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Is there a curse of dimension for
integration?

ERICH NOVAK'

INTRODUCTION

How does the cost of optimal methods increase with the dimension? We answer this
question for integration of very smooth functions that are defined on the d-dimensional
unit cube. For suitable classes of smooth functions the order of convergence of optimal
methods does not depend on d. Nevertheless we prove exponential lower bounds for
quadrature formulas with positive weights. Therefore the optimal order of convergence
does not say much about the tractability or intractability of a problem.

This paper is about lower bounds, valid for arbitrary methods. The lower bounds
are proved for the problem of numerical integration. Since numerical integration is
part of the problem to solve a partial differential equation, these lower bounds can be
applied to the (more difficult) problem of solving PDEs.

Let F; be a class of functions defined on the unit cube Q4 C R%. We assume that
Sa : Fa — G4 18 a sequence of operators which we want to approximate. For example
Sa(f) = u could be the solution of a linear PDE Au = f. To approximate Sy we use
methods @, based on n function values,

Qn(f) = e(f(z1),..., f(zn)), (1)

where ¢ : R?Y = G4. The (worst case) error of @, is given by

e(@n) = sup [|Sa(f) = @n(f)llca
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the nth minimal error by

en(Fa) = glfe(Qn)

The number e, (Fy4) is the error of the optimal method for the class F,, using at most
n function values. The numbers

n(e,d) = min{n | e, (Fy) < e}

are a measure for the complexity of computing the operators Sq : Fqg — Ga.

In this paper we are mainly interested in lower bounds. We want to show that
even for “simple” problems we have exponential lower bounds; hence there is an
inherent “curse of dimension”. Therefore we only consider the integration problem,
where G4 = R and

Sa(f) = A f(z) de.

Our classes Fy; will be unit balls with respect to a norm. Then it is known that it is
enough to study linear methods of the form

Qu(f) = Z ci f(xi) (2)

with ¢; € R and z; € Qq, since arbitrary nonlinear methods (1) cannot be better than
linear methods (2), see [TWWS88] or [Nov96]. For the classes F; considered in this
paper we have

e(Qo) = eo(Fa) =1, (3)

where Qo(f) = 0 is the trivial quadrature formula. Hence the problem is properly
scaled for all d. We say that @, is positive if ¢; > 0 for all ¢ = 1,...,n. Positive
formulas are preferred due to their strong stability properties. Therefore we also define

et (Fa) = iane(Qn),
where the infimum only runs through the set of positive quadrature formulas (2), and
nt(e,d) = min{n | e} (Fs) <e}.

The order of convergence of e, (Fy) is known for many function classes F4. We often
know that
en(Fa) < et (Fa),

but we usually do not know whether e,(F;) and e} (F;) are equal. We only mention
two specific results. Let W¥([0, 1]%) be the classical Sobolev space with the norm

1Al = > ID*AIL,, (4)

|| <k

where a € N¢ and |a| = 27:1 ay, and let BW ([0, 1]¢) be the unit ball of W¥ ([0, 1]9).
We assume the imbedding condition 2k > d. It is well known that

en (BWE ([0, 1]%) < f (BWS ([0, 1]) < n™*/4,
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Instead of BWYX | defined by the norm (4), we can define a set BH5 by the tensor
product norm

11z = D2 ID*FIIZ,, ()

o <k

where the sum is over all @ € Ny with a; < k for all I. We obtain a space H%([0, 1]%)
of functions with bounded mixed derivatives and denote its unit ball by BH% ([0, 1]9).
It is known that

en(BHE([0, 1Y) < e (BHE([0, 1]9) < n™F - (logn) (=172, (6)

In [NR96] we constructed quadrature formulas using nonuniform sparse grids based
on the Chebyshev knots. These quadrature formulas have the following key properties,
see also [NR97a] and [NRITh].

e Simplicity. The formulas can be easily computed for arbitrary dimensions
d, also for weighted integrals with a weight p of tensor product form. We
need O(n) arithmetic operations to compute the knots and weights of
@, from suitable univariate quadrature formulas.

e High Polynomial Ezactness. A small number of knots is sufficient to
integrate all d-variate polynomials of a given degree exactly. We need

na 28k dF

knots for exactness of degree 2k + 1 if k is fixed and d is large. The
well known lower bound is roughly 1/k!. d*. Thus we have a polynomial
dependence on the dimension d, and the exponent k is best possible.

e Uniwversality. Small errors are guaranteed for many different smoothness
classes. If f has bounded derivatives up to order k then

[1a(f) = Qn(f)] = O(n™*/"- (log m) (= DETHY), (7)
If £ has a bounded mixed derivative f-%) then
[£a(£) = Qn(f)] = O(n" - (log n){*= VD), (8)

These two estimates are optimal — up to logarithmic factors — in both
smoothness scales. The bounds (7) and (8) hold for all £ € N, hence the
method is not only almost optimal for a specific class of integrands but
universal, i.e., it is almost optimal for many different function classes.

Sparse grids with equidistant sets of knots were often studied in the literature.
Some authors mainly discuss periodic functions and then equidistant knots are quite
adequate, see [Tem93] and [CNR98]. We prefer to study the general (nonperiodic)
case and then it is much better, already for d = 1, to use nonequidistant knots, such
as the Chebyshev knots. These knots, or modifications of these knots, were also used
by [Co098], [FHI6], [GGI8], and [NRSS97]. In [NRS98] we discuss related quadrature
formulas for the Wiener measure, see [Ste99] for the proof of polynomial error bounds.
For the problem of interpolation or optimal recovery, see [BNR98], [Spr97a], and
[Spr97b].
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The order of e, (BHE([0, 1]¢) is between n~* and n=*+° for any § > 0, inde-
pendently of d. Hence we may say that the order of convergence does not depend
on d. It is tempting to say that the complexity of the problem does not depend on d,
there is no curse of dimension. We will show in the following that such a conclusion
would be wrong.

Consider the following problem. Assume that k£ € N is fixed and consider

nt(e,d) = inf{n | ef (BHE([0, 1]%) <.

The problem is to verify whether nt (g, d) depends polynomially on d and ¢~1. If so
then the problem is tractable, if not then it is intractable. Observe that the known
order (6), with unknown constants that depend on d, does not say anything about
tractability. We proved in [Nov98] that the problem is intractable since

EI(BHQk([Oa 1]d)2 2 I—n 'cga

where ¢ < 1 does not depend on d. It is still open whether such a lower bound also
holds for the e,, i.e., for arbitrary quadrature formulas.
We now consider “very smooth” functions. We use the norm

1£7 = > I flI7, (9)

ocENg

and define
Fa={f:Q—=R[|fllr, < 1}.
Observe that

Fac (1) BH5([0,1]%)
k=1
which yields
6;{; (Fd) < cdk .nk
for all d,k € N, where ¢4 > 0 depends on d and k. Moreover we have et (Fy) =1
for all d, so the problem is properly scaled and the order of convergence is very high
for all d.

Nevertheless we will prove the exponential (in d) lower bound
er(F)?>1—-n- ?,

where ¢ = 0.995, for positive quadrature formulas. For the proof it is convenient to
consider even smaller classes BV of functions. The BV contain polynomials of degree
at most two in each variable. For any fixed € < 1 we need a number n of sample points
which increases exponentially with the dimension. We do not know whether arbitrary
quadrature formulas for the class Fj; are better than positive quadrature formulas.

We finish this section by a bibliographic remark. Explicit upper bounds (without
unknown constants) were recently obtained by [WW95] and [WW9g]. The paper of
[SWO8] contains upper and lower bounds for certain tensor product Hilbert spaces
and for quasi-Monte Carlo methods, i.e., for formulas with equal weights ¢; = 1/n.
Some lower bounds can be generalized to the class of positive quadrature formulas,
see [Nov98] and [Woz98]. General results about tractability of linear problems can be
found in [Woz94a], [Wo0z94b], and [NSW97]. For related results see also [SW97] and
[HW99].
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OPTIMAL ERROR BOUNDS AND OTHER EXTREMAL
PROBLEMS

We begin with the definition of the classes V; of functions on Q4. Here Q4 is
the unit cube in R? which we define, for convenience, in a shifted way through
Qq = [-1/2, 1/2]%. The space V; is generated by f1 = 1, fa(z) = z, and f3(z) = z°.

These functions are not orthogonal, with respect to the usual Sobolev-Hilbert norms

k
1 = D IDFIIE, (10)
j=0
and hence we prefer the functions e; = 1, ea(z) = , and eg(x) = 2 —1/12. The ¢;
are orthogonal for each norm (10). We obtain [|e1]|yx = 1 for all k,

lleallws = (1+1/12)*/7
for all £ > 1, and
lesllws = (4+1/3+1/180)"/?
for all k > 2. We define a scalar product on Vi by (e;,e;) =0 for ¢ # j and
(e1,e1) =1, (ea,e2) =13/12, and (e3,e3) = (4 +1/3 4 1/180).

We denote by BV; the unit ball of V; with respect to this norm. The norm on V;
coincides with the k-norm (10) for each k& > 2 and also with the norm (9).

For d > 1, we define Vj as the tensor product V; = Vi ® ...® Vi (d times). The
dimension of Vy is 3%. On the space V; we define the tensor product (cross-) norm by

d
(i1 ®ft, 01©...©90) = [] fm, 9m)- (11)
m=1
Let BV denote the unit ball of V4. The norm defined by (11) is the same as (5), for
each k > 2, and is the same as (9). Hence we obtain BV; C Fy and e} (BV,) < e}f (Fa).
Observe that
Li(f)y=(1) and =1,
for all d € N. Tt follows that e(Qo, BVy) = eo(BVa) = 1, see (3).
A Dirac functional f — f(z) can be written in the form

f(2) = (92, f)
for all f € V; since we have a kernel reproducing Hilbert space. Here ¢, is a suitable
element of V; which is a tensor product of the respective §,m, where z = (z!,... z9)

and d,m € V;. To find the
3
b= i) e
j=1

in the case d = 1, we have to solve the linear system e; (z) = ¢; () (es,€;), fori = 1,2, 3,
and get

122 2 —1/12

— e3(z)= ———i————.

13 4+ 1/3+1/180

Therefore we obtain the following lemma.

ci(z) =1, ea(z) =
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Lemma 1 The kernel k1 of V1 is given by

12¢y  (2? — 1/12)(y? —1/12)

ki(z,y) = (05,0y) = 1 + 13 44+1/34+1/180

For d > 1 the kernel is given by

ka(z,y) = (5, 0,) H

where z = (z!,...,2%).

Later we need the values
kmin = inf kq(z,y) = 0.94 and kmax = inf kq (2, 2) =~ 1.005.
T,y T
For our approach it is important that the kernel is positive, k1(z, y) > 0. It is easy to
check that N
e(Qn, BVy) = H] -3 ids,

i=1

for @, of the form (2). The optimal error bounds e, (BVy) for quadrature formulas are
related to the solution of the following extremal problem for polynomials. For given
points z; € Q4 find

feVy with f(zy)=...= f(z,)=1 and ||f|| - min!
We define the numbers

g(n,d) = sup inf{||f||* : fFE€ Vi, flz1)=...= flzn) =1}.

T1,--,Tn

Then one can prove that g(n, d)+e,(BVy) = 1, the proof is similar as in [Nov98], where
a different kernel and periodic functions were studied. It follows that for d,n € N and
® > 0 the following statements are equivalent:

(a) ef (BVa)® > 1 - @;
(b) Any linear system of the form

> cikalwi, xg) =1, (12)

i=1

j=1,...,m, with m < n and a solution that satisfies ¢; > 0 for all ¢

fulfills Zm_ c; < P.

Consider the linear system (12) for ¢; > 0. The diagonal elements are at least kg
and the off-diagonal elements are at least k%

max

& in- Summing up all the equations we get

m m
m = Z ci kq(xi, xj5) > Z(’Z g ax — kL)
i,j=1

i=1
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This yields

C; 7 T 7 ]

i=1 max min max min

Hence we obtain the following lower bound.

Theorem 1 Let d,n € N. Then
EI(BVd)Z 2 T—n- (kgnax + (n - 1)kg11n )_1 -

We end this paper with a remark. We showed that high dimensional integration is
intractable for positive quadrature formulas, even if the functions are very smooth. If
weighted norms are considered, however, then certain high dimensional integrals can

be computed efficiently, see [SW98] and [Nov98].
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