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Analysis of Substructuring in a
Metal Forming Process

A Miiller!, P.Adamidis?

Introduction

Many metal forming processes are solved by the Finite Element method. Due to the
high demands in computing time and storage these methods should be parallelized
especially for nonlinear use. The substructure method is an integrated approach which
allows one to parallelize on the one hand the element loop and on the other hand
the solution process. By decomposition of the element graph, the work is distributed
homogeneously between the processors. The use of a proper numbering scheme for the
nodes gives the system matrix the shape of an arrow matrix which is well suited for
parallel solution.

For this representation we regard the process of twin—roll casting [ABBL198].
Getting results in a reasonable response time is essential to make progress in
understanding complex processes which are, for example, needed in reducing the
number of production steps of manufacturing steel strips [Jes95].

Sequential Algorithm

The metal forming process is analysed by using the Finite Element system Larstran.
This solution system has originally been developed at the University of Stuttgart
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especially for the simulation of nonlinear behaviour of material (in strain—stress and
strain—displacement relations) and geometry (i.e. major displacements and rotations).
The system is now maintained and distributed by Lasso Consulting Engineers. Further
development is also conducted by the Institute for Metal Forming at the RWTH
Aachen. The system has proved successful in practical use and is installed at a number
of industrial customer locations.

Larstran is an implicit code. The calculations are executed in small increments.
Equilibrium of loads and (nonlinear) material reaction is traced by an iteration in
each increment. For the simulation of rolling, a thermomechanical algorithm for slow
viscous motion problems, coupled with transient heat flow processes is used. Both
the mechanical and the thermal problems are iterated to equilibrium in a staggered
solution for each increment. The flow—chart is shown in figure 3.

In this application, the two—dimensional elements are quadrilateral plane strain
elements. For the constitutive law, a superplastic approach is applied. The contact
problem 1is solved by penalty techniques, i.e. boundary nodes of the workpiece are
traced against penetration into the roll’s surface, and in the case of penetration,
correction terms of high order are introduced into the stiffness matrix and the force
vector. The direct solution of the linear equation systems is performed by an LU-
decomposition with a skyline storage scheme of the coefficient matrix [Ort88]. All
involved matrices are symmetric and positive definite.

Parallelization

Parallelization Strategies

An analysis of the computation time of the Finite Element package shows that most
of the computational time is spent in the calculation of the entries in the system
matrices and in the solving modules (more than 95%). It is clearly seen, by Amdahl’s
law, that the parallelization of the solver of the linear system is not sufficient even for
large problems. For a parallelization strategy, the element calculation for the system
matrices has to be accounted for.

Two elementary strategies can be regarded to parallelize the Finite Element system.
One strategy is to parallelize the modules independently from one another, offering the
advantage of a possibly independent modular software development for parallelization.
Another approach is the coordinated parallelization of the two computationally time
consuming parts. The coordination of the element—loop and the solving of the linear
system can be realized by the substructuring method [SBG96].

Substructuring

We start with an unstructured grid and a global numbering as usually used in finite
element programs. Such grids provide information about the coordinates of the nodes,
the topology of the nodes and the assignment of the nodes to elements. A principle
example 1s illustrated in figure 4.

From this information, an element graph is created whose nodes are the elements
and whose edges are between nodes of the element graph iff the elements have one or
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more nodes in common in the original grid of nodes.

In the second step, each processor decomposes the element graph in the same
way, using a partitioning method, as given by the software package metis [KK97]
for example. The partitioning tools aim at a homogeneous distribution of the given
graph with the constraint of a heuristic minimization of the number of interface grid
points (boundary points) between the different partitions. Because of the homogeneous
distribution, the load is evenly balanced, and the minimization aims at a possibly low
cost for the explicit communication using a parallel machine with distributed memory.
After this, all the information about the element graph and its decomposition between
different processes is available to each processor. The chosen number of partitions is
the same as the number of involved processors. With this element partitioning, we can
easily assign the nodes belonging to a processor. One node can belong to more than
one partition.

Each processor now separates the grid points belonging to its partition into inner
grid points — lying only in its partition — and into interface (boundary) grid points
— belonging also to another partition. After this, each processor defines its local
numbering for its inner grid points, to which it has been assigned to, starting from
local number 1. The interface grid points are numbered globally starting from the
maximum of all inner grid points of all partitions plus 1 up to the number of the
interface grid points. The numbering of the boundary grid points is done globally
because of the common use of these grid points by different processors.

Next, the calculation of the contributions of the elements is done in parallel. Each
processor calculates the elements it is responsible for. We get the following local parts
for the system matrix for each processor:

Al Al )
<A§I Aéi),z:l,...,n. (1)
In (1) T stands for inner and B for boundary, and n is the number of partitions,

which is also the number of processors.
The global system matrices have the form of arrow matrices given in (2)

Ajp Ajp

A7y Afp
A= ~ s @)

Apr Arp

AL, .. ... A% App

with
App = ZA%B- (3)
i=1

This global form does not exist explicitly on the parallel system, but rather in parts,
as given in (1).

The compilation of the matrices A}y, Ajp, Ap; and Ajp can be calculated
completely independent of each other in parallel. So, with the exception of Apg,
the other submatrices of (1) are calculated locally and are, consequently, available in
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the local memory — no communication is needed. The sum in (3) has to be generated
by a reduce—operation.
The system (2) can be also written in the form

Arr Ars
Apr A )

So the solution of the system

decomposes into the two parts

Arrer + Arpzp = by (5)
Aprzr+ Appxp = bp. (6)

Under the assumption of regularity of the matrices Arr, we form (6) - ABIA;I]' (5)
and get

AJ,‘B =b (7)

with the Schur complement A
A= App — Apr A7 Argp (8)
b=bpp — Apr A7 br. (9)

Due to the shape of the arrow matrix the calculation of the inner degrees of freedoms
can be parallelized in a straight forward way, which is described in [MA98]. Here we
will present comparisons of sequential and parallel solution of the Schur complement
system. For the parallel solution of the Schur complement we have used the general
direct solver of the public domain package Scal,APACK [EEE*97]. The matrices have
high conditioning numbers. For the solution of such systems the use of direct methods
is more suitable.

Results

The described substructuring method applied to the nonlinear Finite Element Method
has been implemented on the parallel computer IBM RS/6000 SP with local memories.
A software—technical demand was a far reaching use of existing software of Larstran
and the use of existing standard libraries. For basic linear algebra operations, the BLAS
libraries, which are available on all major platforms, have been used. The standard
message passing library MPI [SHLWD96] has been used. The LU-decomposition and
the serial solution of the Schur complement have been executed by the skyline—solver
of Larstran. For the parallel solution of the Schur complement the solver for general
matrices of ScaLAPACK with a block cyclic distribution has been chosen [EEE*97].
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A comparably low degree of freedom is established by the nonlinearity of the
simulated process of metal forming. Within each increment, several thermomechanical
coupled iterations are executed. Each thermomechanically coupled iteration consists
of up to several hundreds of thermal and mechanical iterations. Real world simulation
studies need days of computation time at a workstation.

For the analysis of the parallelization, a two—dimensional model has been chosen.
In the thermal calculation, to each node one degree of freedom is assigned. In the
mechanical calculation, two degrees of freedom are assigned to most of the nodes.
Some nodes at the boundary use suppressed values in the mechanical part, i.e. the
number of degrees of freedom for the mechanical calculation is lower than twice the
number of nodes. Due to the vertical symmetry of the problem, one half of the strip
in figure (2) is modeled. So no horizontal displacement of the grid points laying at the
symmetric axis is allowed. The model size is given in table 1.

Table 1 model size
elements | nodes | degree of freedom
mechanical /thermal

3600 4207 7813/4207

Due to the fixed topology of the grid, the computation of both, the mechanical and
the thermal iteration is constant. Therefore we only compare single iterations between
different runs parameterized by the number of processors.

The main computational portions are the calculation of the entries for the system
matrix (element calculation and assembly) and the solution of the linear systems. In
table 2, time portions of a sequential calculated coupled iteration are listed.

Table 2 Sequential time portions (in seconds) of the time consuming parts

mechanical iteration | thermal iteration
solver 0.17 solver 0.05
element 4.7 element 4.3

In the two—dimensional example under consideration, most of the time is spent in
the element loops. In figure 5, the reduction of time to build up the system matrices
is shown. Because of faster access to smaller data sets a super—linear speed—up was
reached.

Results of time—measurement for solving the linear systems in a mechanical, and
thermal, iteration are demonstrated in figure 6 for different numbers of processors. In
figure 7 the total computational time of the simulation is shown. The comparison of
a sequential and a parallel solver show that the use of a parallel solver for the Schur
complement solution is for a moderate number of processors, slightly better than the
sequential solution.
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Figure 3 Flow chart of the coupled algorithm
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Further Work

Parallelization of three-dimensional modeling of this problem is currently under
consideration, for this and other modeling tasks. Furthermore, a comparison with
overlapping domain decomposition (Schwarz—methods) is in progress.
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