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Preconditioning Operators for
Elliptic Problems with Bad
Parameters

S.V. Nepomnyaschikh'

INTRODUCTION

In this paper we design preconditioning operators for the system of grid equations
approximating the following boundary value problem.

2
~ G, Ou
- g —aij(r)l-l-ao(a:)u:f(m), reQ, u(z)=0, z€T (1)
et} Oz, " 0x; : ' : '
We suppose that Q is a bounded and polygonal domain, where T' does denote its
boundary. Let € be a union of n 4+ 1 nonoverlapping subdomains €2;, such that

i=0

holds. Here we have the polygonal subdomains €; in the interior of 2. Their boundaries
are given by T';, ¢ = 1,...,n. The domain Qg is defined to be multiple connected

having the boundary I' |J(J T;). We denote by H; = diam(Q;) the diameter of the
i=1

i-th subdomain, i = 1, ..., n. We assume small parameters H; such that

0<H; <1
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is valid. Furthermore, for any subdomain €;, if there exists a subdomain €; such that
dist(2,Q;) < a1 H;
holds, then the conditions
H; =0(H;) and a2H; < dist(Q,Q;)

must be fulfilled, where a1 and a5 are constants wich are independent of the parameter

H;,i=1,...,n. This means that for any subdomain €2; there is no other subdomain
in the neighbourhood determined by O(H;).

Let us introduce the bilinear form
2

a(u,v):/ Z aij(x) Ou_ v +ap(z)uv | dx

8;‘[3' 6]3'
) 1= J 2
Q i,j=1

and the linear functional

I(v) = ﬂ/ f(z)vdz.

We suppose that the coefficients of the problem (1) are such that a(u, v) is a symmetric
bilinear form in the Sobolev space H( (). Let the inequalities

asa(u,v) < /e($)|grad(u)|2 < aqalu,v) Yu € Hy(Q).

be fulfilled with positive constants as, a4, which are independent of the parameter e.
Here we fix
€(z) = const = ¢;, Yz € Q,
where we have
=1, 0<eg<l, i=1...,n. (2)

The linear functional [(v) is continuous in H}(£2). The weak formulation of (1) is given
as follows. Find u € HE(Q) such that the following is valid for all v € H}(Q)

a(u,v) =1(v) . (3)

n
Let Q" = |J QF be a quasiuniform triangulation of the domain 2, which can be

characterizédoby the parameter h.

We denote by W the space of real continuous functions being linear on the triangles of
the triangulation Q. Using the finite element method, see e.g. [Mar82], the variational
formulation (3) can be transfered to the well known system of linear algebraic
equations

Au=f. (4)

The condition number of the matrix A depends on the parameters h, H; and ¢;, and
can be large. Our purpose is the design of a preconditioner B for the problem (4),
such that the following inequalities are valid for all vectors u € R

c1(Bu,u) < (Au,u) < ea(Bu, u) . (5)
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Here the symbol NV denotes the dimension of the space W, and ¢1 and ¢y are positive
constants independent of the parameters h, H;, and ¢;. Furthermore, the multiplication
of a vector by B~! should be easy to implement numerically causing low costs.

The preconditioning operator B is constructed by using the nonoverlapping and
overlapping (but without ”overlapping” in the coefficients) domain decomposition
methods. The analysis of these methods refers to the well known Neumann-Dirichlet
domain decomposition method. However, the suggested methods do not require the
exact solution of subproblems with Dirichlet boundary condition.

NONOVERLAPPING DOMAIN DECOMPOSITION

The construction of the preconditioner for the system (4) is performed by means
of the Additive Schwarz Method, see e.g. [Lio88],[MN85],[MN88]. To design the
preconditioning operator B, we use [Nep9la],[Nep92] decomposing the space W into
a sum of subspaces as follows

W =W+ W,

We divide the nodes of the triangulation Q" into two groups, those which lie inside of

.14 . =h
QF i =1,...,n and those which lie in Q,. The subspace W, does correspond to the
first set. Let us introduce the following sets

5= ot
i=1

Wo={u" e W| w'(z)=0,2e0},

W07i:{11,h6W0| uh(m)zo, 2€QrY, i=1,2,...,n.

It is clear that Wy represents the direct sum of the orthogonal subspaces Wy ; with
respect to the scalar product in Hj(Q)

Wo=Wo1®...0 Wopn .

The subspace W; corresponds to the second group of nodes in Q" and can be defined
as follows. Let the set V be the trace space of the functions given by W on S, i.e. we
have

V={" ¢M)=u(z), zeS u"ewW}

To define the subspace Wi, we need a norm preserving extension operator of functions
given on S into Q". The corresponding construction is based on the following trace
lemma.

Lemma 1 Let Q be a bounded domain with piecewisely smooth boundary I' satisfying
the Lipschitz condition. Let

diam(Q) = H .
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And let Q" be a quasiuniform triangulation of Q. We denote

A2 . - H 22 2 .
017y gy = Hllelgey +1007

lellzamy = Jre(2)d,

= [ [ (w(lrg:glgy)) dzdy .

)’

2
|S0|H%(F)
Then, there exists a positive constant ¢y, which is independent of the parameters h, H,
such that
h h
19" 13y < erllu®llr o)
and
|

1 < c1|uh’|H1(Q)

e YT

hold for any function u® € W, where " € V is the trace of u" on the boundary T.
Vice versa, there exists a positive constant co, which is independent of h and H, such
that for any function ©* € V we have the function u* € W with

uh(x) = gah(x), zel,

h h
el < enllel gy

|u" |2

IN

h
C2 |§0 |H%(F) .
To define the subspace Wi, let us use the explicit extension operator
th vV S W, (6)

which was suggested for second order elliptic problems with smooth coefficients, such
that for all gah eV

h T N ) h
[u™llm () = 17" @) < eslle®ll 6

holds, where the corresponding norm is given by

2 _ N2
Ielres) = Nl e,

For defining and implementing the numerical algorithm see [MIN93],[Nep86],[Nep91c].
Now, we can define the subspace W, as follows

Wi={ut] wu'(z) = ("")(x), € i=1...n ¢"(@)=2"(x), €S,
u () = vP(x), xeQb v ew}

Obviously we have

W =Wy+ Wy,

and this decomposition of the space W is stable in the following sense.
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Lemma 2 There exists a positive constant c4, which is independent of the parameters
h, H; and ¢;, such that for any function u" € W there exist functions ul € Wi, i =0, 1,

such that we have
h

ug +uj =,
h _ h h _ h h . h
a(ug, ug) + a(uy, uy) < csa(u”,u") .
Let C;,i=0,1,...,n be the preconditioning operators in the finite element subspaces
H{(4). Hence, we have the following inequalities for all u® € W N H{(Q;)

esl[u sy < (Cru,w) < ol [inga, (™)

where the constants cs,cs are independent of the parameters h and H;. For
example, these operators C; can be constructed using the fictitious space lemmata
in [Nep91c],[Nep91b],[Nep92],[Nep95],[Xu96]. We extend the operator C; outside of
Q; by zero and denote by C;" the pseudo-inverse operator belonging to this extension.
We introduce the following operator

1 1
Biay =tCJt7 + —Cf 4+ —C .
1

7

Here the operator t* is the adjoint to ¢. The following theorem holds.

Theorem 1 There exist positive constants cz,cg, which are independent of the
parameters h, H; and ¢;, such that the following inequalities are fulfilled for all u € RN

¢1(Bnovts, u) < (Au, u) < co(Bnov, u) .

OVERLAPPING DOMAIN DECOMPOSITION

The goal of this section is the design of the preconditioning operators for the problem
(4) without using the extension operator ¢ given in (6).

Let C' be the preconditioning operator in the finite element space W, such that for all
functions u® € W we have

crl[u [l @) < (Cuyu) < ellu ([ gy

where the constants ¢y, ¢y are independent of h. We denote the preconditioner BZ! as
follows

1 1
Bl =Cc'+—=Ct+. . +=C}.
€1 €n
Here the pseudoinverses Cit are given by (7). The following theorem holds.

Theorem 2 There erxist positive constants cs,ca, which are independent of the
parameters h, H; and ¢;, such that the inequalities

e3(Bovt, u) < (Au, u) < ca(Bovu, u)

are fulfilled for all u € RV
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Proof:
In the case of ¢, = 1,4 =1,...,n, using Theorem 1 there exist constants cs, ¢, which

are independent of h and H;, such that
cs(C'_lu, u) < tCHt* +CfH +-. - +CFr < 66(0_1u,u)

holds for all u € RN. From (2) we get

1
+ —C:_)u, u)

€n

1
0< (CHu,u) < — < (Cifu,u) Yue RN.
)= .
Hence, we have
-1 + 4% 1 + 1 +
(Bnovuﬁu) = tCUt +_Cl ++_Cn
€1 €n
1 1
< tcgft*+cl++---+c,f+€—Cff+---+€—cn+
1 n
1 1
< maxdes, (O™ + CF + -+ L0 )u, u) = maxdes, 1}(B'u, u)
€1 €n
1 1
< max{es, ymax{—, 1}(tCFt* +Cf +- -+ CF + —Cf + -
cs €1
< 2max{cs, l}max{i, 1}(Bru, u) .
Cs

Remark The above Theorem 2 can be proved directly without using the extension

operator t.
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