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On Schwarz Alternating Methods
for the Incompressible
Navier-Stokes Equations in N
Dimensions

S. H. LUT!

INTRODUCTION

This paper considers four Schwarz Alternating Methods for the N-dimensional, steady,
viscous, incompressible Navier Stokes equations, N < 4. It is shown that the Schwarz
sequences converge to the true solution provided the Reynolds number is sufficiently
small. This appears to be the first attempt to prove convergence of Schwarz Alternating
Methods for the Navier Stokes equations.

The Schwarz Alternating Method was devised by H. A. Schwarz more than one
hundred years ago to solve linear boundary value problems. Tt has garnered interest
recently because of its potential as a very efficient algorithm for parallel computers. In
Tai and Espedal [TE98], Tai and Xu [TX98], and Dryja and Hackbusch [DH97], they
show convergence of Schwarz methods for some nonlinear problems. In Lui [Luiar],
proofs of convergence of Schwarz Alternating Methods for some 2nd-order nonlinear
elliptic PDEs were given. In this sequel, we prove convergence of four Schwarz methods
for the N-dimensional, steady, incompressible, viscous Navier Stokes equations, N < 4.
Many authors have demonstrated numerically the effectiveness of Schwarz methods
in solving fluid problems. See, for example, the proceedings of the annual domain
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decomposition conferences, beginning with [GGMP88]. We mention in particular
[DDG192], [CGK*98] and [KKS98]. This paper follows closely the framework
developed in the fundamental paper of Lions [Lio88] where the convergence of the
Schwarz method for the Stokes equations is proved. While we concentrate mostly on
the two-subdomain case, we show an additive Schwarz version which converges for the
multiple-subdomain case.

Let Q be a bounded domain in RY with a smooth boundary. Suppose Q = Q; UQ,,
where the subdomains Q; have smooth boundaries and are overlapping. Let H{(Q)V
denote the Cartesian product of N Sobolev spaces H}(Q) (consisting of all functions
whose first derivatives are in L%(Q) and whose value vanishes on 9 in the trace
sense) and define L%(Q)N as the Cartesian product of N copies of L%(Q). The
space Hl/Z(aQ)N is defined similarly. Let V = {u € H}(Q)V, divu = 0} and
Vi = {u € HY ()N, divu = 0}, i = 1,2. Let u; denote the i-th component of

N
the vector u. Denote the inner product in H(Q)V by [u,v] = Z/ Vu; - Vv; and let
i=1 70

[|ul]1 = [u, u]'/?. Let A7! be the inverse of the Laplacian operator considered as an
operator from the dual space H~1(;)" onto H}(Q:)Y, i = 1,2. We take overlapping
to mean that H}(Q)N = H}(Q)N + H}(Q9)V. In this paper, a function in HJ(Q;)V
is considered as a function defined on the whole domain by extension by zero.

When the two subdomains are overlapping, the work of Lions [Lio88] shows that
V = Vi + V5. Let P; denote the orthogonal (with respect to the inner product [-,-])
projection from V onto V;, i = 1,2. Tt is well known that

d = max ([|(I = P2)(I = P1)ll2, [[(I = P)(1 = Ps)[]2) < 1.

See Lions [Lio88] and Bramble et. al. [BPWX91]. Throughout this paper, C' will denote
a positive constant which may not be the same at different occurrences.

In the next section, we give a statement of the problem including an estimate for
the nonlinear term. Following that, we sketch a proof of convergence for a nonlinear
Schwarz sequence where each subdomain problem is a nonlinear one. In the next
three sections, we develop three variations of the nonlinear Schwarz sequence. These
sequences are more practical in that only linear subdomain problems are encountered
and that in two of these, the subdomain problems are independent so that they can
be solved concurrently. In the final section, we discuss the case of many subdomains
and non-homogeneous boundary conditions.

NAVIER-STOKES EQUATIONS

The N-dimensional, steady, viscous, incompressible Navier Stokes equations in non-
dimensional form is

(u-V)u —Vp+ %Au + fon Q
divu = 0onQ

with the boundary conditions
u = g on 0%,
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where u € H1(Q)V, g is the given velocity on the boundary with ||g||H1/2(an)N <1,
f is the forcing term in L2(Q)N, p is the pressure and R is the Reynolds number. We
assume that g satisfies the compatibility condition [, g n = 0 where n denotes the
(outward) unit normal. We use u to denote the unique solution to this equation.

We shall need the following lemma. A similar version states the continuity of a
certain trilinear form containing the convective term of the Navier Stokes equations.
See, for instance, Temam [Tem95] on page 12.

Lemma 1 Let U = {u € HY(Q)V, div u = 0}. For N < 4, define the function
F:UxU— HHQ)N by F(u,v) = A~ (u-V)v. Then ||F(u,v)||1 < C|lull ||v]]:-

In light of this lemma, we restrict to the case N < 4 in the remainder of this paper.
Initially, we only discuss the case ¢ = 0 which has a clearer exposition. The general
case will be addressed in the last section. In the next section, we define a nonlinear
Schwarz sequence.

NONLINEAR SCHWARZ SEQUENCE

Let u(® € V. For n = 0,1,2, .-, define the nonlinear Schwarz sequence as
1 1 1 1 1
(u(n'l'E) . V)u(n+§) = _Vp(n+§) =+ EAU(rH_E) =+ f on Ql
divu*+3) = (Qon
w3 = 4 on HQ,
and
(u(”‘H) -V)u(”‘{“]) = —vplth 4 %A?L(”‘*’l) + f on Q4
div u®+1) = (on Q,
uP+) = y("+3) on 9Q,.

Here, u("*+3) is considered as a function in V by defining it to be u(™) on Q \ ©Q; and
u(+1) is defined as u("+%) on Q\ Q,. The first thing to check is that the compatibility

conditions
/ u(n).n:():/ 2D
an 8(22

are satisfied. We claim that they are satisfied for all n provided

/ ul® n=0i=1,2 (1)
T;
hold, where I'; = 9€; N Q3_;.

The claim is proved by induction. For n = 0,

/ u<o>.n:/ O B—
o, r
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by (1). Since div uw(z) =0 on QN Qs

o:/ u(%).“/ u(%).n:/ u<o>.n+/ u(%).n:/ u®
Ty Ty Ty Ty Ty

The induction step is proved by a similar calculation.
The main result is that this Schwarz sequence converges to the true solution provided
the Reynolds number is sufficiently small.

Theorem 1 Assuming u(®) satisfies (1) and R is sufficiently small (depending on
[|«(®) — w||y), the nonlinear Schwarz sequence converges geometrically to the true
solution u in the norm || - 1.

The proof can be divided into three steps. In the first step, we derive the error
equations

et3) = (1 - P)e™ + RF (e 13)),
e(ntl) = (I - Pz)e(”"'%) + RFz(e(”H)_),

where e(®+3) = 4(+3) _ 4 and ™) = u(™) _ y are the error terms and F; are certain
quadratic nonlinear terms. These nonlinear terms can be bounded using Lemma 1. In
the second step, we use induction to show that provided R is smaller than some known
constant, ||e(”+%)||1, ||e(")||1 < M for all n, where M = ||e(0)||1. In the final step, we
employ these estimates in the error equations to prove geometric convergence of the
Schwarz sequence. A sufficient condition for convergence is that

VIS —d

R< ,
C2llull + M)

where C' 1s a known constant. Full details of the proof will be reported elsewhere.

LINEAR SCHWARZ SEQUENCE

In the previous section, each Schwarz iteration requires the solution of a nonlinear
PDE in each subdomain. From a practical point of view, we of course prefer to solve
linear problems whenever possible. Now, we demonstrate a version of the Schwarz
method where only linear PDEs need to be solved. Convergence still holds but at a
possibly smaller R and that the rate of convergence may be a little slower.

Let u(®) € V and assume it satisfies (1). Forn =0,1,2, - define the linear Schwarz
sequence as

() Tyut+d) = _ypntd) 4 %Aum%) +fon
div u(»*3) = 0on 04
u+3) = 4 on 9O

and

(u(”'*'%) -V)1L(”+1) = —vpr+h 4 %Au(”‘H) + f on Q4
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div «"+1) = 0on Q,
u(n+1) = u(n+%) on 392

Notice that the above equations are linear and that the compatibility conditions are
satisfied.

The main result is that this Schwarz sequence converges to the true solution provided
the Reynolds number is sufficiently small.

Theorem 2 Assuming u(®) satisfies (1) and R is sufficiently small (depending on
|u{®) —w||y ), the linear Schwarz sequence converges to the true solution u in the norm

Il fh-

The proof is similar to before with geometric convergence if
1—d

R<Garsa

PARALLEL SCHWARZ SEQUENCE

For the two previous Schwarz methods, the iterates must be computed sequentially.
In this section, we suggest a Schwarz sequence where the two subdomain problems are
independent and thus they can be solved simultaneously. This sequence also converges
provided the Reynolds number is sufficiently small.

Let 4(®) € V and assume that it satisfies (1). Define u=2) = u(=3) = 4, For
n=0,1,2, define the parallel Schwarz sequence as

(W) V)t = Yy 4 LAWHD £ fon 0,
div u(»*3) = 0on O
u+3) = 4() on HQ
and
(u=2) . V)t = _ypt) 4 %Au(”“) + fon Q,
div u®*1) = 0Qon Q,
u(n'l'l) = u(n—%) on 892

We define u(®*+1) as u("=3) on Q \ 5. Notice that the above equations are linear and
can be solved independently. We again can check that the compatibility conditions are
satisfied.

Theorem 3 Assuming u(®) satisfies (1) and R is sufficiently small (depending on
||u(0) — u||1), the parallel Schwarz sequence converges to the true solution u in the
norm || - |1

For this sequence, we obtain geometric convergence if

1—d

R< iy
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ADDITIVE SCHWARZ SEQUENCE

In this section, we demonstrate the convergence of the Additive Schwarz sequence,
originally introduced in [DW8T7] for linear elliptic equations and has been used
successfully in practice.

Let u® € V. Forn=0,1,2, -, define

_%Adm%) + VP = f— (u) . V)u) — vp) 4 %Aum) on O
and

_%Admm + VP = f () V)ul) - vp) 4 %Aum) on Qs

where d("*3) ¢ Vi and d™+1) € V4. The additive Schwarz sequence 1s defined as
urtl) = () 4 w(d(”‘*'%) + d(”"'])) where w is a relaxation parameter. Roughly
speaking, d(®*+3z) and d("*+1) are corrections to the iterate u(™) in the subdomains
Q, and €5, respectively and the right-hand sides of the above equations defining the
corrections are the residuals of u(”) in the subdomains. Ignoring the nonlinear terms,
the above sequence is precisely the additive Schwarz sequence for the Stokes problem.
Notice that the above Stokes equations can be solved independently and no additional
assumption on u(®) is required.

Theorem 4 Assuming 0 < w < 1/2 and R sufficiently small, the additive Schwarz
sequence converges geometrically to the true solution u in the norm || -||1.

Proof: We only sketch the proof, recording the key equations. From the defining
equations, we have

dnti) —Pie™ 4 RFy (™)
dntl) = _pyeln) 4 RFZ(e("))

from which we obtain

e(nt+l) — (I—w(P+ Pz))e(”) + wR(Fl(e(”)) + FQ(e("))),

where Fy and Fy are the same nonlinearities as above. When 0 < w < 1/2, || —
w (P14 P2)|l1 < 1. Applying the estimates for F; and the condition

L= =w (P + P)[]x
wCO([lul® — ully + 2||ull1)’

R <

we can show that ||e(”)||1 < ||e(0)||1 for all n. This condition is also sufficient to
guarantee geometric convergence of the additive Schwarz sequence.

DISCUSSION AND CONCLUSION

In this paper, we show the convergence of four Schwarz Alternating Methods for the
N-dimensional, steady, incompressible Navier Stokes equations, provided the Reynolds
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number is sufficiently small and N < 4. QOur results are only valid for the two-
subdomain case. The result for finitely many subdomains is again that the Schwarz
sequence converges provided R is sufficiently small. Except for the additive Schwarz
scheme, we cannot give an explicit bound for R. The difficulty is in obtaining an
explicit expression for the spectral radius of a certain matrix. We elaborate on this
point below. To simplify the analysis, assume that any three distinct subdomains have
an empty intersection.

First, we need the following lemma which was shown by Lions [Li088] for the two
subdomain case. The general case is true by induction.

Lemma 2 Suppose H&(Q)N = H&(Ql)N+~ . ~+H&(Qm)N, Let V and V; be subspaces
of H(Q)N and HE(Q4)YN, respectively, consisting of divergence-free functions. Then
V=Vi4+ -+ Vn.

For m subdomains, we can obtain analogous error equations. For instance,
) = (1= Py (I = P)e™ 4.

where P; is the orthogonal projection (with respect to [-,-]) of V onto V; and [+ - -]
is a sum of m quadratic terms. Armed with Lemma 2, it is well known ([Lio8§],

[BPWX91]) that
A= (1= Pr)-- (T = P <1

for overlapping subdomains. In a similar way as before, we can show that the Schwarz

sequence is bounded and provided d'/™ + o(¢) < 1 with ¢ = RC(M + 1) sufficiently

small, the Schwarz sequence converges. Because it does not seem possible to write

down an explicit expression for the o(€) term, we cannot give an explicit bound on R.
For the additive Schwarz method, it converges if

V- —w(Pit -+ Pl

R< » :
mewC ([|u® — ulls + 2([ul]:)

where 0 < w < 1/K, where K is the minimum number of colors needed to color the
subdomains in such a way that overlapping subdomains are assigned different colors.
Non-homogeneous boundary conditions can also be treated by making a change of
variable. Define w = u — g, where g is the Dirichlet data on 9Q which is extended to
be a divergence-free function in H'(Q)". Then the Navier Stokes equations become

1
(w-Vw+ (¢9-Vw+ (w-V)g=-Vp+ EAw-I—G

for w € V and
1
G=5bg+f=(9-V)g.

The analysis goes through as before.

One interesting question is to investigate in what sense does the sequence of pressure
converge. Other future work include extending our results to the time dependent case
and the consideration of Schwarz methods on non-overlapping subdomains.
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