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A domain decomposition method
with Lagrange multipliers for
linear elasticity

AXEL KLAWONN' & OLOF B. WIDLUND?

INTRODUCTION

In the last decade a lot of research has been carried out on nonoverlapping
domain decomposition methods with Lagrange multipliers. In these methods the
original domain is decomposed into nonoverlapping subdomains. The intersubdomain
continuity is then enforced by Lagrange multipliers across the interface defined by
the subdomain boundaries. A computationally very efficient member of this class of
domain decomposition algorithms is the Finite Element Tearing and Interconnecting
(FETT) method introduced by Farhat and Roux [FR91]. In a variant of the FETI
method introduced in Farhat, Mandel, and Roux [FMR94] a Neumann and a Dirichlet
finite element problem is solved exactly on each subdomain, in each iteration.

In this paper, a new domain decomposition method with Lagrange multipliers is
introduced by reformulating the preconditioned system of the FETI algorithm as a
saddle point problem with both, primal and dual variables as unknowns. The resulting
system is then solved using block—structured preconditioners in combination with a
suitable Krylov space method. This approach avoids costly exact subdomain solves
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since it allows inexact subdomain solvers. Good features of the FETI method such as
scalability and efficiency are preserved.

The remainder of this paper is organized as follows. In sect. 2, we present the
equations of linear elasticity and in sect. 3 a finite element discretization thereof. In
sect. 4, we review the FETI method and we introduce our new method in sect. 5.
Finally, in sect. 6, we present numerical results for a cantilever problem.

THE EQUATIONS OF LINEAR ELASTICITY

The equations of linear elasticity model the displacement of a linear elastic material
under the action of external and internal forces. We denote the elastic body by
Q Cc R d = 2,3, and its boundary by 9Q and we assume that one part of the
boundary, T'y, is clamped, i.e. with homogeneous Dirichlet boundary conditions, and
that the rest, T'y := 9Q \ Tq, is subject to a surface force g, i.e. an inhomogeneous
natural boundary condition. We can also introduce an internal volume force f, e.g.
gravity. The appropriate space for a variational formulation is the Sobolev space
Hi (Q) = {v € H'(Q)d V|, = 0}. The linear elasticity problem consists in
finding the displacement u € H%O (€2) of the elastic body €, such that

2u /ﬂa(u) ce(v)dx + A/Qdivudivvdx:(F,v) Vv € Hf, (Q). (1)

Here 1 and X are the Lamé constants, ¢;;(u) = %(g:' + %) is the linearized
J i
strain tensor, £(u) : g(v) = Z?,j:l eij(u)eg;(v), and (F,v) = Z?zl fn fividx +

Zid:1 fl“l givi do. The associated bilinear form of linear elasticity is

a(u,v) =2pu / g(u) 1 e(v)dx + )\/ divu div v dx.
Q Q

In this article, we only consider the case of compressible elasticity. This means that
the Lamé parameter A remains bounded.

FINITE ELEMENTS AND THE DISCRETE PROBLEM

Since we only consider compressible elastic materials, it follows from Korn’s first
inequality, cf. Ciarlet [Cia88], that the bilinear form a(-,-) is uniformly elliptic.
Therefore we can successfully discretize the system (1) with low—order, conforming
finite elements, such as linear or bi-/trilinear elements.

We assume that a triangulation 7% of Q is given which is shape regular and has a
typical element diameter of h. We denote by H(€2) the corresponding conforming
space of finite element functions, e.g. piecewise linear or bi-/trilinear continuous
functions. Our goal is to solve the discrete problem

a(un,vn) = (F,vn) Vvn € Hh(ﬂ) (2)

In the following sections, we work exclusively with the discrete problem. To avoid
unnecessary notation, we drop the subscript h from now on.
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A REVIEW OF THE FETI METHOD

In this section, we give a brief review of the original FETI method proposed by
Farhat and Roux, cf. [FR91]. For more detailed descriptions and proofs, we refer
to [FMR94, RF98] and the references therein.

Let the domain @ C R%,d = 2,3, be decomposed into N non-overlapping
subdomains ©;,2=1,..., N, and the finite element nodes of neighboring subdomains

match on the interface T' := (Uf\;l 891-) \ 092

Let the corresponding conforming finite element spaces be W; = WB(;),i =
1,...,N, and let W := Hil 'W; denote the associated product space.

The finite element spaces can always be identified with R™ for a suitable m. We
mark these spaces in the following with an underline, e.g. W is identified with W.
Analogously, we denote by u the vector of nodal values associated with the finite
element function u.

For each subdomain €;,7 = 1,..., N, we assemble local stiffness matrices K; and
local load vectors f,. We denote by u; the local vectors of nodal values.

We can now reformulate (2) as a minimization problem with constraints given by
intersubdomain continuity conditions:

Find u € W, such that
(3)

J(u) = tu'Ku—f'u > min }

Bu=20
where u = [uy,...,uy]'f = [f;,...,f5]}, and K = diagl_, K; is a block-diagonal
matrix.
The matrix B = [By, . .., By] is constructed such that the components of any vector

u, which are associated with the same node on T'; coincide when Bu = 0. The local
stiffness matrices K; are positive semidefinite. We can assume that the problem (3)
is uniquely solvable which is equivalent to ker K Nker B = {0}, i.e. K is invertible on
the nullspace of B. This is a consequence of the original finite element model being
elliptic.

By introducing Lagrange multipliers A € U := range B to enforce the constraint
Bu = 0, we obtain a saddle point problem from (3):

Find (u,A) € W x U, such that

Bu = 0

' t —
Ku + B'A = f} (1)

We will also use a full rank matrix R, such that range R = ker K.
The solution of the first equation in (4) exists if and only if f — B*\ € range K.
Eliminating the primal variables u leads to

PFA = Pd
GtA = e

(5)

with G := BR, F := BK'B',d := BK'f, P := [ — G(G'G)~'G", and e := R'f. Here

K1 is the pseudoinverse of K which provides a solution orthogonal to the nullspace
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of K. Note that P is an orthogonal projection from U onto ker G*. The constraint
G'X = e ensures that f — B*) is in the range of K.
We define the space of admissible increments by

Vi={pclU:plBw=0VwckerK}= ker G*.
The original FETIT method is a conjugate gradient method in the space V applied to
PFA=Pd, A€X+V (6)

with an initial approximation ), chosen such that G*A, = e. Let D be a diagonal
matrix. The preconditioner M~! introduced in Farhat, Mandel, and Roux [FMR94]
is of the form

@ (@
O D 1sSp-!

The matrix S is the Schur complement of K obtained by eliminating the interior
degrees of freedom. This can obviously be done for all subdomains at the same time.
The resulting matrix S is block—diagonal, and operates only on the degrees of freedom
on the subdomain boundaries. In the simplest case, the diagonal matrix D is chosen
as the identity; this is the choice in the original FETT method by Farhat and Roux.
Another possibility, which leads to faster convergence, is to choose I as a diagonal
matrix where the main diagonal contains the number of subdomains to which the
interface node belongs. This multiplicity scaling is discussed in Rixen and Farhat
[RF98].

In the application of this preconditioner, N independent Dirichlet problems have to
be solved at each iteration step; it is known as the Dirichlet preconditioner.

To keep the search directions of the conjugate gradient method in the space V, the
application of the preconditioner M~' has to be followed by another application of
the projection P. Hence, the Dirichlet variant of the FETT method is the conjugate
gradient algorithm applied to

M-'=B Bt

PM~'PFA=PM~'Pd, Xe) +V. (7)

Tt has been shown by Mandel and Tezaur [MT96] that the condition number of the
original FETI method (D=I) satisfies k(PM~'PF) < C (1 + log(H/h))?, where H/h
is determined by the number of degrees of freedom of a subdomain and C'is a constant
which is independent of h, and H.

In Tezaur [Tez98], a condition number estimate on the order of (1 + log(H/h))? is
given for an algebraic FETT method developed by Park et al. [PJF9T].

For a modification of the FETI preconditioner with almost no extra cost, Klawonn
and Widlund [KW99b] show that the condition number is bounded asymptotically by
C (1+1log(H/h)%.

THE NEW METHOD USING INEXACT SOLVERS

If A= p+ Ao with p € V then, we can reformulate (6) as
PFu=P(d—F))
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which is equivalent to
PBK'B'u = PBKY(f — B')). (8)

Keeping in mind that A = p+ A, and that u = [\"T(f_'— B')) + Ra, we see immediately
that the solution of (8) can also be obtained by solving

K B'][u]l _ [f-B
PB O M N 0 ’
Since p € V. and Ppu = p for p € V, we can make the system matrix symmetric
K (PB)! u _ f — Bt), (9)
PB o) B - 0 ’ /

Note that in this formulation we are not enforcing Bu = 0 but only its projected
version PBu = (. The addition of an element of the nullspace of K does not change
the solution u of the first equation in (9). We use this fact to post-process u, such that
Bu = 0 is finally satisfied. This can be done by setting u_ , := u — R(G'G)~'G* Bu.
It follows that Bu,,, = PBu = 0.

For the solution of the saddle point problem (9), we propose a preconditioned
conjugate residual method with a block-diagonal preconditioner; for a detailed
description of this algorithm, see Hackbusch [Hac94] or Klawonn [Kla95, Kla98].

Our preconditioner has the form

K O
B = s
OM]

Here, K is symmetric and spectrally equivalent to K + Dy Q where Q = diagl_,Q;
is a block—diagonal matrix with @; being the mass matrices associated with the
discretizations on ; and Dy = (di;)i=1,.. ~ a diagonal matrix with d;; = Hi_z,i =

1,...,N. Here, H;;i = 1,..., N denotes the diameters of the subdomain Q;,i =
1,..., N. We further assume that M is symmetric and spectrally equivalent to M | i.e.

we assume the existence of constants kg, k1, mg, m1 > 0, such that

ko w'(K+DpQu < uwku < ki u'(K+DyQu YueW, (10)
mo M) < MMA < mi A'MA WAEV.

We can assume that the constants ko, k1, mg, and m; are independent of the mesh size
and the number of subdomains but also note that preconditioners with bounds that
are weakly dependent on the mesh size, e.g. ILU methods, are of practical interest.

From these assumptions it is clear that our preconditioner B is symmetric, positive
definite and thus can be used with the preconditioned conjugate residual method. In
order to have a computationally efficient preconditioner, we must assume, in addition,
that the application of K~! and M~ to a vector can be computed at a low cost.

To guarantee that the iterates belong to range K, we introduce the projection Pgr
onto range K by

Pr:=1-R(R'R)™'R".
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We recall that range R = ker K and note that Pg is a block matrix with a 3 x 3 block
for each interior subdomain; the expense of applying Pr to a vector is therefore very
modest.

The resulting domain decomposition method is the conjugate residual algorithm
using the B—inner product applied to the preconditioned system

B 'Ax = B~'F
with

PrK~'P 0
0) PM-1pt

%]

We note that it is easy to see that only two matrix-vector products with the projection
P and one with the projection Pgr are required in each step.
A proof of the following theorem is given in Theorem 2 in [KW99a].

)

>4
| |
= I=

Theorem 1 For D = I, we have
K(B~1A) < C (1 +log(H/h))",

with a constant C' independent of H, h.

NUMERICAL RESULTS

We have applied our domain decomposition method to a two-dimensional, linear
elasticity problem. We consider a plane stress problem with a Poisson ratio v = 0.3
and an elasticity modulus £ = 2.1 - 10" N/m? which models steel. The domain Q
is a cantilever unit square fixed on the left hand side and free on the other three
edges except at the upper right corner, where we impose a point force that has
equal components in the positive z and y directions equal to 10°/N. We discretize
this problem by using bilinear finite elements with a meshsize h.

All computations were performed in MATLAB 5.0. As our Krylov space method,
we use the preconditioned conjugate residual method with a zero initial guess.
The stopping criterion is the relative reduction of the initial residual by 1075, i.e.
llz,ll2/|lxgll2 < 1076, where r,,,r, are the n—th and initial residual, respectively. In
our experiments, we have used a simplified implementation without the projector Pg
which 1s needed for the theoretical analysis. For a more detailed numerical study
including this projector, we refer to Klawonn and Widlund [KW99a].

We decompose our domain € into N x N square subdomains with H := 1/N. In
order to analyze the numerical scalability of the method, we have carried out two
different types of experiments for different combinations of precondltloners K and M.
In our first set of runs, we have kept the subdomain size H/h fixed and increased
the number of subdomains and thus the overall problem size. Our second series of
experiments is carried out with a fixed number of subdomains and an increasing
subdomain size H/h resulting in an increased 1/h.
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Table 1 H/h=8, (1) : K=K+ 1/H?Mg and M= M, () :

K =K +1/H*Mq and M using ILU(0), (111) : K 1LU(10™

and M = M, (IV) : “) of K +1/H*Mg and M using 1LU(0),

K using ILU(107

) of K +1/H?Mgq

MS : D= multiplicity scaling, 1 : D=Identity.
NEW METHOD | Tter (T) | Tter (IT) | Tter (ITI) | Tter (TV)
1/h 1/H MS I |MS 1 |MS I | MS I
16 2 11 19 11 19| 21 33| 21 34
32 4 17 27| 17 27| 29 60 | 31 61
64 8 21 33| 23 33| 37 T3] 39 76
96 12 21 39| 23 39| 44 77| 45 81
128 16 21 39| 25 41| 47 80 | 51 84

Table 2 H =1/4; (1) :
K = K +1/H*Mg and M using ILU(0), (1) : R ILU(10™

and M = M, (IV) :

K=K +1/H*Mg and M = M, (II) :

K using 1LU(107

) CE K +1/H” Mg
) of K4+ 1/H?*Mg and M using 1LU(0),
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MS : D= multiplicity scaling, 1 : D=Identity.
NEW METHOD | Tter (T) | Tter (IT) | Tter (TIT) | Tter (TV)
TR H/R |[MS T [MS 1 [MS 1 [ MS 1
16 4 15 25| 15 25| 27 61 27 59
32 8 17 27| 17 27| 31 60 32 62
64 16 19 29 21 29| 40 77 45 81
128 32 19 33 23 43| 98 194 | 116 194

In order to see how our method behaves in the best possible case, we first report
on results for K = K + HEQ and M = M, cf. Tables 1,2, Tter (I). To gain insight

into the convergence behavior in the case of inexact blocks K and M\, we have run
experiments with preconditioners based on incomplete Cholesky factorizations (ILU).
In the following, ILU(0) stands for incomplete Cholesky factorizations with no fill
in allowed and ILU(tol) represents a threshold ILU factorization with a threshold of
tol as provided in MATLAB 5.0, i.e. all entries in a column of the factor L. of the
Cholesky factorization are dropped if the magnitude of the entry is smaller than the
drop tolerance tol times the norm of that column. Three different combinations are
considered, cf. (II)-(IV) in Tables 1,2. In the experiments presented in the Tables
1,2, M using ILU(0) means that the Schur complement is computed inexactly using
ILU(0).

For all cases, we present results for M constructed using D = I as well as the
multiplicity scaling D = M S, cf. section 5. As in the original FETT algorithm, the
convergence is considerably faster for the case of multiplicity scaling. With this scaling
the asymptotic convergence rate is also reached earlier than for D = I.

For a more detailed numerical study, we refer to [KW99a].
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