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Implementational Aspects of
Prewavelet Sparse Grid Methods

A. Niedermeier', S. Zimmer?

Introduction

For sparse grid discretizations of elliptic PDEs [Zen90, Bun98, BD98], prewavelet bases
[CW92] have been introduced to construct fast iterative schemes [GO94, GO95]. In
this paper, we want to recall that the implementation of the prewavelet preconditioner
is simple, since 1t fits in the usual tensor product scheme underlying the sparse
grid approach. The only extra work we have to take care of, are one-dimensional
basis transformations and a diagonal scaling; all other calculations, especially the
application of the stiffness matrix, are done in the hierarchical basis. Another way to
use prewavelets is to implement a complete solver with explicit use of the prewavelets.
At first glance, this seems to be more involved than its hierarchical basis counterpart,
due to the larger support of the basis functions. But for the Helmholtz equation on
the unit cube, it turns out to be a much simpler code than in the usual hierarchical
basis, since it decomposes completely into one-dimensional subproblems.

In the following two sections, we describe the discretization with the piecewise
d-linear tensor product basis (hierarchical or prewavelet) that, in the case of more
than one spatial dimension, can be used for sparse grid discretizations. Due to the
tensor product structure of our discretization, we may first restrict the discussion
of the corresponding algorithms to the one-dimensional case that we will later
apply sequentially in each coordinate direction. We will pay special attention to the
exchange of information between different levels, since this is the crucial part for
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Figure 1 Left: the hierarchical basis B (solid lines) and the semidefinite
system BF (solid and dashed lines). Right: prewavelets for [ = 3.

the generalization from one to an arbitrary number of dimensions, see [BD98] as an
example.

Finally, we will demonstrate the application of the stiffness matrix for the Helmholtz
equation in the prewavelet basis and give some numerically computed condition
numbers.

The one-dimensional case

For the one-dimensional case, let Q; be the regular grid on [0, 1] with mesh size h; = 2~
and inner grid points {z;;,1 <i < 2" — 1}, V| be the space of functions u : @ — R,
piecewise linear with respect to €, and with «»(0) = u(1) = 0.

The nodal basis BlN and the hierarchical basis BlH for V; consist of the dilated and
translated standard hat function ¢(z) := max(1 — |z|,0), corresponding to the grid
points: ¢;;(z) := é((z — i - h;)/h;). Namely, we have B := {¢;;,1 <i<2' — 1} and
B == {¢y;,1 < k<land 1 <i<2"—1,iodd}. The hierarchical basis leads to a
splitting

Vi = Wi (1)

with the hierarchical increments Wy, 1= span{¢x i, 1 <i < 2% —1,i odd}.

The non-orthogonality of (1) with respect to the Ls-Norm leads to difficulties
in the construction of efficient solvers for elliptic PDEs. It can be overcome by
the introduction of prewavelets [CW92, GO94, GO95], which provide partial Ls-
orthogonality for the price of basis functions with a larger support.

The prewavelet basis Bf of V; is constructed by collecting basis functions of the
orthogonal complements with respect to the La-Norm of Viy_1 in Vi, 2 < k <. The
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natural choice here are those basis functions 1; ; with minimum support:

1 3 3 1
Y= m@,i-z - 5(251,1'-1 + é1i — 5¢l,i+1 + m¢l,i+2

for 3 < i < 2 —3, i odd, and two special cases on each level [ > 1 for the two grid
points next to the boundary:

9 3 1
Y= E(/)m — 5(/)1,2 + E(/)l,s,

Yy 21_1 symmetrical, and finally 911 := ¢1 1. Then, we define B = {k i1 <k <
land 1 <i<2F —1,iodd}. The corresponding splitting

with the hierarchical increments Wy := span{vg i, 1 < i < 28 — 1,io0dd}, is
orthogonal with respect to the Ls-Norm, but each t; (sufficiently far away from
the boundary) overlaps with four other ¢y ; of the same level { (two on each side)
without orthogonality.

We assume that the coefficients uff with respect to the hierarchical basis and
coefficients uf” with respect to the prewavelets are arranged in a binary tree.

The use of a generating system [Gri94a, Gri94b]
!
Bf =] BY
k=0

that contains the nodal bases of all levels will be useful — here not for the construction
of multilevel methods, but as an intermediate storage for the transformation between
different bases. The storage for the additional coefficients in the extended vector ulF
is provided by lists of length I — & in the nodes of depth k in the binary tree.

Now, we turn to the transformation of the prewavelet coefficients ulP into the
hierarchical basis. Besides the use of this operation in the context of a prewavelet
preconditioner (where it is basically the only module in the solution process that
knows about prewavelets) it can be used as a final step after the direct computation
of the solution in prewavelet coefficients, and it can serve as a template for the
general structure of all the modules we will need for our solver. On each level,
the transformation from the prewavelet basis into the nodal basis is simply the
application of a 5-point-stencil with the coefficients (11—0, —%, 1, —g, %) — with obvious
modifications for the points next to the boundary. Since this nodal basis is part of
the generating system, we get by level-wise application a transformation from the
prewavelet basis into the Bf. To conclude the transformation, we could append a
second sweep that runs from the finest towards the coarsest grid and eliminates the
coefficients of the basis functions that do not belong to the hierarchical basis. However,
it is more economic to avoid the overhead of two tree traversions and combine both
sweeps, which is simply a reordering of the operations.

For the extension to d-dimensional problems, we will keep this algorithm on a
one-dimensional binary tree as black box. However, it is important to note that the
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Figure 2 The scheme of grids corresponding to the hierarchical increments

W;; in K (all grids) and K3 (black grids only) for d = 2, 1 = 3.

information transport is only bottom-up: the output coefficients for one specific level
k do only depend on the input coefficients of this and the finer grids k¥ < k' <.

The reverse transformation can be implemented in a similar manner, but it requires
the solution of a pentadiagonal linear system of equations on each level. Here, the
transport of information is bottom-up, too. The adjoint operators are constructed by
the execution of the adjoints of their elementary operations in reverse order. Here, the
flow direction changes: they are of top-down type.

The d-dimensional case

The general d-dimensional case is a straightforward tensor product approach. On the
unit cube [0, 117 we define for the multi-index 1 := (l1,...,13) the grid Q with mesh
sizes by = (2711, ...,279), grid points x13 = (%1, 4,,...,%1,,i,), Diecewise d-linear
ansatz functions

I
P1i(x) = H Dty in (Tk),
k=1
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I
Y1i(x) == ]___[ Vi in (k)
k=1

and hierarchical increments Wy := span{¢y;, 1 < i; < 2k — 1, t;odd forall 1 <j <

d}.

With these Wy we can build our finite element space

W= P Wi

keK

for some index set K. The usual full tensor product space is given by K¥ := {1, l; <
1,1 < j < d} for some fixed [. For reasons of efficiency, thinking about the cost/benefit
ratio of the different grids, however, we also allow subspaces hereof, where the only
condition on K is to preserve hierarchy:

kecK=Vk'<k:k'cK

with the component-wise relation k' <k :< V1 < j < d: k; < kj. A typical choice
for K, which results in a sparse grid scheme, is

d
KS:={1,> [ <l+d-1}, (2)
j=1

see, for example, [Zen90, Bun98].

From the implementational viewpoint, the major difference between KF and
schemes like KS is the absence of a finest grid Q.1 in the latter case. This makes
the usual way of implementation of hierarchical basis algorithms impossible, which
uses a transformation onto the finest grid and there the nodal basis. In our case, the
operations like application of the stiffness matrix have to be implemented explicitly
on the hierarchical basis.

A suitable data structure for the coefficient vectors provides a nested structure of a

binary trees, one for each coordinate direction k = 1, ..., with the k£ — 1-dimensional
structures as node values — except for £ = 1, where the actual coefficients are stored.
The general principle to extend our one-dimensional algorithms — one may for

example think of the transformation from the previous section — consists of one outer
loop over the dimensions in which we set up a set of one-dimensional binary trees,
namely for those grid points whose coordinates differ only in the k-th component,
one for each value of this component. On each of these trees, we perform the one-
dimensional algorithm.

With respect to the computational domain, this leads to a decomposition into a
possibly large number of subdomains that are treated as one-dimensional objects. In
contrast to most domain decomposition methods, the orientation of the subdomains
is not fixed, but changes with the loop over the dimensions — there is no explicit
mechanism for communication between the subdomains.

For the full tensor product space, one can easily convince oneself about the
soundness of this algorithm, if we consider a test vector with all but one coefficient
zero, and take into account the linearity of the operators.
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For sparse grid spaces, which are no tensor product spaces themselves, but subspaces
thereof, things are more difficult, since the flow of information in the full grid scheme
in some cases uses finer grids as intermediate storage. They are no longer guaranteed
to exist — the assumption on the index set 1s an assumption about the existence of
coarser grids. As an example, consider the scheme from figure 2, and a one-dimensional
algorithm that is applied first along horizontal lines and then along vertical lines
in the scheme. If both top-down and bottom-up transports take place, information
interchange from the lower left grid €(; 4 to the upper right grid Q4 1) would require
the finest grid Q4 4).

The direction of the information transport (bottom-up, e.g.) is the important fact —
the d-dimensional algorithms work if, and only if, after a top-down transport towards
finer grids, no bottom-up transport in any other coordinate direction is necessary.

Therefore, the transformations between ulP and ulH are no special problem — all
transport is done bottom-up. The adjoint transformations can also be handled with
this technique, since here all one-dimensional operators work top-down.

Note that we do not need permanent storage for the additional coefficients of the
d-dimensional semidefinite system Bf, since we use them only as intermediate storage
within the one-dimensional black boxes. This is important, since the number of extra
coefficients for fixed mesh size h grows roughly like 2¢.

Application: The Helmholtz equation

For the solution of the Helmholtz equation Au— Awu = f on € with Dirichlet boundary
conditions, we have to evaluate the integrals

A-/ﬂu(x)-v(x) dx+/ Vu(x) - Vo(x) dx

Q

for u, v € Vg by application of the stiffness matrix. Since for tensor product functions

d d
u(x) = [T wilz;), v(x) =[] vil=),
Jj=1 j=1

the above integrals can be split up into the one-dimensional integrals

/ (@) oo da, 3)

—.

<
1l
—

> [ o) it to-TT [ o) 1)t “

j#i” 0
the one-dimensional building blocks for the application of the stiffness matrix, are the
application of the one-dimensional stiffness matrices A and B corresponding to

a(u,v) = /01u'(m).v'(x)dm and  b(u,v) = /01 u(z) - v(z) da.
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Table 1 Condition numbers for the scaled prewavelet stiffness matrix on
sparse grids (2), A =0 (top) and different values of A for fixedd =3 and { =7
(bottom).

l)ld=1|d=2|d=3|d=4|d=5|d=6|d=T7|d=28
2 5.2 4.5 4.1 3.8 3.6 3.4 3.2 3.1
3 7.8 8.4 8.0 7.8 7.5 7.3 7.1 6.9
4 10.1 12.5 14.3 13.9 13.4 13.0 12.7 12.3
5 12.0 16.2 21.0 24.9 24.3 23.7 | 23.1 22.6
6 13.1 19.8 27.2 35.7 | 43.3 - - -
7 14.1 23.1 33.7 46.2 - - - -
8 14.8 25.5 40.0 - - - - -
A | 0 | 102 | 10% | 108 | 108
/~c|337|288|11.9|86|86
Due to our tensor product bases — and again the linearity of the operators — they

are sufficient for the d-dimensional problem.

The one-dimensional algorithms are of quite different character for the hierarchical
basis and for the prewavelets, respectively. The hierarchical basis is a-orthogonal, A7
is therefore diagonal, there is no exchange of information between the levels. The
mass matrix BY | however, is comparatively dense — the basis function of level one,
for example, 1s coupled with all other basis functions. The transport of information
takes place top-down and bottom-up as well. In the prewavelet basis, different levels
are orthogonal with respect to . On each level, a pentadiagonal matrix arises, but
there are no interactions between the levels. Here, the matrix A” is quite dense (the
most convenient way of implementation is the transformation into the hierarchical
basis) and causes top-down and bottom-up transport between the levels.

If we put it together for the integrals (3), (4), we note that for each summand we
have at most one integral of type A and d or d — 1 of type B. This causes difficulties
for the hierarchical basis, since there are transport processes up and down in more
than one coordinate direction and we can no longer apply the standard loop for d-
dimensional problems. The algorithm to overcome this — that splits up the upward
and the downward data — is relatively complicated, see, for example, [BD9S§].

In prewavelets, this problem does not arise, since the levels are decoupled in all but
possibly one direction. So, we get with the straightforward d-dimensional extension
the complete algorithm for the stiffness matrix of the Helmholtz equation on sparse
grids. And — after diagonal scaling — the matrix is well conditioned (which was the
original reason to introduce prewavelets for sparse grids).

To illustrate this, in table 1 we give some numerically computed condition numbers
for the scaled prewavelet stiffness matrix on sparse grids (2). They were computed
by simple power iterations with the algorithms above on a 133MHz Intel Pentium
personal computer [Nie98].
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Summary
The prewavelet basis for sparse grid discretizations results — besides the well
conditioned stiffness matrices — in a particularly simple code for the solution of

the Helmholtz equation on the unit cube, since the orthogonality properties allow
the direct tensor-product type implementation with the number of spatial dimensions
simply as a loop parameter.

For more realistic problems, as, for example, on transformed domains, this advantage
is lost. Then, it will probably more reasonable to implement the generalizations in an
code for the hierarchical basis and to hide the prewavelets in a preconditioner that
simply consists of the transformation between prewavelets and the hierarchical basis,
its adjoint operator, and a diagonal scaling, and gives the same condition numbers as
the direct implementation in prewavelets.
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