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Sparse Grid Spectral Methods and
some Results from Approximation
Theory

F. G. KUPKA"?

INTRODUCTION

The sparse grid approach for the solution of partial differential equations (PDEs)
was recently extended to spectral and pseudospectral methods. Here, we summarize
how results from the approximation theory for Sobolev spaces of functions with
bounded mixed derivative can be used to derive asymptotic error estimates for the
approximation and interpolation error of functions when either the basis functions
are from a step hyperbolic cross or when the interpolation is done on a sparse grid.
For the special case of periodic boundary conditions we discuss how the classical
convergence analysis for Galerkin and pseudospectral methods can be used for sparse
grid spectral methods. Applying the new methods to simple equations has allowed a
comparison with exact solutions. Some results of this comparison are summarized as
well as possible applications and extensions to other variants of sparse grid methods.

Zenger [Zen91] has suggested a sparse grid finite element method with an
approximation order of O(h?|logh|) for a finite element subspace of size dim Xy =
O(Nlog N) in comparison to O(h?) obtained with a subspace of size dim Xy =
O(N?) by a traditional full grid finite element method. His result requires that the
mixed derivative 0%u(z,y)/02%0y* of the solution u be bounded. The approach was
extended to higher order finite element methods and more general domains. Later,
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the sparse grid concept was also applied to finite difference methods (cf. Griebel and
Schiekofer [GS98]).

The basic idea behind sparse grid techniques for PDEs has been applied in other
branches of mathematics: while classes of functions with bounded mixed derivatives
were studied for the definition of good lattice points for number theoretical cubature
formulas (see Temlyakov [Tem93] for a review), hyperbolic cross points have played a
role in the development of Boolean algebraic methods for interpolation on rectangular
domains in two dimensions (cf. the review of Delvos and Schempp [DS89]). Beginning
with Babenko [Bab60] and Smolyak [Smo63], approximation theory has seen particular
efforts in the description of both approximation and interpolation of (mostly) periodic
functions with bounded mixed derivatives. Many results and original references can
be found in Temlyakov [Tem89] and [Tem93].

Thus, approximation theory provides a solid basis for the development of sparse
grid spectral methods. Interpolation of — particularly bivariate — periodic functions
and interpolation by Gaufi-Chebyshev methods on sparse grids were studied for
various Banach type Sobolev spaces with dominating mixed derivatives by Poplau
and Sprengel in [P6p95], [PS97], [Spr97a], and [Spr97b]. Their results can be used
for the numerical analysis of pseudospectral (collocation) methods. In turn, periodic
approximation and interpolation on the hyperbolic cross and on sparse grids for some
Hilbert type Sobolev spaces were investigated independently by Kupka [Kup97] who
used the results for the convergence analysis of spectral and pseudospectral methods
for the Helmholtz, linear advection, and heat equation. These equations are also used
for numerical tests of the current new method. In what follows, we review some of the
results.

APPROXIMATION AND INTERPOLATION ON SOBOLEV
SPACES WITH DOMINANT MIXED DERIVATIVE

To motivate the results for Sobolev spaces with dominant mixed derivative, we
recall that the standard Sobolev spaces of Lebesgue integrable, 2r—periodic functions
v € L1(Q) on the torus T = Q are defined by

HyY(Q)={ve Q)| Dve ¥ (Q)Va:0<|of <1}, (1)

where D%v = 0l%ly/(9z§" - - 9z5%) with 0 < |a| < m, m is a non-negative integer,
and | := 2?21 a; for @ = (a1, ..., aq), is taken in the sense of periodic distributions
(indicated by a subscript p). Moreover, H;»4(€) is equipped with the norm

1/q

lellrg = ol = [ 32 10000y | - 2)

laf<r
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For the ¢ = 2 case, one can alternatively define a norm for functions v € L?(Q) by
(Z4 denotes the Cartesian product of the field of integers Z)

1/2
lellle = oY= D (1+ K)ol 3)
ke Z*
The space H’(Q) consists of all v € L?(Q) with finite norm ||| - |||,
(@) = {v e L@ | lllwlll- < +oc} - (4)

Both spaces H;(Q) and H;(Q) = H;72(Q) and their norms are equivalent.
One way to define Sobolev spaces with dominant mixed derivative on the torus T
is (we note that permutations P.q and general derivatives D* are useful in proofs):

rd
Definition 1 Let P,q be the set of all permutations of D%u(x) = %L;, r >0

be a natural number, 1 < q < oo, and d be the algebraic dimension of T®. More-
over, let a = Zjﬂ a; and a; = r. The periodic Sobolev spaces with dominant mived

derivative on T? can be defined as
Sy = Syt = {u| Du e LT} (5)

equipped with the norm (x € T?)

1/q

lu(x)[lr,a,q = | [lu(x IIq+ZIIau IIq+ZII ||q : (6)

For ¢ = 2, the definition of an inner product is as straightforward as for H7 ().

Likewise, the S;;g are Banach (or even Hilbert) spaces. The new spaces can also be

established for the case ¢ = co. It can be shown that S;:Z and H;(Td) satisfy the

embedding relations H”d(Td) — SS’Z — H’(Td) for all » > 0 and for all d > 1. More-

over, HT‘H(Td) — HT(Td) and STH 4y 5217’ whence in particular S;’; — L2(TY).
m m,d

e e e v 7o P (L) the spaces SE57may e definet

Definition 2 Let m be a non-negative integer and let d be as in Definition 1. The pe-
riodic Hilbert spaces S™® with dominant mized derivative on the torus T are defined
as

gmit = §m(T?) = {we LT ||[[ulllma < +o0} (7)
Here, we use the following norm for Smad .
1/2

el lm,a = (2m)¥ [ 1+Zk?’”+21‘[k2m i*| . (8)

keZ* Pra j=1
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The spaces 52 » and Smd can be identified with each other, i.e., they are equivalent for
all m > 0 and d > 1 and their norms coincide. Proofs can be found in Kupka [Kup97]
together with some references for the preceeding relations.

The standard projection operator for functions v € Hj (Td) is given by P]{,v =

Zkle det®* = Zkelf —;(v,eikx)eikx, where J§, = {=N +1 < k; < N} for
allk = (ky,...,kq) and N € N (NN denotes the set of natural numbers). The e’k*
span a subspace SJ{, C H;(Td). To recover v € H;(Td) on a finite set of points
x € Q, the full grid G{V = 1{x} = {(zj,,...,%;,)} with z;, = &jm, N € N, and
Jm € HL = {0 < jm <2N —1}for m=1,...,d, is frequently used together with the
interpolation operator [J{,v =Inv)® - ® INd( v). Here, Ny = Ny for all 2 < k < d.
Iy; is the interpolation operator for one dimension. Thus, for a continuous v on Td
[1{,1)()() _ ZkeJ}; e with o = ZjeH{\,(QN) dy(x;)e~ ™ and ZJer ranges
over all x = x; € G{V. Taking C' > 0 to be some real valued constant,® we have the

well-known error estimate for PJ{,:

Theorem 1 Let 0 <! <m withl,me N. If N >0, |Ju— Pj{,’l)”lﬂ < CNl_mHvag
and thus ||v — PJ{,vHLz < CN~™||v ||Hm (@) for all v € H;”(Q_).

For the interpolation operator IJ{, there is an equivalent estimate:

Theorem 2 Let 0 <1 < m withl meE N and m > d/2. If N >0, ||v— IJ{,UHM <
C’Nl_m||v||m72 and thus ||v — v||Lz )y SCN|v ||Hm (@) forallv e Hm(Q)

For the spaces Sm’d, hyperbolic cross and sparse grids allow much more efficient
approximation and interpolation operators. Let us define the (even) hyperbolic cross

of order N € N as Ji = {(H}i:l max(1, |k;|) < N) A (k; > —N)} where k € Z°.
For convenience, throughout this paragraph we take j and p to be integers rang-
ing from 1 to d. We define the (even) step hyperbolic cross of size n € N as
J={k e Z | (-2 "4+ 1 <k <27V ong > 0) A (k; = 0if ny; = 0)},
where Z?zl n; < nfor 0 < n; < n. Assuming N = 2™~! we construct a set
Jh={kez' | (=21 +1 <k; <27 )V my >0) A (kj =0if m; =0)}.
The ¢™* with k € J£ and m € N¢ span a subspace S{,, C Smd We can use the sets
J1, to define projections on the even step hyperbolic cross, J: = U”m”1<n JE, and
[|lm|; = Zj 1 Im;|. Hence, the ¢’** with k € J3 span the subspace S5 C Smd and for
each u(x) € S; we have u(x) Zke]s ™ and dy = (27r)_d(u,eikx). In the same
manner we can define the projection operator Pf with coefficients k from J2% . For the
construction of the sparse grid interpolation operator one proceeds as follows. First,
the sets Hf, = {j € N3 |0 < j, < 2™ — 1} are defined which index the grid points
of the anisotropic full grids Gf, = Gy, x -+ X G, = {x}, where x = (z,,...,2;,)

3 We are not interested here in the numerical value of (', nor is it the same for the
various inequalities discussed here. For the case of d = 2 and for similar interpolation
operators, numerical values can be found in the work of Péplau and Sprengel cited
above.
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with z;, = 7j, /Ny and N, = 2me=1 for j = (j1,...,j4) € HL,. The construction of an
interpolation operator If u := I, (u) @ -+ @ Im, (u) for all sufficiently well-behaved
u € S™4 is straightforward. We call G, := U”m”1<n Gl = {x} = {(zj,,...,z;,)}
with z;, = smp=rjp where j € H} := Ul mlj: <n Hi and 0 < j, < 2™ — 1 a Fourier
sparse grid of order n. Naturally, n € Ng. Finally, the interpolation operator I on G,
is defined as If = ZIIthSn A where Ay, = Ay, @ @Ay, and A, = ij—fmj_l.
Here, I,n = Iigm-1) for m € N and I_1: f 0 for all f defined on G. The sym-
bol |7] means rounding to the nearest integer less than r (relevant for m = 0 here).
The operator I|am-1] is again the interpolation operator in one dimension. Sparse
grid type interpolation operators have been discussed, e.g., in Smolyak [Smo63], Hal-
latschek [Hal92], and Temlyakov [Tem93]. For P{, we can derive the following error
estimate:

Theorem 3 Let u € S™% and let 0 <!l<mwthl,mée N andd > 1. If N > 0,
| Phu — ulla2 < C'Nl_m||u||m7d72 and in particular [|[Piu — u||z < CN=" |||, 4,2-

For the interpolation on G}, by means of I the result is only slightly worse:

Theorem 4 Let u € S™% and N > 0. Moreover, let m > 1 and 0 < I < m with
Ibme N.Ifd>2, then ||Iu— uljiao < CN'"=™(1d N)¥=||u||m a2 and in particular
1w —ulls < CN=™(1d N)=1|u||m,a,2-

Note that the dual logarithm 1d is not present in Theorem 3. However, as the to-
tal number of coefficients in J% grows like N (log N)?=! both types of approximation
finally contain a logarithmic factor which depends on the spatial dimension d. Proofs
and further details are given in Kupka [Kup97].

SPARSE GRID SPECTRAL METHODS

Fourier Galerkin spectral methods for the PDE Lu = f, where f €Y C LQ(Td), Lisa
(linear or non-linear) differential operator, and u is the solution of the problem, can be
defined in the variational form: (Lu®™ — f,v) = 0 for all v € Sy. Here, u¥ € Sy C X
is the numerical approximation to u and X is some Sobolev space such that u € X
(cf. Canuto et al. [CHQZ88]). The resulting equations yield a finite number of Fourier
coefficients @n which define the (numerical) approximation to u in the subspace Sy .
In Fourier collocation (pseudospectral) methods both L and the inner product (e, v)
are approximated via the interpolation of u and f on a grid GGy . Derivatives of u
(contained in L) are approximated by derivatives of interpolation polynomials. A
sparse grid spectral method is obtained by replacing the operators PJ{, and [J{, used for
the traditional (full grid) spectral methods by their counterparts Pl (resp. P;) and I3.
As a consequence, in sparse grid Fourier Galerkin methods, the coefficients for Fourier
approximations are taken from the (even) hyperbolic (resp. step) hyperbolic cross
and, likewise, functions in sparse grid Fourier collocation methods are interpolated by
Fourier polynomials defined through a sparse grid GZ,. Differential operators and inner
products can then be approximated accordingly.
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Using the error estimates of Theorems 3 and 4 together with the standard approach
for obtaining convergence estimates for spectral methods (cf. Canuto et al.[CHQZ88]),
one can apply such technique to sparse grid spectral methods. Examples include the
stationary Helmholtz equation, a problem Lu = f with a coercive operator L, the
transient Helmholtz and the heat equation, as well as the linear advection equation
(see Kupka [Kup97]). Basically, each term which does not involve the operator I
requires the replacement of ||w||,, 2 with [|w]|n, 2,2, whereas otherwise a logarithmic
factor IdN?~! has to be inserted (here, N is the maximum number of grid points
per coordinate direction and w must belong to some appropriate smoothness class).
As an example, for the Helmholtz equation —Au + Au = f with A > 0 on T?, the
error estimate for Fourier collocation on a full grid is [|u — UiVHLQ < CN! (||| 2 +
[|fllm=1,2) in comparison with ||u — uiv||172 < C'Nl_m(||u||m7272 + (dN)|| fllm=1,2,2)
for Fourier collocation on a sparse grid (f and thus u are assumed to be sufficiently
smooth). Note that — as usual — dim Sy = O(N log N) for the sparse grid case, but
O(N?) for the full grid. In accordance with intuition, a von Neumann analysis of fully
discrete approximations to the heat and advection equation reveals that restrictions
on the time step are dominated by the most anisotropic grids “contained” in a sparse
grid. This can reduce the overall efficiency of sparse grid spectral methods for some
explicit solvers for time dependent problems (Kupka [Kup97]).

An efficient implementation of sparse grid spectral methods requires adequate data
structures. In Fortran90 such a structure can be realized as a user defined data type
containing a pointer to a one-dimensional array of another user defined data type
which in turn has a pointer to an array of real values (floating point numbers) as
its only component. This structure may be iterated for the case d > 2. Tests have
shown that usual manipulations such as copying of variables, addition, and of course
Fourier transformation, are slower by a factor of 3 to 5 for such a sparse grid structure
with several 100 to a few 1000 points in comparison to standard arrays of rank d
of the same total number of points. Although more elegant, a recursive sparse grid
data structure is likely to suffer from a much lower computational efficiency due to
an enhanced internal overhead. The (discrete) Fourier transformation can be done
by the algorithm of Hallatschek [Hal92] which consists of a one dimensional (fast)
Fourier transformation followed by a transformation into a hierarchical basis. The
algorithm is performed sequentially for each spatial dimension. A final sequence of
re-transformations is necessary to obtain Fourier coefficients in the standard basis
{e’**}. The algorithm can be run backwards to obtain function values at grid points
(see Kupka [Kup97] for a discussion, also for an implementation of a fast Fourier
transformation on sparse grids for the case d = 2).

SOME NUMERICAL EXPERIMENTS AND CONCLUSIONS

Numerical experiments presented by Kupka [Kup97] have exhibited the following
properties of Fourier sparse grid spectral methods. First, for insufficient or low
resolution, sparse grid Fourier collocation is subject to aliasing errors and spurious
solutions in the same way as a full grid method. On the other hand, spectral
convergence can easily be verified for infinitely smooth solutions, just as the finite
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Table 1 The relative error in various L” norms — approximated on a dense

full grid (I, norms) — for full grid approximations ul (on Glfv7 top) and sparse
grid ones (on G;,, bottom) to the solution u of a Helmholtz problem described

in the text. The quadratic convergence as a function of N is evident. However,
considering the total number of grid points the convergence is only linear for the

full grid method, but still nearly quadratic in the sparse grid case.

N grid points ll(uéV —u) b(u?f —u) loo(uiv —u)
8 256 3.69902e-3  5.79361e-3  2.67764e-2
16 1024 9.21957e-4  1.42771e-3  7.09712e-3
32 4096 2.30752e-4  3.57583e-4  1.82264e-3

64 16384 5.78924e-5 8.98336e-5 4.61524e-4

n grid points | [ (ul —u) Ll —u) ol —u)
6 256 3.47985¢-3  3.86827e-3  7.96669e-3
7 576 8.69380e-4  9.62935e-4  2.03200e-3
8 1280 2.17657e-4  2.41199e-4  5.13192e-4
9 2816 5.44621e-5  6.03750e-5  1.28952¢-4

convergence order for solutions with a finite number of partial derivatives in all spatial
directions. However, whereas a sparse grid method for a numerical solver with a
fixed approximation order (finite differences, etc.) is more efficient than its full grid
counterpart as long as the solution is sufficiently smooth, sparse grid spectral methods
are more useful, if the solution has particular smoothness properties: consider the
polynomial g(z) = 7*/90—7n?22 /124723 /12—2* /48 on [0, 27]. Tt is easily verified that
9(z) € HJ(T), but g(z) ¢ H,(T). Taking f(z,y) = —g" (2)g(y)—g(z)g" (y) +Xg(2)g(y)
it can immediately be seen that u(z, y) = g(2)g(y) is the solution of —Au+Au = f on
T?. Also, u € HS(T2) and u € %2, but u ¢ H;(Tz). The resulting higher efficiency
of sparse grid Fourier collocation in comparison with Fourier collocation on full grids
is illustrated in Table 1.

With sparse grid Fourier collocation for the heat equation even non-smooth initial
conditions can be handled reasonably well. The same does not hold true for the linear
advection equation: the initial condition u(t = 0,2,y) = ug(z,y) with ug = 11in a
rectangular subdomain of T? and uy = 0 elsewhere, causes the sparse grid method
to fail while the full grid one only suffers from oscillations. Filtering, smoothing, or
adaptivity thus may help to make sparse grid spectral methods more efficient building
blocks for a domain decomposition solver than their full grid counterparts (which
is expected from their “universality”, i.e. when functions from different smoothness
classes are approximated, cf. Temlyakov [Tem93]). Although due the more expensive
programming model the sparse grid spectral methods have a break-even point which
is lower for memory than for speed, neither is prohibitive even for moderate accuracy
requirements.

The work of Poplau and Sprengel mentioned in the introduction makes a similar
study of Chebychev (and other) spectral methods both possible and worthwhile.
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Likewise, the analysis of other sparse grid methods can benefit from the approximation
theoretical results developed for sparse grid spectral methods. Whether turbulence
simulations in fluid mechanics also benefit from the hierarchical bases inherent to
sparse grid methods (priv. communication with M. Griebel during DD11, cf. the sparse

grid FFT discussed above) is a question that requires a more careful study.
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