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Block preconditioners for
nonsymmetric saddle point
problems

Piotr Krzyzanowski'

Introduction

We discuss a class of methods for preconditioning nonsymmetric, indefinite saddle point
problems arising from mixed finite element discretization of partial differential equations,
in particular, the linearized Navier—Stokes equation. The corresponding matrix has block

structure
A BT
B -C ’

where the matrix block A is positive definite, yet not necessarily symmetric, and C is
nonnegative. We present new mathematical results concerning block diagonal and block
triangular preconditioners based on symmetric, positive definite blocks. In both cases, the
convergence of iterative method is independent of the mesh parameter h. Our analysis is also
valid for inexact preconditioning blocks. Detailed proofs of theorems discussed here may be
found in [Krz97].

Block preconditioners for saddle point problems were discussed by many authors before,
see for example [D’y&7], [BP8&8], [BP90], [BP97], [RW92], [SW94], [EIm96b], [ES96], [ESWI7],
[FlIm96a], [Kla98b], [Kla98a], [KS97]. The approach we propose gives an application
programmer a great opportunity to reuse, in an efficient way, existing very powerful methods
(or software) like the domain decomposition or the multigrid method for symmetric positive
definite problems. We believe that in certain cases this may be a more robust approach
than to use custom domain decomposition preconditioners developed especially for the whole

1 Warsaw University, Institute of Applied Mathematics, Banacha 2, 02—-097 Warszawa,
Poland
Eleventh International Conference on Domain Decomposition Methods

FEditors Choi-Hong Lai, Petter E. Bjgrstad, Mark Cross and Olof B. Widlund ©1999 DDM.org



522 KRZYZANOWSKI

saddle point problem.

General assumptions

The generic constant “Const”, which appears later in this paper is independent of the
parameter h.

Let V,W be real Hilbert spaces with scalar products denoted by ((-,-)) and ("),
respectively. The norms in these spaces, induced by the inner products, will be denoted
by || - || and | - |. We consider a family of finite dimensional subspaces indexed by parameter
he(0,1), Vo CV,and W, CW.

Let us introduce three continuous bilinear forms: a : V. xV = R, b : V x W — R,
c: W x W — R, and assume that a(-, -) is V—elliptic, i.e.

do>0 YveV a(v, v) > al|v||? (1)
and that c(-, -) satisfies
>0 VpeW  cpp) >l (2)

(we allow v = 0). Notice that a(-,-) does not need to be symmetric. Throughout this paper
we also assume that V3, and W), satisfy the uniform LBB condition, see [GR&6],

b
IB>0 Vhe(0,1) VpeW,  Blp|< sup (v, p) (3)
vevi, oo V]|

In what follows we consider preconditioners for a family of finite dimensional problems (we
drop the subscript h for simplicity of notation)

Problem 1 Find (u,p) € V x W such that

w(5)=(s %) (0)=(8): (1

"The operators in (4) are:

A:V =V, ((Au,v))=a(u,v) VYu,v eV,
B:V W, (Bu,p)=blu,p) YueV,peW,
C:W =W, (Cpq)=clp,q) Vp,aeW,

while the right hand side ¥ € V,G € W is defined through ((#,v)) = ({f,v)) and
(G, w) = (g, w), where f, g are given continuous functionals on V, W, and {{-,-)), {-,-) denote
the duality pairing in V, W, respectively. B* denotes the formal adjoint operator to B, i.e.
(Bu,p) = ((u,B*p)) forallueV,pe W.

We introduce two more operators, Ao : V — V and Jo : W — W. We assume that they are
self-adjoint, their inverses are easy to apply, and there exist positive constants ag, ay, b, b1,
which are independent of A, such that

ao((u,w)) < (Aow,w) < ar((wu)  VYu eV, (5)

bo(p,p) < (Jop,p) < bi(p,p)  VpeW. (6)
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The product space V' x W is equipped with a natural scalar product (-, -},

<< ; >< . >>=((u7v))+(p,q),

however, we are going to analyse the preconditioned problem using custom inner product
[,+], which depends on the preconditioner being used:

) COl=(Cs 2) G-

Lemma 1 Under the above assumptions,

Allvav, IBllvaw, [ICllwow,

A lvav, IBYlwav,  [ICT]lwow,

Aollvav, [Jollwaw, A llvav, (145 [lwaw,
[IM||vsxwovsw, |[[M*||lvswovxw < Const.

Preconditioners leading to symmetric, positive definite problems

In this section we are going to extend the results obtained previously for symmetric saddle
point problems e.g. in [D’y87] and [BP90]. This approach is of normal equations type, which
influences the convergence speed of the method; though, it has certain integesting advantages,
too. The transformed system allows for using the conjugate gradients (PCG) method, which
is less memory consuming than, e.g. GMRES; the transformed system is well conditioned, so
the number of iterations required to damp the error by a given factor is independent of h.
Moreover, no scaling is needed for Ag, in contrast to results for preconditioner for the GMRES
in the next section and the analysis remains valid for A only V°-elliptic, see Remark 2.

Block diagonal preconditioner

Using a block diagonal preconditioner

Ag O
MD B < 0 JO > 7
we transform system (4) into the following one:

Problem 2 Find (u,p) € V x W such that
-1 * —1 u —1 * —1 F
I\ID]\41\1D1\/[<p>=]\4DA41\/[D <G>

Clearly, the operator P = 1\451M*1\451A/[ is selfadjoint with respect to the inner product
[-,-]- The following theorem guarantees P is well conditioned with respect to h:

Theorem 1 There exist constants 0 < mo < m1, independent of h, such that

|GGl GGl (GG o
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Proof. Observe that

[P< Z > ’ ( Z )] = (A5 (Au+ B’p), Au+ B"p)) + (J; ' (Bu — Cp), Bu—Cp).  (8)

Defining f = Au+ B*p and § = Bu — Cp, we obviously have that (u, p) satisfies

i

Au+B*'p = f
Bu—-Cp = g,

so from (5), (6) and the stability result for Problem 1, see [GR86], we obtain

[P< : )( b )] > Const (|[ul” + [p[") -

This yields the lower bound. The upper bound follows from (8) and Lemma 1. QED

Remark 1 From practical point of view it is important to observe that when using the PCG
method for solving Problem 2, one has to solve only one system with My per inner product

[Pz,y].

Block triangular preconditioner

It is also possible to construct a symmetric preconditioner for the operator M, based on a

[ A 0
]V[’r—(B .]0>'

We transform system (4) into equivalent one,

u o u — F
P< » ) = M* I3 K; 1LOM< » ) =M*Li K5 Lo ( p ) ,
wp—1, _ [ I AJ'B* At 0 I 0
Loly Lo = < 0o -1 0o J! BATY -1 |-

Observe that K 'Lo is nothing else but 1\4771 and that P is symmetric with respect to the
scalar product (-, -).

block lower triangular matrix

where

Theorem 2 There exist constants 0 < co < ¢1 independent of parameter h, such that

() GG GN==(G) ()

In contrast to the diagonal preconditioner, the triangular symmetrized preconditioner
requires three applications of Ay ! per inner product.

Remark 2 From theoretical point of view it is worth noticing that Theorems 1 and 2 hold if
(1) is replaced by a weaker condition,

a(u, u) > oz||u||2 Yv € ker B.
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Preconditioner for the GMRES method

It is well known that after symmetrizing the system, its condition number increases. This
fact is also indicated by numerical experiments below. Instead, we may use efficiently
preconditioned GMRES method for our problem. If the preconditioner works so good
that we obtain satisfactory approximation after few iterations, then the GMRES memory
consumption is less painful, and we can benefit from its better convergence properties.

Let us consider block triangular preconditioner,

(A 0
My = < B —Jo ) s
which was previously discussed e.g. in [ES96], [ESW97] and [Kla98a], [KS97].

Theorem 3 If Ay is scaled so that the symmetric part? Asymm of A together with A*Ao_lA
satisfy

(«Awmm——%AU%JAMJQ)25~“AMAM) Yuev, ©)

for some positive constant § independent of h, then the convergence rate of the GMRES for
z\lT_lz’\l 18 independent of h.

Proof.
Observe that

(1) ()

with |||U|||i_1 = ((A7'v, v)). Obviously, |||B*p|||i‘51 > Const(Jop, p), by (5), (6) and the

LBB condition (3), see [BP8&8].
Therefore, if only Ap satisfies (9) with 6 independent of h, then we can conclude that

o () Gl e () 6]

On the other hand, from Lemma 1 we have
D D

MM (), Mt m [
prrtar (5 )

In view of the last two inequalities, the theorem follows from [EES83]. QFED

1w, NS T
> (Asymm = 3AAT A, ) + 21| B7I

—1,
)

Remark 3 lLet us notice that the scaling requirement is similar to that of Bramble and
Pasciak [BP88] for the triangular preconditioner in the symmeiric case.

A good scaling factor for AO_1 may be oblained, by finding certain extreme eigenvalues of
two generalized eigenproblems. Also observe that for A = A* = Ay (“exact” precondilioning
block), (9) holds with § = 1/2 without any scaling.

2 By definition, Asymm = _A+2A* :
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Numerical experiments

Our test problem was to solve the homogeneous Dirichlet boundary value problem for the
Oseen equations in Q@ = (=1,1) x (=1,1)

—Au+ (k- V)u+ Vp f,
divu = 0,

discretized with Q.—@Q: Taylor—Hood rectangular finite elements. The mesh was uniform in
both directions, with nz inner pressure nodes along the z-axis and also y-axis. The function
k(-,-) was defined as a simple vortex,

For f, we took a random vector with elements uniformly distributed between
(=1,1). All algorithms were implemented using Krylov iterative solvers and additive
Schwarz preconditioners from the PETSc library [SGM97]. We examined three different
solver/preconditioner configurations: GMRES(30) method with block diagonal preconditioner
(GMRES/diag); GMRES(30) method with block triangular preconditioner (GMRES/triang);
the symmetrized conjugate gradient method with block diagonal preconditioner (CG/symm).
The stopping criterion was to reduce the initial residual by a factor of 10°.

We report on two choices of preconditioning blocks. The first was to test the “best” (yet
still symmetric, positive definite) preconditioners, i.e. Aq = Laplacian, Jy = mass matrix.
The second choice was to use inexact preconditioners for Ag, Jo, namely the additive Schwarz
method (with no coarse space), with standard black-box decomposition into 6 rectangular
subdomains with small and fixed overlap (2 nodes) provided by PETSc. The results are
presented in Figure 1 and Table 1.

The experiments confirm theoretical results, showing that the number of iterations reflects
the quality of the preconditioning blocks being used. When using the symmetric part
of relevant operators as the preconditioning blocks, the number of iterations is virtually
independent of the mesh size.

Table 1 Flops count relative to GMRES /triang for different
solver/preconditioner strategies. Iteration count in brackets.

nz DOF || GMRES/diag GMRES/triang CG/symm
“best” 20 4182 1.51 (39) 1.00 (21) 2.14 (46)
ASM 20 4182 1.18 (128) 1.00 (76) 1.62 (127)

For additive Schwarz preconditioning blocks, according to [SBG96], the number of
iterations with fixed small overlap and no coarse grid, should increase as the square root of nz,
and this is approximately what we actually see. Theorems 1 and 3 ensure that the convergence
rate is fully independent of nz, if two-level additive Schwarz method was used. The superiority
of GMRES/triang was not so apparent when additive Schwarz method preconditioners were
used: the number of iterations required by symmetrized CG was competitive to that of

GMRES/triang.
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L ol ~— GMRES/diag
st T ] oo GMRES/triang
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Figure 1 The growth of iterations as a function of problem size for different
solvers and preconditioning strategies. Left: A; = Laplacian, Jo = Mass matrix.

Right: additive Schwarz preconditioners (small overlap, no coarse grid).
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