 (14 14 | 16 16




