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Intertface Preconditioners and
Multilevel Extension Operators

P. OSWALD'

INTRODUCTION

Interface problems arising in nonoverlapping domain decomposition methods can often
be viewed as restriction of the original elliptic problem to a discrete trace space.
As has been demonstrated in many particular examples (see the references below),
this connection can also be used for the construction of interface preconditioners
and extension operators. We present an abstract additive Schwarz framework for this
deduction, with applications to multilevel schemes.

ABSTRACT FRAMEWORK

We assume familiarity with the theory of stable space splittings and additive Schwarz
methods for solving symmetric positive definite (spd) variational problems in a Hilbert
space [DW90, Xu92, Osw94a, SBG96]. Let the bilinear forms a(:,-) and b;(-,-) be
bounded and spd on V' and Vj, respectively, and R; : V; — V be linear operators.
Then we call

{Via} 2> Ri{V;;b;} (1)
J
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a stable space splitting, with stability constants 0 < pq < pa < oo, if

pra(v,v) < |||v]||* = inf bi(vi,v;) < paa(v,v) Yv eV . (2)
’U]'EV]':’U:ZJ_R]"U]'ZJ-:

If ViCcV and if R; represents the natural embeddings then R; will be omitted. The
upper estimate is equivalent to assuming that for any v € V and any ¢ > 0 we can
find a decomposition

v=D Rivi, v €V i 3 bilvi) < (14 uealv ), (3)
J J

while the lower bound in (2) is often reduced to the verification of so-called
strengthened Cauchy-Schwarz inequalities [Xu92].

Given a continuous linear operator T : V — X | its range V C X, can be converted
into a Hilbert space if we introduce the following norm on V:

blly = jnf Ikl ¥oEV. (4

E.g., if V is a function space with domain Q, and T represents a trace operator to
a subset T' then this is the common implicit definition of the trace space norm. The
construction of equivalent ezplicit (or intrinsic) norms is one of the major problems
in the theory of trace spaces. Given a # € V, the construction of a v € V with & = Tw
and ||v|lv < Cent||9||y is called extension problem. Clearly, one is interested in an
as small as possible constant Cezt < 00, and an efficient realization of the mapping
E : v — v. Similar definitions occur in connection with Schur complement problems
in substructuring methods.

We present the assumptions for a generic construction of a stable space splitting
for {V;a} if a splitting (1) is available for {V';a}. Here, a(, ) is a bounded and spd

bilinear form on V. In particular, this implies that
a(Tv, Tv) < Cia(v,v) YveV, (5)
and that for any o € V
dveV : 9=Tv, a(v,v) < Cra(v,7) . (6)

with some absolute constants 0 < C,Cy < co. Suppose that T; acts on V;, with range
Vj, and that bounded spd forms Bj on V} are introduced (in complete analogy with

the introduction of V and @). We assume that all appearing constants are uniform
w.r.t. j. In particular,

bj(Tyvs, Tyvs) < Csbi(vi,v;) Vv €Vj, (7)

for some (3, independent of j. Let E; : V; — V; be right inverses of T, T; E; = Id\”/ja
such that

bi(Ejij, Ejoy) < Cabj(9,95) Vv €Vj, (8)
for some Cl4, independently of j. The last, and most critical condition is on the kernels
of the operators T; and T'R;: For all j,

N(T)) CN(TRy) - 9)
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Theorem 1 Under the assumptions (5), (6), (7), (8), and (9), the stability of (1)
implies the stability of the space splitting

{Via} =Y Ri{V;ibj} (R; =TR;E;), (10)
J
with stability constants ji1, fig satisfying

0 < (C1C4) "'y < iy < iz < C3C3p9 < 00 . (11)

Proof. Let © = Zj le")j be any representation of 4. Set v; = E;i; and v = Zj Rjv;.

Tv=> TRjv;=> TR;Eji; =Y Rji; =1,
J J J
and by (5), (8), and the lower estimate in (2), we have

a(v,0) = a(Tv,Tv) < Cra(v,v) < Cipyt ij(vj,vj)
J
= Cipy " Y bi(Ejvy, Eyig) < CiCapy Y bi(o5,55) -
J J

Obviously,

This gives the lower stability estimate for (10).

In the other direction, take a v with ¢ = Tw satisfying (6), and decompose it
optimally in the sense of (3) using the upper stability estimate in (2). Set u; = F;Tjv;,
t; = Tjvj, and observe that Tj(u; — v;) = (T;E; — Td(,j)TjVj = 0. Thus, by (9)
0=TR;(u; —v;) =TR; E;Tjv; — TRjv; = Rj?")j — T'Rjv;. This implies

v :TU:ZTRJ"UJ' :ZRJ'{)J' s
J

J

and, taking into account also (7),
D bilig, ) = > bi(Tyvy, Tivg) < Cs > bj(vj,v5)
J J J
(14 €)Capsa(v,v) < (14 €)CoCausa(v, v) .

Letting € — 0 finishes the proof of Theorem 1. Note that we could have replaced (9)
by the slightly weaker condition R(Idy, — E;Tj) C N (TR)).

IN

Corollary 2 Under the assumptions of Theorem 1, given an arbitrary © € V, let

v € ‘}J be such that the analog of (3) holds:
b= Rit; 1 > bi(v;,0;) < Csa(v,9) . (12)
F ,

J

Then a suitable extension w = Ev € V of v satisfying v = T'u s given by

u= Z RjE;v; ©  a(u,u) < CyCsa(v,v) < 0104C5vevi:nﬁf:TU a(v,v) . (13)
J
If v; = ij) for some linear operators Qj V= ‘7J then the extension operator

E = Zj RjEij © V = V is linear and bounded.
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A particular instance, where this abstract framework for constructing additive
Schwarz preconditioners and extension operators can be applied, are multilevel
splittings based on a hierarchy of spaces

Vehwi Ly in (14)

where I; : V;_1 — V; are given prolongation operators acting between subsequent
spaces of the hierarchy (again, nesting of {V;} is not assumed). Setting V' = V; and
assuming that ¢ = ay is a bounded and spd bilinear form on Vj, the associated
multilevel splitting is given by

J
(Viarb =D RI{VibY,  Ri=I...Lip, 0<j<k. (15)

7=0

Suppose that (15) is stable, uniformly w.r.t. J. Assume that the sequence T} is given,
and that 7' = T. Furthermore, let (5), (6) hold with a,a replaced by ay,a, and
with constants independent of J. We keep the requirements (7) and (8), while (9) is
replaced by the existence of another set of linear operators

Lo Viea= Vi TiLi=LTi, j21. (16)
This new requirement implies (9) since
TJR}-] = (Tyl5)lj-1.. Ly = fJ(TJ_1[J_1) L= = I.. ,fj+1j}. )

Thus, Theorem 1 and Corollary 2 are applicable, leading to splittings and extension
operators for {Vy;as} and J-independent constants in the estimates. Moreover, by
the same reasoning we obtain the recursion formula

R =TyRIE; =1, . . pnTjE;=1;...Ij31, 0<j<J<oo.

This is important for the efficient implementation of additive and multiplicative
Schwarz methods associated with {V;}.

APPLICATION

Applications in the spirit of Theorem 1 for preconditioning Schur complement
problems in substructuring methods for finite element discretizations of second order
elliptic boundary value problems are well-known (see [Osw94b], sections 2.3 and 7.1
of [XZ99], [Kho98b] for some special cases and further references). Thess [The98] has
recently worked on applications to fourth order plate and shell problems. The Stokes
problem has been treated in [Kho98a].

We illustrate the application of the above abstract framework by deriving an optimal
complexity extension procedure for linear finite element boundary data on locally
refined meshes (for similar results on preconditioning, see [KP98]). For simplicity, let
Q be a bounded polyhedral domain in R9, d > 2, equipped with a nested sequence of
regular, quasi-uniform simplicial partitions 7| of element diameter ~ 277, 5> 0. Let
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‘N/j be the space of linear finite elements w.r.t. 7|, the standard basis function in ‘N/J
associated with a vertex P;; of 7| is denoted by Nj ;. Nested refinement is modelled
by selecting a finite increasing sequence

w:QGCQaC...Q{]CQ:H_l:Q, (17)

where each Q;-, 1 < j < J,isorempty or the closure of the union of some simplices from
Tl-co- The sequence Q; = clos(Q\Q{) is decreasing and, roughly speaking, represents
the simplices of 7|_o which are refined at level j. The spaces V; are spanned by all
basis functions N;; for which P;; belongs to the interior of €;, and as the finite
element space V' corresponding to this refinement process we take V = ijo Vi
(this construction is discussed in [Osw94alsection 4.2.3, be aware of some index errors
there!). It is easy to see that an algebraic basis A for V is given by all N;; € V;\Vj41,
Jj < J. Although V is not a traditional finite element space associated with an
triangulation, its approximation power on each domain €; is almost as good as that

of V; (and less good in Qf). Along the lines of [Osw94a]section 4.2.3 it follows that

J
Vit m@t 2>, > Vin 29 )}, (18)
j=01i:N; €V;
where V; ; are the one-dimensional spaces spanned by individual NV; ;, and with bounds
for the stability constants that are independent on J and {Q}}. The stability of the
splitting (18) expresses nothing but the optimality of BPX multilevel preconditioning
in the nested refinement case, and can be derived from the corresponding result in the
uniform refinement case (see [Osw94a]Theorem 19) by quasi-interpolant techniques.
Let us now consider the construction of a discrete harmonic extension operator
E:V= Vir = V, where T is the boundary of Q (note that everything extends
to polyhedral manifolds I' consisting of (d — 1)-dimensional faces of simplices in 7;).
Obviously, V = Zj:o f/j, where ‘A/J = Vjr C ‘N/j = ‘N/J|r The sequence {‘A/J} could
have been derived by a nested refinement procedure on I' similar to the one described
above (consider the triangulations ’7} induced from 7, on I', and use Q; = Q; NT for
the increasing sequence (17)). A basis in V} is given by all non-vanishing NM = Njilr,
where N;; € V;. Accordingly, a basis NinV is given by all Njyi € ‘A/j\f/ﬂ_l, j<J.
Let T : V — V, Tii » Vii— ‘A/jﬂ- coincide with the restriction of the trace operator
Ir to the corresponding spaces (if Pj; ¢ I' then f/jJ is the null space and 1} ; the null
operator). Since the operators R;; represent the natural embeddings for V;; C V,
condition (9) is automatically fulfilled. Define extension operators Ej;; : ‘A/jﬂ- - Vji
by simply setting Ej,i(CNj,i_) = cN; ;. Combining the E;; with j fixed leads to the
usual level-j extension-by-zero operator E; : V} — V;. Obviously, the assumptions
(7), (8) are satisfied if we set

bjyz-(u, ’U) = 22j(u, U)Lz(ﬂ) y bjﬂ'(ﬂ, ’a) = 2‘7(’&, ﬁ)Lz(F) .

From the first part of Theorem 1 it follows that

J
{V;('a')f’} EZ Z {Vj,ian('a')Lz(F)} (19)

i=0i. N, eV,
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is also a stable splitting.
The next steps are as follows. First, it can be shown that

lolle % ol = inf | iy Vie T (20)
This relates the || - || norm defined in (4) to the norm in the trace space H'/?(T) for
H'(Q) functions (intrinsic H'/?(T') norms are described, e.g., in [Kho98b, Xu92]).
By definition of || - ||;;, we obviously have ||13||H1/z(r) < |I9|ly- The proof of the
opposite estimate uses the same techniques as were applied in [Osw94a]section 4.2.3 to
derive (18) from the standard BPX-splitting for the whole space { H'(Q); (-, -)g1}. The
necessary quasi-interpolant operators will be described below, the details are omitted.
Secondly, in order to define an extension operator £ : V — V along the lines
of Corollary 2, we need a realization of (12). Using the Ly-stability of the finite
element bases (this fact will be used below without further mentioning), the desired
representation follows if we construct a sequence of linear, uniformly Ls-bounded
projections ]Sj t La(T) — ‘N/j such that Qj = Is’j — ﬁj_l maps V into ‘A/j, 0<53<J
(set P_y= 0). We use specific quasi-interpolants: Set

Pio(x) = Y (8, M) Loy Njil=) | (21)

i:Pj el

where the functions 5\”- are piecewise linear (but not continuous!) on the (d — 1)-
dimensional simplices of ’73 and have support /A\j,i consisting of a few simplices attached
to Pj;. More precisely, we define

A, ] supp ISIJJ if supp Njyi C Qj+1 (22)
77 suppNj; N Qf,, otherwise ’ /

To ensure the projection property w.r.t. ‘A/j, we define
Sislo) = ([ M) Mgata), e dys (23
Aj

where the piecewise linear function 1;“ has value d at P; ;, and —1 at all other vertices
of simplices attached to P;;. The reader can easily verify that

(Njs Aji)eamy = 8y 18,42 < CPE Vo)l 5

which ensures the projection property w.r.t. ‘N/j and the uniform Ls-boundedness of
the ]Bj, respectively. Finally, if & € V then # is a linear finite element function w.r.t.
7)-oco outside Qj. Thus, by our choice of the /A\j}i, both ﬁj and Pj_l reproduce ¢ on
Q; exactly. This gives Qj@ = 0 on this set and since Qj@ € Vj we arrive at Qjﬁ € VJ
for any v € V. i .

Let Q;; (Q; = Y ; Qj,i) be the resulting linear mappings from V into the one-
dimensional ‘A/jﬂ- corresponding to the basis functions Nj,i- Using the properties of
ﬁ'j, Qj in conjunction with (19), (20), from Corollary 2 we deduce
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Corollary 3 Under the above assumptions on the refinement process, the multilevel
extension operator E = 23.1:0 E;Q; = Zj:o > E1iQji V=V satisfies

1Edlma) < Clldllmngy VYIEV, (24)
where the constant C' s independent of the particular refinement process.

We briefly describe how to efficiently implement this extension operator. First of
all, we need to fix vector representations for finite element functions in V and V.
In both cases, we could use the bases N/, N mentioned above or (allowing for some
non-uniqueness in the representation) slightly larger generating systems

R={NM): MyeV,|<T}, R={Xj,): X,en, |<T}.

Tt can be shown that #R < C#N, #R < #N, with C independent on the refinement
process. The operator F naturally maps any ¢ into a coefficient vector w.r.t. a subset
of R of the same size as R, and can be implemented in O(#?@) operations. Thus,
except for the conversion of E4 into a representation w.r.t. N, storage and amount of
work associated with E are proportional to dim V.

To substantiate this claim, we outline a computational scheme for ij). The basic
idea is to switch to yet another representation of finite element functions, this time
w.r.t. the standard basis of discontinuous piecewise linear functions w.r.t. the given
nested refinement structure. Set B = U}-Izolgj, where l;’j consists of all piecewise linear
functions ”(&AJD with support in a simplex A € ’i} belonging to Q; and having value
1 at the vertex P of A and vanishing at all other vertices. Minimally, a suitable Q;
should contain Qj and possibly an additional layer of ’7}_] simplices containing the
supports of all NM whose supports intersect with Qj+1 (the reason for this will become
clear below). Obviously, the size of B is still within a constant multiple of dim V. We
also need the subsets B} C l;’j of all those functions @Ayp for which A € Q;\Q;_H
(again, Q}_H ={, and Q} = Q).

The unique coefficients of © € V wr.t. B = U;-Izol% can be computed fast, from
either the R or the A representation, by recursion in j = 0,1,...,J. After this, by
recursion in j = J,J — 1,...,0, all scalar products (@&A,P)LQ(F) associated with
functions ’(&A’P € Bj can be computed in an amount of operations which stays
proportional to #85. Indeed, for a level j simplex A & Q;\Q;_H this reduces to a
multiplication with a local Gram matrix, while for A C Q;f_H the refinability of the
basis functions ﬂA is used: each such function can be expressed as a linear combination
of a fixed finite number of functions 1/;A/7p/ associated with A’ € ’7}+1 n Q}fﬂ for which
the corresponding integrals have been computed before. Finally, by formula (2}) this
gives the coefficient vector of ();o = P;o — P;_10 in the standard basis of V' if we
express the Njyi as the corresponding finite linear combination of @A and recall that
due to Pj@ = pj_lf) outside Qj only terms with supp Nj@ C Qj and Nj_lyi % 0 on
Qj are to be considered (here, the special definition of Q; is used). Concatenating all
these vectors results in the coefficients of Ev w.r.t. R (coefficients corresponding to
functions N;; € R with N;i|lr = 0 are set to 0). More details can be found in an
extended version of this note at http://cm.bell-labs.com/who/poswald.
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CONCLUSION

We have presented an abstract framework for deriving multilevel preconditioners and
extension operators, such as needed for interface problems and other Schur complement
problems arising in non-overlapping domain decomposition methods for symmetric
elliptic boundary value problems. The basic assumption is the availibility of a suitable
multilevel decomposition for the global variational problem. Details are given for linear
finite element discretizations on partitions arising from nested local refinement.
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