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An Iterative Substructuring
Preconditioner for Collocation with
Hermite Bicubics

Gabriel Mateescu & Calvin J. Ribbens'

Introduction

We propose and evaluate a novel Schur complement type preconditioner for solving
linear systems of equations arising from piecewise Hermite bicubic collocation
discretization of elliptic partial differential equations (PDEs) with mixed boundary
conditions. Although collocation is a very general and effective discretization
technique for many PDE problems, relatively little is known about combining
domain decomposition techniques with collocation. In this paper we define a
new preconditioner in terms of two special grids—a coarse grid and a hybrid
coarse/fine grid—which together provide the framework for approximating the
interface subproblem. We illustrate the performance of the preconditioner by
combining it with a Krylov subspace method (KSM) and reporting experimental
results on three test problems.
We consider the family of boundary value problems:

Lu=g in and Bu=t on 99, (1)

where L is a linear second-order elliptic operator, B = p % +q, 2 =(0,a) x (0,a)
and 0% is the boundary of Q. The discretization method is collocation with piecewise
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Hermite bicubic basis functions; for convenience, we refer to this method as Hermite
collocation (HC). Hermite collocation provides O(h*) accuracy, where h is the fine grid
step, for sufficiently smooth problems, and does not require the computation of any
integrals for generating the coefficient matrix. Let Au = f be the discrete problem
induced by applying HC to (1), where A € RN*N. The solution method has two
elements: (1) a right preconditioner M which is employed to obtain the preconditioned
system AM~'v = f, where v = Mu; (ii) a KSM, such as the Generalized Minimal
Residual (GMRES) method [SS86], for solving the preconditioned system. The matrix
A induced by HC is not symmetric even when L is the Laplacian; moreover, A is
typically ill-conditioned and unpreconditioned GMRES takes O(N) iterations.

Domain decomposition based on Schur complement methods (SCMs) can provide
robust preconditioners for HC problems. SCMs work by partitioning the domain in
subdomains and an interface consisting of edges and wvertices, and deriving a reduced
Schur complement problem for the interface subproblem (see [SBGY96]). However,
constructing SCM preconditioners for HC is not straightforward. Well known strategies
such as tangential preconditioning [CK90], Neumann-Dirichlet [BW86],or multilevel
diagonal scaling [BPX90] do not generalize easily to the HC problem derived from (1).
Previous work on domain decomposition methods for HC problems has been limited to
symmetric positive definite (SPD) problems and problems obtained by symmetrizing
the initial problem. Bialecki, et al. have proposed several preconditioners for solving
Poisson’s equation with HC. One method [Bia93] is based on a decomposition in
parallel strips of the domain and a SCM preconditioner. Another method [BCDF94]
employs the additive Schwarz approach. Our preconditioner is remarkable in that
it supports general elliptic operators, two-dimensional decomposition (important
for scalability), and proposes a new method for approximately solving the Schur
complement problem.

The Hermite Collocation Problem

We proposed in [MRW98] a preconditioner based on a strip decomposition of the
domain. This paper generalizes that work to a preconditioner for substructuring in
two dimensions, which we call the edge-vertez preconditioner (EVP).

Let ng be an integer greater than one, and X = {zx}72;" and Y = {ym }1224 be
partitions of [0, a], where 2y = kh, ym = mh, and h = a/(ng — 1). The set of grld
points, or nodes, in Q = QU IQ is G* = X x Y. In HC, the unknown function u is
approximated by a function U in the space V of continuously differentiable piecewise
bicubic polynomials. Let ng = nZ be the number of nodes in G*. Following [HMR85],
with each node n in G” there are associated four Hermite bicubic basis functions, ®!

1 < i< 4, centered at n and with support [zx — h, 2 + h] X [Ym — I, Ym + h], where
(zk, Ym) are the coordinates of n. The set {<I>' | 1< < 4,1 < n < ng} is a basis

for V, and U can be written as U(z,y) = ZZ e Un )<I>’ (z,y), where U,(L]), U,(LZ),
U,(LS), and U,(l4) are the values U, Uy, Uy, and Uzy at n. The HC problem is to find

U € V which satisfies (1) on a set GUIG of N = 4ng collocation points. A good choice
for G and 0G uses the tensor product of two Gauss points per interval (see [HMR85]).
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Schur Complement Preconditioning

Let D = {1,2,...,N} denote the index set of all unknowns (equations).
Substructuring performs a symmetric permutation of A such that subdomain indices
(I) are first, then edge indices (F), then vertex indices (V). This induces a partition
D = IUEUV. Let B = EUV be the set of interface indices. The unknown vector u can
be written asu = (uy,ug)T, where ug = (ug,uy)T. For simplicity, assume a perfectly
uniform partition, where every subdomain and edge has N; and Ng unknowns,
respectively. If Ny is the number of vertex unknowns, then N = n; Ny +ng Ng + Ny,
where ny and ng are the number of subdomains and edges respectively.
The operator A after substructuring is

[ A Ars . _( Agr Agv _ o T (@)
A= ( A A ),mth App = ( P ),AII_;RLA”RL. (2)

The first (second) subscript of a block denotes the index set of the equations
(unknowns) in that block, and Apr = (Agr AV])T, Are = (Are Arv) # AL, even
when L is SPD. The above structure of A is called arrowhead, since Arr is block
diagonal with n; blocks. Let S = Agg — ABIAI_IIAIB be the Schur complement with
respect to Agp. A block triangular factorization of A~ is

a1 (1 ~A7r Arp A 0 I 0 3)
0 I 0 sS! —Api A7} T ) :

A preconditioner for A employs a preconditioner S to S in (3), since S is dense and
expensive to construct. Moreover, in general, S=1is not explicitly computed, but its
action on a vector vp is computed instead. The seminal paper [BPS86] introduced
the Bramble-Pasciak-Schatz (BPS) preconditioning strategy which uses a coarse grid
operator Ap to provide global coupling between subdomains, and an interpolation
map RL : V + B to approximate the solution on B. The BPS preconditioner is
5'];]135 =5SrE R?Si_il R; + R{,Aﬁl Ry, where R; : B — E; is the pointwise restriction
map from B to the indices of the ith edge, and .S; ; is the Schur complement for the ith
edge. Note that the BPS method does not specify a scheme for approximating S;il.

The Preconditioner

Substructuring applied to the HC problem induces the linear system Au = f, where
u € RN, and which can be written as three subproblems:

Arrur + Aigug + Arvuy = 1 (subdomain subproblem) (4)
Agrur + Aggug + Agvuy = fg (edge subproblem) (5)
Aviur + Aveug + Avvuy = fy (vertex subproblem) (6)

In (5) Apg = AL + A% R, with A%y block diagonal, where a block comprises the
degrees of freedom for an edge, and the superscripts e and ¢ are abbreviations for
“eigen” (own) and “coupled”, respectively.
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Our preconditioner is defined in terms of three grids: (i) the fine grid, on which
the solution is sought; (ii) a hybrid fine/coarse grid, called the edge grid, associated
with each edge, on which an approximate solution to (5) is found; and (iii) a
coarse grid on which an approximate solution to (6) is found. The discretization
on each grid is performed using the bicubics associated with that grid, e.g., the
coarse grid basis functions centered at an interior vertex (ax,ym) have support
[z —H—h,zg+H+h] X[y — H—h, Y+ H+h], where H is the coarse grid parameter
(see next paragraph). The collocation points are determined in terms of the fine grid
only. Therefore, the right hand sides fr and fy are preserved when collocating on
the edge and coarse grids, but the coefficient matrices change. Slightly abusing the
notation, we denote by (ur,ug,uy)T the solution to the problem (4-6) as well as
the solution to the approximate problem obtained using the three-grid discretization
outlined above.

For simplicity, assume the domain Q is decomposed into n; = (ng—1)? subdomains.
To achieve perfect load balancing, suppose also that the fine grid is defined so that
each subdomain contains exactly K2 interior nodes. Figure 1 illustrates the case
Vi1 = K =3. Let H = Kh be the diameter of the corner subdomains. Subdomains
away from 0Q have diameter H + h, while those along one side of 9 are of size
(H+h) x Hor Hx (H+ h). Note also that nodes on 9 are either vertex or interior
nodes in this terminology.

We illustrate the definition of the edge grid by considering a vertical edge F;. Assume
E; does not intersect 9Q (horizontal edges, and edges intersecting 9Q are handled
similarly). Suppose E; has endpoints (z,y) and (z,y + H + h). The edge grid G;
associated with F; is defined as G; = {z—H,z, 2+ H}x{y,y+h,y+2h,...,y+ H+h}.
Figure 1 shows the edge grid associated with Fj4. Let Vi be the space of piecewise
bicubic polynomialson & = [z — H,z + H] x [y, y+ H + h], where the Hermite bicubic
basis functions have support [—H, H] X [—h, h] with respect to the nodes where they
are centered. We approximate the restriction of u to & by an element in V. The

collocation equation is U (£,¢) = Zle Zi:l Ulgln) @ﬁcn(éj, ¢) where (£,() € G UJG and
qsf,cn, 1 < I,n < 4 are basis functions for V' centered at the four nodes k, closest to
(&,¢). Hence, we obtain the blocks Apg , AEI, and Apy with elements L@Ln and

Béin, instead of Agp, Agr, and Agy whose elements are L<I>Ln and B<I>Ln. The
matrix form of the edge problem is

AEIUI + AEEUE = fE - AEvuv, where AEE = A%E + A%E, (7)

with A%E block diagonal. Similarly, we collocate on the coarse grid, approximate u in
the function space corresponding to the coarse grid, and get the approximate vertex
problem

Avrur + Ayvuy = fy. (8)

The EVP provides an approximate solution to the system (4, 7, 8). We use implicit
preconditioning, i.e., we compute the action of M~! on a given vector v by solving the
system M u = v. To construct the EVP we have to solve two problems: (i) decouple
the coarse grid problem from the subdomains; (ii) find an approximation of (7) which
removes the mutual edge coupling among the ng edge subproblems due to A%E, SO
that the edge problems can be solved independently.
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Vi Va X
B Vertex Node @  EdgeNode

Figure 1 Three-level grid. The coarse grid is shown in thick solid lines. The
edge grid for edge F4 is shown in dashed lines. Edge nodes are shown as disks
and vertex nodes as squares. P and @ are two of the collocation points
associated with edge Fj.

The first problem is solved by observing that the vertex-subdomain coupling in (8)
is due to the four corners of Q which are subdomain nodes. Let uy = (uc, uv)T,
where ug is associated with the four corners. Let Ayy be the coarse grid operator
obtained by expanding Ayy with coarse grid collocation at the collocation points
associated with the corners. We get the independent vertex problem Ayy iy = Vv,
where vy = (v¢, vv)T

Given uy, we solve the second problem by evaluating the approximate solution
defined by uy at those edge nodes that cause mutual edge coupling. Notice that only
the edge nodes at a distance h from a vertex node cause mutual coupling. For example,
the edge E4 in Figure 1 is coupled to Fs and E7 by way of the nodes (2H, H) and
(2H,2H + h), respectively. Let tig be the approximate value of the edge unknowns
obtained by evaluating the piecewise bicubics defined by uvy:

up = Ifuy, where IEZ denotes Hermite cubic interpolation from V to E unknowns.

We decouple the ng edge problems by making the approximation A%EUE = A%EﬁE
which gives Apgpug & A%EIIE + A%EﬁE and (7) becomes

Agrur + A%EUE = VE — ACEEﬁE — Agvuy. (9)

The action of M~ is computed in two main stages. First we solve for ay directly,
uy = A;%,\_rv. Second we solve approximately the system consisting of (9) and the
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1 ay = A;%/ vv; > Solve coarse grid problem

2 ag = [Euav; > Approximate edge unknowns

3 ur= AI_I1 (vi — AIguE — Arvuvy); > Approximately solve subdomains
4 vE = VE — AEIﬁI — ACEEG.E — AEvuv; > New right-hand side for interface
5 ug = AAG;D:_-J VE; > Solve interface

6 up = Al_Il(VI —Ajgug — Ay uy); > Solve subdomains

Figure 2 FEdge-Vertex Preconditioning Algorithm: u=M™"v

subdomain problem (see (4)): Ajjur + Ajgug = vi — Arvuy. This is done in three
steps. First, we solve approximately the subdomain problem by replacing ug with
ug: Arpuy = vi — Ajgug — Arvuy, for iy, Second, we plug iy in (9) which we
approximate by A%EUE = Vg — AEIﬁI — A%Eﬁ}; — AEvuv. This 1s equivalent to
approximating A%EuE — AEIAl_IlAIE(uE —ug) & A%EuE This approximation is
justified by the relation (see [Mat98] pages 53-54, for a proof):

R h
Amr Az Are il =0 () (U4 [ABIAG Arsllc) e, w € RPN

Third, we solve for ur: Arrur = vi — Ajgug — Aryvuy. Figure 2 gives the steps to
apply M~ to ve RN,

The floating point operation cost of applying EVP is Cp & 16 N K + 8% + 5N +
58%. The best choice for K is—if we account for the cost C'r of block factorizations—
K = O(N'/), which gives Cp = O(N7/®), Cr = O(N*/3). The algorithm has good
parallelism, except for step 1. To avoid a sequential bottleneck, the size of the coarse
problem should be kept small enough.

Numerical Experiments

We employ GMRES with restart parameter 30, and the stopping rule is relative
residual reduction of ¢ = 107%. The code is written in C and Fortran with parallel
directives, and uses LAPACK’s general band factorization and triangular solve
procedures. The CPU time is given in seconds and is measured using the C-library
function times. The tests are run on an SGI Origin 2000 machine with 16 processors
running at 195-MHz. We use the following model problems defined on © = (0, 2) x (0, 2)
(drawn from the examples in Appendix A of [RB85]).
Problem 1. Problem 1 in [RB85] has a self-adjoint operator:

(€™ ug), + (€7 uy) = (142 +y) " u= g1, (10)

where subscripts indicate partial differentiation and with g1 such that w; =
%ewy sin (7z) sin (7y) is the true solution. The boundary conditions are Dirichlet on
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one side and Neumann on the other three sides: u = 0 on 2 = 2 and g—z = %1: on
y=0,y=2, and 2 = 0.
Problem 2. Problem 2 in [RB85] has a general operator:
um—{—(]—{—y:z)uyy—uz—(]+y2)uy:gg, (11)

with gs such that us = e*t¥ 4+ (22 — z)?log (1 + y?) is the solution. The boundary
conditions are again Dirichlet on one side and Neumann on the other three: u = us
onx:?andg—“:%onyzo,y:landxzo.

Problem 3. Problem 12 in [RB85] has oscillatory coefficients of u; and u:

Uggp + Uyy + (1 + sin (ax)) uy — cos (ay) u = g3, (12)

with g3 determined by the solution us = cos (fy) + sin 3 (z — y), and with Dirichlet
boundary conditions u = uz on Q. We set « = § = 7.

Table 1 summarizes the performance of EVP on the three test problems. For
constant problem size per subdomain (i.e., K = H/h constant) the number of
iterations is essentially constant, independent of H and h; for Problems 2 and 3 the
number of iterations is reduced as N grows. For constant N, increasing the number
of subdomains ny can improve convergence as well. For example, for Problems 2 and
3 with N = 36100, increasing n; from 62 to 82 reduces the number of iterations by
one. This improvement is due to increasing coarse problem size; but eventually the
reduction in iteration count is offset by the reduced efficiency from the sequential
bottleneck of the coarse solve.

Table 2 compares EVP with PETSc’s Additive Schwarz preconditioner [BGMSsc]
with exact subdomain solves, for Problem 2 and constant N. Note that the ASM
preconditioner is algebraic, i.e., 1t requires no knowledge of the PDE. We set the
number of ASM blocks to p. EVP clearly outperforms ASM for this case. It 1s possible
that ASM’s performance would improve with a reordering of equations and unknowns.

Table 1 EVP performance.

Problem 1 Problem 2 Problem 3
K | nr N Its T, | Mfl | Its | T, | Mfl | Its | T, | Mfl
/sp /sp /sp
11 ] 62 20164 17 1.6 29 5 07| 35 5 07| 37
82 36100 21 2.8 27 3 108 32 4 109 | 34
122 81796 21 5.3 21 2 1.5 25 3 1.6 | 26
167 | 145924 20 | 114 13 1 2.0 25 2 | 2.7 19
15162 ] 36100 19| 36] 35 | 4 [1.4] 45 5 [ 1.6] 42
82 64516 22 6.2 30 3 1.8 | 43 4 |21 40
102 | 101124 23 9.2 27 2 |1 24| 38 3 127 37
127 | 145924 23 12. 24 2 1 3.1 36 3 135 35
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Table 2 EVP versus Additive Schwarz. Problem 2, N = 158404, § is the
overlap, S =11/1, is the speedup, Its is the iteration count.

EVP, ny =100, K =19 Additive Schwarz, § = 2
Processors || Its | Mflop/s | T, S || Its | Mflop/s Ty S
per proc | (sec) per proc | (sec)
1 2 82 26.9 1 1 18 5053 1
2 2 80 13.8 | 1.9 19 16 1757 | 2.9
4 2 67 819 | 3.3 || 30 12 1257 | 4.0
8 2 hY) 5.01 | 5.4 || 67 19 490 | 10.3
10 2 50 439 | 6.1 | 92 13 606 | 8.3
12 2 51 3.63 | 7.4 | 117 11 642 7.9
14 2 48 3.29 | 8.2 | 120 9 736 6.9
16 2 45 3.08 | 8.7 || 150 7 831 6.1
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