33

Communication Latency Hiding in
a Parallel Conjugate Gradient
Method

Kevin McManus', Steve Johnson?, Mark Cross?

Introduction

The diagonally preconditioned Conjugate Gradient Method (CGM) is commonly used
in a range of applications for the iterative solution of Ax = b. The method lends
itself to parallelisation by Domain Decomposition (DD) using a Single Program
Multi-Data (SPMD) mapping onto Distributed Memory (DM) parallel platforms.
While it is possible to achieve good parallel performance it is often the case that
performance is limited by the communication performance of the parallel system.
Performance of the parallel CGM method can be improved by reducing the impact of
communication start-up latency and finite inter-processor communication bandwidth
without modification of the algorithm. This invites an examination of the factors
affecting parallel performance.

Unstructured mesh applications using Finite Element or Finite Volume techniques
to solve differential equations with iterative solution procedures are commonly
parallelised using overlapping DD methods based on mesh partitioning. Decomposition
of the mesh into P sub-domains distributed over P processors allows concurrent
loop execution with global consistency maintained through the exchange of the data
between the sub-domains as required to satisfy the dependencies of the integration

1 Centre for Numerical Modelling and Process Analysis, University of Greenwich,
London, SE18 6PF, UK email: k.mcmanus@Qgre.ac.uk

2 Address same as above.

3 Address same as above.

Eleventh International Conference on Domain Decomposition Methods

FEditors Choi-Hong Lai, Petter E. Bjgrstad, Mark Cross and Olof B. Widlund ©1999 DDM.org

COMMUNICATION LATENCY HIDING 307

method. Extension of the sub-domains to include all required data leads to each sub-
domain being surrounded by a layer that overlaps adjacent sub-domains. Message
passing is used to communicate data from the processor on which it is assigned into
the overlap of the processor(s) on which it is accessed [RL90]. Renumbering of each
sub-domain from global to local numbering permits an implementation without global
data structures and hence a scalable mapping onto DM parallel hardware [MCJ95].

For many applications, execution time is dominated by the execution of loops in the
solution of Ax = b. Amdahl’s law [Amd67] gives the maximum theoretical speed-up
for a parallel code running on an ideal machine. With a large problem on each processor
Amdahl’s law predicts near linear speed-up for parallel solvers when scaling with a
constant problem size per processor. But linear speed-up is seldom achieved in practice.
The parallel overhead resulting from the time needed to communicate the necessary
data between processors restricts the achieved performance. Two strategies that can
help to hide the communication overheads are examined in a parallel conjugate
gradient method.

Parallel Conjugate Gradient Method

CGM is an established non-stationary iterative method for symmetric positive definite
systems providing rapid convergence and O(m) computational cost per step, where m
is the number of non-zero components of A. Preconditioning may be used to improve
the condition number of the matrix A [GL89, BBCt94]. For a positive definite matrix
preconditioner M

Ax=b = M 'Ax=M""b (1)
If the eigenvalues of M~ A are clustered better than the eigenvalues of A then the
preconditioned problem may converge in fewer iterations than the original problem.
The Jacobi preconditioner is the diagonal of the A matrix that has the effect of
scaling the quadratic form along the coordinate axes [She94]. While not the most
effective preconditioner in reducing iterations its simplicity provides computational
efficiency. A modification [L.1.94] which transforms of Ax = b into Ax = b where the
components of A, x and b are

aij b;
results in the diagonal of A being the identity matrix I and so the Jacobi preconditioner
M = 1. The CGM iteration can then be expressed as

T = xi\/ai, b= (2)

a;; =

u(k) = Ap(k_l) 3
(k1)
a®) = ey 4

(

(

x(8) = x(k=1) 4 o(0)p(e=1) (
p(9) = pl1) _ oK)y (k) (6

p8) = pOT () (

(

(

plk) = A
= pk-1)

p(k) = r(k) + ﬁ(k)p(k_l)

308 MCMANUS, JOHNSON, AND CROSS

An overlapping DD implementation of this method requires three communications
within the iterative loop. One overlap update is required for the matrix multiply and
each of the two inner products require a global summation. The integration stencil
results in the distributed A matrix on each processor being non-square, having co-
efficients that address x in the overlap. Values of x must therefore be copied into
the overlap before they are addressed by the matrix-vector multiplication. Such an
overlap update communication only requires communication between adjacent sub-
domains and so may be expected to scale well with increasing P. A distributed inner
product loop results in each processor calculating a local inner product which must
be summed to produce a global inner product. A binary tree communication pattern
is used to minimise the number of messages required to calculate a global summation.

Substituting for r*®) in Equation (7) gives
pF) = (2= _ oK) (YT (pe=1) _ (g, (K)) (10)

which can be expanded to produce
pk) = ple=1)Tp(k=1) 4 (k)24 ()T (k) 4 94 () p(k=1)Tyy (k) (11)

substituting r(~ VD Tek=1) from Equation (7) now gives

p8) = ph=1) 4 o(8) (q(K)q(R)T (k) 4 9p(k=1)Ty () (12)

Calculation of p(*) now requires two inner products instead of one but no longer
requires r®) and so may be moved forward in the loop to the same point at which
o) is calculated.

u(k) = Ap(k_l) (13)

(k=1)
a®) = Sl (14)
p(k) = p(k_l) + a(k)(a(k)u(k)Tu(k) + 2r(k_1)Tu(k)) (15)
X(k) = x(k_l) + a(k)p(k_l) (16)
r(k) = r(k_l) —_ a(k)u(k) (17)

» (k)

p® = o (18)
p() = 1) | gl (ie=1) (19)

The three inner products in Equations (14) and (15) can now be calculated using only
a single commutative operation to perform the three global summations [BJG94]. If
it takes less time to calculate an inner product than the time required to calculate a
global summation then this algebraic modification will improve parallel performance.

Performance Estimation

A simple cost model can provide a predictor for parallel performance. The time
titer required for each iteration is the sum of the calculation time t.q. and the

COMMUNICATION LATENCY HIDING 309

communication time tecomm. An estimate for the calculation time can be calculated
from the number of floating point operations in each iteration and the floating point
rate of the processor. Unfortunately such an estimate is unlikely to be an accurate
reflection of practice as the time for each individual floating point operation is
often highly dependent upon the success or otherwise of cache memory systems and
superscalar pipeline processor architectures.

Communication time can be characterised in terms of the communication start-
up latency which is the time required to send a single word message and the
communication bandwidth or rate usually quoted in megabytes per second. The
communication time consists of the time required for an overlap update t,,qq¢e and
the time required for a global commutative Z4,44;. The communication time for the

original CGM
teomm = tupdate + thlobal (20)

is reduced by the modification to
teomm = tupdate + tglobal (21)
The global commutative time can be approximated as

tglobal ~ 2ntlatency (22)

where n is the number of levels required in the binary tree communication
n =1+ [log,(P —1)] (23)
The overlap update time can be approximated as

tupdate ~ 2S(tdata + tlatency) (24)

where S is the maximum degree of sub-domain interconnection, t44:, 18 the average
time required to communicate an overlap data message. This can be approximated
from the surface area of the sub-domain and the communication bandwidth B.

(r(%)?)*

B (25)

tdata &
The achieved bandwidth (excluding latency) is a function of message length which can
be crudely approximated as

B~ BMAX 1— #ql (26)
log(“E)

where Bprax 1s the maximum bandwidth. The maximum bandwidth for parallel

machines varies over the range of 10° — 10® words per second. Communication start-up

latency tiatency varies over the range of 5 x 1078 to 1073 seconds. Again these can only

be estimated as practical considerations such as communication patterns and message

contention will have a noticeable effect.

310 MCMANUS, JOHNSON, AND CROSS

As mentioned in Section 33 if the modified CGM is to return improved performance
then the time to calculate an inner product ¢4, must be less than the time required
to perform a global summation.

tdor < tglobal (27)

As each inner product requires N/ P floating point product and sum calculations the
inequality may be expressed as

N
F(tfp—product +tfp—acld) < 2(] +]OgQ(P -]))tlatency (28)

In practice it is not actually helpful to decompose the dot product as tg,: will be
dependent on the cache and superscalar pipeline performance of the processor which
are functions of the vector length N/P and vector storage. Run-time evaluation of
t4o¢ for the given problem size together with a run-time measurement of #4tency
provides an accurate determination of which solver to use for best performance. For a
current generation platform ¢4,: may be around 10~8 seconds and tiatency around 10-5
seconds. With a small number of processors, 8 for example, then the modification will
be beneficial for N less than 61,000 (% ~ 7,600). For large numbers of processors,
256 for example, this figure rises to around 4.6 million (% ~ 18,000). The graph in
Figure 1 shows that the expected loss of performance at low P is significantly less than
the potential gain in performance which becomes most apparent when efficiency falls to
around 50%. This figure is largely a function of the calculation to communication ratio
of the platform. The development of communication technology (memory bandwidth)
continues to be out-paced by the improvements in processor throughput [KKS97] and
so this figure is expected to increase.

10000 F [o0—o0 100,000 g~

o—0 1,000,000 A
©—— 10,000,000
~——2 100,000,000 1
1000 - |<—=<11,000,000,000 o= g
- 50% efficient]

10

L 1 L
1 10 100 1000 10000
no. of processors

Figure 1 Predicted Speed-up for the Original and the Modified CGM.

The predicted speed-up for the CGM iteration in Figure 1 is an extrapolation the
performance of current generation hardware to examine the potential scalability of

COMMUNICATION LATENCY HIDING 311

parallel applications. Without cache effects and constant N ¢4, scales linearly with P
but ¢giopar scales as Plog,(P) and so it was hoped that the curves in Figure 1 would
diverge accordingly. However, some of the performance gain is offset with very large
P by the overlap update becoming dominant as the bandwidth drops for very short
message lengths.

Asynchronous Communication

Asynchronous or non-blocking communication calls to allow calculation to overlap
communication. Communication subroutines can initialise a communication and
return from the subroutine call before completion of the communication. The
communication can then be tested for completion (synchronised) at some future point
in the code execution. Calculations that are independent of the communicated data
can be performed immediately subsequent to an asynchronous communication call and
synchronisation effected prior to the point at which the communicated data is accessed
[KKS97]. Unstructured mesh parallel applications with local numbering schemes lend
themselves to such communication hiding as it is a simple matter to identify the parts
of each sub-domain that are required by other processors and renumber the distributed
unstructured mesh so that the dependent data is numbered before the independent
data with the overlaps being numbered last. Some of the loops can be split so that
part of the loop is executed concurrently with the overlap update communication.

u®) = Aplk-1) DEPT..TOTAL (29)
synchronise

uk) = Apk-1) 1..DEPT (30)

alk) = % (31)

pF) = plE=1) 4 o (B) (@Bl Ty) 4 2p(k=1)Ty (k) (32)

x(0) = x(k=1) 4 oK) p(k-1) (33)

k) — pk=1) _ (k) (k) (34)

p® = s (35)

pk) = p&) 4 glk)pk-1) 1..DEPT (36)
asynchronous exchange

p) = r0) 4 plk)p(k-1) DEPT..TOTAL (37)

The dependent data 1..DEPT forms a layer on the inside surface of a sub-domain
corresponding to the overlaps of adjacent sub-domains. Equation (36) calculates p®
over this inner surface layer and these values are sent to the adjacent sub-domain(s).
At this point a receive is also posted to obtain the values of p®) required in the
overlap. Calculation of p(¥) in Equation (37) and u(¥) in Equation (29) overlaps the
communication time. The communication is synchronised before calculating the values
of u(®) that require the communicated data.

The success or otherwise of this strategy depends upon the implementation of the
parallel system. If message passing is implemented using dedicated hardware then the
potential for improvement is significant. If however the communication is implemented

312 MCMANUS, JOHNSON, AND CROSS

entirely in software then there is little to be gained as the processor is required
to perform both calculation and communication. Each asynchronous overlap update
also requires an additional synchronisation message which can lead to performance
degradation in comparison with synchronous communication.

30
O—03034 PO
25 - |3—110027 e .
&>——> 30064 P 1
/5s—\ 60005 P
20 I | 2—7119822 e]
o
?
Q15]
b}
o
(7]
10 -
5 | -
O L L L L L
0 5 10 15 20 25 30

no. of processors

Figure 2 Speed-up using synchronous (dotted line) and asynchronous (solid
line) communications in a CGM solver.

The curves in Figure 2 demonstrate a clear performance improvement using a
Transtech Paramid in which each Intel 1860 processor based compute node is equipped
with an Inmos T800 transputer that is used to implement message passing. This system
allows the 1860 to continue processing while the T800 handles the communication. For
performance improvement the asynchronous scheme requires that there is sufficient
calculation between the message initialisation and the message synchronisation to
compensate for the cost of the synchronisation. Performance gains on other platforms
have been less successful as a consequence of both hardware and software limitations.

Discussion

The conjugate gradient method presented has a number of advantages that have led to
it being regularly used in several codes. Parallelisation of the method does not require
algorithmic modification and therefore results in parallel code for which convergence
is largely independent of P. The modifications described have the potential to improve
parallel performance in some cases. Modification of the algorithm in order to further
reduce communication and hence improve parallel performance is possible [DER93]
but this can lead to convergence and stability problems. Further improvement in
the scalability of the parallel CGM will therefore require communication costs to

COMMUNICATION LATENCY HIDING 313

be lowered in relation to compute costs. But the communication performance of
parallel machines continues to lag behind the developments in processor performance.
In particular, inter-processor communication start-up latency is often very high in
proportion to the calculation rate. However, the impact of latency and finite bandwidth
can be effectively reduced if the parallel system provides truly asynchronous (buffered)
message passing.

REFERENCES

[Amd67] Amdahl G. M. (1967) Validity of the single-processor approach to
achieving large scale computing capabilities. In Proc AFIPS, pages 483-485.
[BBC*94] Barrett R., Berry M., Chan T., Demmel J., Donato J., Dongarra J.,
Eijkhout V., Pozo R., Romine C., and van der Vorst H. (1994) Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods. Netlib.

[BIG94] Bjgrstad P. E., Jr. W. M. C., and Grosse E. (1994) Parallel domain
decomposition applied to coupled transport equations. In Keyes D. E. and
Xu J. (eds) Domain Decomposition Methods in Scientific and Engineering
Computing, pages 369-380. American Mathematical Society. Proceedings of
the 7th International Conference on Domain Decomposition, October, 1993.

[DER93] D’Azvedo E., Eijkhout V., and Romine C. (January 1993) Reducing
communication costs in the conjugate gradient algorithm on distributed
memory multiprocessors. Technical Report S-93-185, Oak Ridge National
Laboratory and the University of Tenessee. Lapack Working Note 56.

[GL8&9] Golub G. H. and Loan C. F. V. (1989) Matriz Computations: Second
FEdition. John Hopkins University Press.

[KKS97] Keyes D. E., Kaushik D. K., and Smith B. F. (1997) Prospects for CFD
on petaflops systems. Technical report, ICASE NASA Langley.

[LL94] Lai C.-H. and Liddell H. M. (1994) Preconditioned conjugate gradient
methods on the DAP. In The Mathematics of Finite Elements and Applications
VI, pages 145-156. Academic Press.

[MCJ95] McManus K., Cross M., and Johnson S. (1995) Integrated flow and
stress using an unstructured mesh on distributed memory parallel systems. In
Proceedings PCFD’94, pages 287-294.

[RLO0] Robinson G. and Lonsdale R. (April 1990) Fluid dynamics in parallel
using an unstructured mesh. Internal report, UKAEA.

[She94] Shewchuck J. R. (March 1994) An introduction to the conjugate gradient
method without the agonizing pain. Technical Report CMU-CS-94-125,
Carnegie Mellon University.

