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Ordering techniques for convection
dominated problems on
unstructured three-dimensional
grids

S. LE BORNE!

INTRODUCTION

For convection dominated problems in two spatial dimensions, multigrid methods using a
simple Gauf}-Seidel method as a smoother can lead to excellent results if the unknowns are
ordered appropriately. However, the difficulties with constructing robust multigrid solvers in
three dimensions are much greater: Many ordering strategies that have been proposed for
two-dimensional problems make explicit use of the planarity of the underlying graphs and
are not directly applicable to three-dimensional problems.

In this paper we introduce the concept of interior surfaces in tetrahedral grids which we
use to construct an ordering for the unknowns. The proposed ordering algorithm produces a
decomposition of the unknowns into disjoint blocks so that block iterative methods may be
applied.

We study problems where the matrix A arises from the finite element discretisation of the
convection-diffusion equation

—Au+(b-Viu = f inQCR™ (1)

Here n denotes the dimension (2 or 3) and suitable boundary conditions are assumed. Let T
be the underlying triangulation of the domain 2. We mention that in the numerical solution of
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systems of equations, such as the Navier-Stokes equations, solving a set of scalar convection-
diffusion equations can be required as a subproblem (see e.g., [BWY90], [BS97] or [HGMM?98]
for smoothers for the Stokes problem that are based on a block ILLU decomposition and hence
depend on the ordering of the unknowns).

Here we will use the graph of a matrix to develop and illustrate ordering techniques and
thus recall the definition of the graph of a matrix: The matrix graph G = G(A) consists of the
vertex set V = V(@) and the edges E = E(G) = {(i,j) € V x V : a;; # 0}. For continuous
piecewise linear basis functions with the standard nodal basis, the vertices and edges of the
triangulation correspond, respectively, to the vertices and edges of the matrix graph.

Typically, the size |a;;| of the matrix entries varies considerably over the grid due to
the convective term. For the proposed ordering strategies we neglect the small matrix
entries and define the graph of dominant entries as the graph with the reduced edge set
Eo ={(1,j) € E : |aij| ‘s large’}. Typically, at most one of the entries |a;;| and |a;;| is large,
thus making the reduced graph a directed graph. Henceforth, all graphs are assumed to be
directed graphs. There are several reasonable classifications for an entry to be large, one of
which defines |ai;| as ‘large’ if |aij| > & |aii| with a parameter x € (0, 1).

The task is to find a permutation P such that PAPT is easier to solve. The ideal case would
have PAPT an upper (or lower) triangular matrix for which a simple backward (or forward)
substitution process can be employed. With respect to the matrix graph, this situation
corresponds to an acyclic graph.

However, many applications involve cyclic flows that may result in cyclic graphs, cf.
[GDNO5]. In this case, several approaches have been suggested for two-dimensional problems
where the graph is planar. These ordering algorithms provide a numbering strategy that
produces a block structure which can be used for block iterative methods. Numerical results
for the two-dimensional convection-diffusion equation as well as for the Stokes equations
with a convective term have been provided in [GP97], [HGMMO98] and [HP97]. Additionally,
ordering techniques to improve multigrid convergence have also been developed and applied
by other authors, e.g., in [RR96], [Tur97].

In three spatial dimensions we also have a structure consisting of vertices and edges
but additionally, we can involve the faces of the tetrahedra. A collection of neighbouring
faces describes an interior surface in the tetrahedron. In turn, an ordering of these surfaces
in addition to an ordering within each surface defines an ordering for the vertices in the
tetrahedral grid.

Following, we provide the details needed to accomplish the task of constructing interior
surfaces. In section 58 we briefly review (prerequisites for) ordering strategies that have been
proposed for planar graphs and point out the difficulties in generalising the concepts to graphs
that are not planar. Section 58 deals with ordering concepts for the three-dimensional case.

THE TWO-DIMENSIONAL CASE

In preparation for the three-dimensional case we now review some of the ideas that have
been previously considered for two dimensions. The motivation will not change: find a
permutation P such that PAPT has a structure that is better suited for applying linear
equation algorithms.

Given a planar graph G(V, E), the edges associated with a vertex can be ordered
periodically with respect to their defining angles. A useful property of graphs that arise from
the discretisation of the convection-diffusion equation is the one-flow-direction condition: for
all vertices p € V there is a (unique) sequence {e1,---,em} of outward edges and a sequence
{€m+1,"+,exr} of inward edges enumerated in the counter-clockwise direction.
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For the two-dimensional case, several ordering techniques such as ordering with concentric
cycles, feedback vertex set ordering or parallel ordering have been developed for planar graphs
that fulfil the one-flow-direction condition.

For further details on these ordering algorithms as well as numerical results for the
convection-diffusion equation and the Stokes equations with a convective term, the interested
reader is referred to [GP97], [Hac97], [HGMM98], [HP97].

However, for the three-dimensional case it unfortunately remains unclear how to order
the edges adjacent to a vertex or how to characterise minimal or concentric cycles. For this
reason the concepts that apply to orderings for two-dimensional graphs cannot be generalised
to three-dimensional graphs in a straightforward way.

In the following section new concepts are proposed for the three-dimensional case. The goal
is to identify subgraphs that possess properties of planar graphs so that ordering strategies
for planar graphs can be applied.

THE THREE-DIMENSIONAL CASE

In the three-dimensional case, looking for graph cycles may not be the best concept: As seen in
section 58, minimal and concentric cycles produce favourable orderings. In three dimensions,
it is not clear how to characterise cycles as minimal or concentric. Alternatively, we propose
to decompose the graph into a set of disjoint planar subgraphs that might contain cycles,
and then apply ordering techniques for planar graphs on each subgraph separately.

In order to determine suitable subgraphs, we must first introduce the concept of interior
surfaces. For example, if the underlying triangulation consists of tetrahedra, an interior
surface can be described through a combination of neighbouring faces (of the tetrahedra). If
such a surface is constructed carefully its vertices and edges define a planar graph in which we
can apply the ordering algorithms of section 58. The cylinder depicted in Figure 1 illustrates
this concept. Interior to the cylinder we have detailed the cyclic flow, however, the tetrahedral
triangularisation has been left out. Slicing through the cylinder in a horizontal direction (i.e.
parallel to the top and bottom but orthogonal to the cylindrical walls,) produces circular
surfaces in which the flow can be seen to be concentric cycles. On these surfaces, the ordering
algorithms for planar graphs are applicable.

Figure 1 Cyclic flow in a cylinder

Before an algorithm can be developed that will construct such interior surfaces we first
must establish terminology for the description of edges, faces and surfaces.
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Surfaces and surface graphs

In the three-dimensional case we are dealing with tetrahedral grids, T(V, E, F'), consisting
of a set of vertices, V(7), and a set of edges, E(7) and, additionally, we have a set of faces,
F(T). We call two faces neighboursif they have a common edge (note that a common vertex
is not sufficient).

Definition 1 A subsetS of T is called a surface if it possesses the following three properties:

(i) The degree of every edge in S, i.e., the number of faces in S sharing this edge,
15 at most two.

(ii) S is connected, i.e., for any f,g € F(S) there is a path f = fo, f1,-+, frx =g
of faces fi € F(S) where fi and fiy1 are neighbours for alli=1,--- k- 1.

(iii) For any f,g € F(S) with a common vertex p there is a path f = fo, -+, fr =g
of faces fi € F(S) each having p as a vertex where f; and fit1 are neighbours
foralli=1,--. k—1.

Figure 2 shows an example for a surface and three examples that violate one or more of
the required properties.

R

surface ( (i) violated ) ( (ii) violated ) ( (iii) violated )

Figure 2 A surface and three violated situations

The surface graph G(S) = (V(S), E(S)) is the graph consisting of vertices and edges on
the surface. In the following we only consider orientable surfaces.

As in the two-dimensional case, for all vertices v € V(8) of an orientable surface S, we can
order the edges adjacent to v counter-clockwise with respect to the orientation. We note that
this would not be the case without property (i) above. Hence, we can determine whether a
one-flow-direction condition holds for the vertices of the surface graph G(S) which establishes
an important prerequisite for applying the ordering techniques for planar graphs.

Flow surface

As illustrated in the introductory example in Figure 1, the goal is to construct surfaces that lie
parallel to the flow while retaining the information about the flow, in particular concerning
cyclic dependencies, is contained in the surface. To obtain such surfaces one begins with
an arbitrary face and then iteratively attaches faces in the flow direction across the edges.
In order to formalise this procedure we will define a function ¢ : F(7) x ﬁ/‘(T) = F(T)
(E(T) C E(T)) that assign a face to a given face f across one of its edges e in the following
way:

We assume that the convection direction b of the partial differential equation (1) is
available. For an edge e with endpoints v,w € V(T), let m = L(v+ w) denote the edge



ORDERING TECHNIQUES 533

midpoint. Define E(T) to be the set of edges with degree greater than one that have a
convection direction b(m) with ||b(m)]l2 > o > 0 in the edge midpoint for a parameter
o > 0. Let El(T) - E(T) be the subset of edges for which the convection in the edge
midpoint is not parallel to the edge itself, and let EQ(T) = E(T) \ El(T). Then functions
efy eb s BEi(T) = F(T) (the index ‘f” refers to forward, ‘b’ to backward) can be defined as
follows: Let v € (0,7/2) be a given angle. For an edge e € Er (T), let ps(e) be the face
adjacent to e that has the smallest angle to the plane spanned by the convection direction
in the edge midpoint and the edge e, provided that the angle between b(m) and this face is
smaller than . Analogously, we define py(€) as the face adjacent to e that has the smallest
angle to the plane spanned by the negative convection direction in the edge midpoint and the
edge e, again provided that the angle between —b(m) and this face is smaller than .

Note that in these definitions the orientation of the convection direction is of importance
when making the decision whether an angle is o or # — . For example, in Figure 3, the angle
between b(rn) and the face f is 0, whereas the angle between b(m) and the face g is . Hence
we have pf(e) = f and pi(e) = g. The angle v was introduced to ensure that the face p(e)
(¢n(€)) is nearly parallel (up to an error smaller than v) to the flow (negative flow).

b(m) &

fn L >g

convection in edge midpoint parallel to face f

Figure 3 Illustration for the mappings ¢ and gs.

For an edge e € EQ(T) of a face f, the convection direction is by definition of EQ(T) nearly
parallel to the edge so that we cannot define faces in the flow direction as above. Instead, we
define ¢, : F(T) x E, (T) = F(T) (index ‘p’ refers to parallel) where ¢, (f,€) is defined to
be the face with edge e that is closest to being parallel to f, i.e., that has an angle to f as
close to m as possible, provided that the angle between this face and f is at least m — . Using
the example given in figure 3, only changing the convection direction b(m) to be parallel to
e so that e € FEy(T), we have ¢,(g,¢) = f.

We define the sets

FAT) = os(Fa(T)),

B(T) = elBa(T)),

T = el F(T) x Ba(T)) Uen(F(T) x Ea(T)),
F(T) = Fy(T)U FT) U Fy(T).

The set F(T) can be considered as the set of faces lying in the flow. The collection of faces
in F(T), however, does not typically represent a surface since an edge might have a degree
higher than two. We next define a flow surface:

Definition 2 Let o € (0,7) be a given angle. An oriented surface S consisting of a set of
faces FI(S8) C F(T) is called a flow surface of minimal angle « if, for every edge e € E(S)
with adjacent faces f and g, the angle between these faces is greater than o, i.e., L(f,g) > a.
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Surface algorithm

Presented is an algorithm that constructs flow surfaces. The intuitive description of the
algorithm is as follows: Start with an arbitrary edge of E:(7) and determine the face ¢ (€).
Next append faces across the edges using the functions @, ¢y or ¢,. The functions ¢y, s or
¢p are combined into a single function by defining

e+ F(T)x B(T) = F(T),

ep(fi€) e €Ea(T)
e(fie) = er(e) : e€ Fi(T)and L(gs(e), f) > L(ps(e), f)
eu(e) 1 otherwise.

The following Pascal-like procedure is the main ingredient to an algorithm to construct a
flow surface S.

procedure surface( e, f);
begin
g:=e(fe);
if g¢ S and S U{g} is a flow surface then
begin
§:=8Uu{g}
surface( €, g ) for all edges € # e of g
end end;

Now an algorithm can be introduced that constructs disjoint flow surfaces in 7

procedure decompose( T );
begin
while F(T) not empty
begin
for an arbitrary f € F‘(T) initialise S := {f};
surface( &, f ) for all edges é of f;
delete all faces that have at least one vertex in common with §

end end;

Remark 1 The constructed surfaces depend on the starting edge. For the example involving
the cylinder depicted in Figure 1 we could either generate vertical or horizontal surfaces.

An example

We applied the surface algorithm to a cyclic flow in the unit cube. The flow direction and the
resulting flow surfaces for a regular grid as well as an irregular grid are depicted in Figure 4.
In the case of the regular grid, a single vertical surface and several horizontal surfaces have
been constructed. On each of these surfaces we can now apply ordering techniques that have
been developed for the two-dimensional case.

Conclusions and future work

We have provided a general framework for constructing (disjoint) surfaces in a tetrahedral
grid. To this end, we have constructed surfaces that retain important information about
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Figure 4 Cyclic flow and resulting flow surfaces on a regular and irregular

grid.

the flow direction. Therefore existing ordering techniques that have proved successful in the
two-dimensional case may be applied to the three-dimensional case.

Even though the investigation of iterative schemes for solving the linear system of equa-
tions was not the goal of this paper, any analysis of the proposed reordering scheme (in terms
of improved convergence rates) requires the application of the algorithm to flow problems.
This work is presently being performed and the results will be forthcoming. Additional future
activities include the choice of parameters in the algorithm, e.g. the parameter « in the defini-
tion of strong edges as well as the parameters o and = in the definition of the function ¢ and
of flow surfaces. By extending the theory that has been applied to the two-dimensional case
to the three-dimensional case, the proposed ordering scheme serves to efficiently decompose
the set of unknowns of a convection dominated problem into disjoint blocks for which well-
known ordering algorithms are available. Once the disjoint blocks are found, the well-studied
block iterative methods may then be applied.
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