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Robust Subspace Correction
Methods for Thin Elastic Shells

E. E. OVTCHINNIKOV & L. S. XANTHIS'

Introduction

In this paper we address the issue of developing subspace correction methods for
thin elastic shells which are robust with respect to the thickness, i.e. they exhibit
convergence which is not adversely affected by the small thickness of the shell.
This kind of robustness has been tackled so far only in some specific cases, such
as zero curvature and linear approximation in the transverse variable (see e.g.
[Bre96, Kla96, AFW97, BS98]). In this paper we invoke the so-called Korn’s type
inequality in subspaces [OX96, OX97b, OX97a, OX98a] to present a technique for
developing robust iterative subspace correction methods applicable to thin elastic
shells of arbitrary geometry discretized by finite elements of any order.

Boundary value problem of elastostatics.

Consider a boundary value problem of linear elastostatics in variational form:
ueV: Fuv)=Fv) VWeV (1)

where the space of admissible displacements V is given by

V:{vEHl(Q)31v200nrcaQ}, QCR?
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and the elastic energy form £ is given by
E(u,v) = / e(u)" He(v)dQ,
Q

where the vector ¢ is formed by the six components of the strain tensor:

1/ 0u;  Ou;
= T Py = — ¢ J
E(V) = (611,522,533,512,623,631) y  Eij 2 (&Ej + 3$z’>

and H is symmetric positive definite matrix whose elements are piecewise smooth
functions. The right-hand side of (1) is given by

F(v):/f~de+/ T vdly, To=0Q\T
Q To

Here and throughout the paper we use boldface for 3-vectors, i.e. u= (u1, us, us) etc.

Thin shell.

The domain of a shell is defined as an image 2 = @(Q) of a plate-like reference domain

Q:
Q={ (€ 6m): (€1.6) €Q C R 5 <n< 3}

We assume that the mapping (z,y, z) = ®(&1,£2, 1) is

e continuous and piecewise-C?

e non-degenerate on
e linear in g

Numerical solution.

Let us approximate the space of admissible displacements V by e.g. the space of
piecewise-polynomial functions:

VaV={veV:ivodeV "}

where V77 is the space of piecewise-polynomial functions v(&£1,£s,n) which are of
degree p in &1, €2 and of degree ¢ in 7. By Galerkin projection onto V¢ we obtain the
following discretization of (1):

uru? e VP B(uf? vPY) = F(vPY) YvP? g Ve 2)

In this paper we consider the solution of the problem (2) by iterative subspace
correction methods of additive type (see e.g. [Xu92]).
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Additive subspace correction (ASC).

In this section we omit for simplicity the superscripts p and q.
Assume that the space V is decomposed into the sum of subspaces:

V=V 4+...4V,

Following the subspace decomposition technique (see e.g. [Xu92, Osw94]) we can
transform the problem (2) into an abstract operator equation

Tu=g (3)
where

T=N+...4+T,, g=g1+..-+8,
T,:Vo>V;,: E(Tv,w)=E(v,w) YwWeYV;

gicVi: Eg,w)=F(w) YweV;
The equation (3) is then solved using a suitable iterative algorithm:
uftl = uf 4 or (Tuk -g)

Each iteration involves the calculation of Tu* which, according to the definition of
the operator T, amounts to solving problems in subspaces. Thus, the problem in the
whole space V is reduced to solving problems in the subspaces V;.

Subspace splitting and convergence of ASC.

There are several approaches to analysing the convergence of the above iterative
scheme of which we opt for the one suggested by Oswald which is based on the concept
of a stable subspace splitting [Osw94].

If a norm || - || is introduced in each subspace V; then the set of pairs
{Vi, |l lGy Yi=1,n is called a splitting of the pair {V,||-[|}, which is formally expressed
as

VI = YAV -l (4

The so-called additive Schwarz norm [] for (4) is defined as

[v] = inf (Z ||v1||?z)) v, €V, Zvi =v
i=1 i=1

and the following two values are called characteristic numbers of (4):

M [v]

ag = inf =—~, @ = sup ——
veV [[v]l’ veV [[v]]
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and the ratio ao/ao is called the condition number of this splitting.

If the energy norm is taken for the norms in V and V;, ie. || || = || ||(Z-) =g =
E(., -)1/2 then the condition number of the operator 1" is equal to the condition number
of the corresponding splitting (see e.g. [Osw94]).

Stable splitting and robust convergence.

The splitting of the space VP? is called stable if its condition number is uniformly
bound with respect to the number of subspaces, the discretization parameters p and
q and the parameters of the problem we are concerned with (in the case in hand -

thickness of the shell).

If the splitting is stable, then the condition number of the operator 7' is also
uniformly bound with respect to the parameters mentioned above, and accordingly
the convergence of the subspace correction method is robust with respect to those
parameters.

A well-known example of the technique for developing subspace correction
methods which are robust w.r.t discretization parameters is the overlapping domain
decomposition technique. A less known example is the effective dimensional reduction
algorithm (EDRA) [OX95]. This algorithm is based on the following semi-discretization

of the space V:

Viz={veV:ivod= Zvi(£1;€2)Qi(277/t) }

i=0

where @; are the eigenfunction of the eigenvalue problem

1 , 1
/ dQi dQ dn = )\i/ Q:Qdn YQ: polyn. of deg. ¢
—1 dn dy -1

The semi-discretized problem is solved using the additive subspace correction method
with the subspaces given by

V%H—] = { ('U]r,Ug,vg) evl: V5 o® = w(&;&)@z@’?/t)a vg =0, k ;é] }J
J:1,2,3, Z:O,,q

The EDRA is robust with respect to to the semi-discretization parameter ¢, but, just
as the overlapping DDM, it is not robust with respect to the thickness in general, i.e.
unless special decompositions are used, such as those presented later on in this paper.

Classical Korn’s inequality: diagnosis

The convergence of iterative methods for thin elastic structures deteriorates because
of the poor coerciveness of the elastic energy form E as diagnosed by the classical
Korn’s inequality (see e.g. [Fic72, Hor95]):

Ct?||v||? < BE(v,v) YveEV
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where || - ||1 is the Sobolev norm, i.e.

3
W= [ v+
Q2 i=1

2
| 0

Korn’s inequality in subspaces: treatment

In the Korn’s type inequality in subspaces recently introduced by the authors (see
[0X96, OX97b, OX97a, OX98a]) the constant in front of the Sobolev norm is
expressed in terms of the angle between a given subspace and the subspace Vg of
the displacements which are linear in the transverse direction:

YUCYV OBy, IV < E(v,v) ¥veU (5)
where

Vo={veV:vod=v(&,&) +nvi(&,€2) }
and

BU w = min min [lu—wil:
! uelU weW ||11||1

This paves the way to overcome the difficulty: taking proper care of the displacements
which are linear in the transverse direction.

More economic alternatives for Vg

Assume for simplicity ® = I and V = H}(Q)3. The subspace Vy in (5) can be reduced
to

VO = { (77“(51,52);771’(51;52);10(51,52)); u,v,w S Hé(QE) } (6)

or to

Vo ={ (nw(éy, &), nw(ér, &), —w(é, &), we HE(Q) }

Robust ASC for thin shells.

First approach.
Theorem 1 [0X98b] Denote V5 = Vo N VP9, [f the constant ag for

(VLI = Z{Vé’q, IRIEY;



110 OVTCHINNIKOV AND XANTHIS

s independent of n,p,q,t and

7

EQ) vi) <CYE(vi)

i=1 =

then
(VP e} = {VE I e} + D _{VEL || - [}
i=1

15 stable and, hence, the corresponding ASC' is robust with respect to n, p, q and t.
The conditions of this theorem are satisfied by most overlapping DDMs with V£

added to the usual subspace decomposition.

Second approach.
Theorem 2 [OX98b] If the space VP can be decoupled into the sum

VI =VEL VI B(VEVEY) 2 By > 0

and the splitting
(VAL D) = SOV )
i=1
is stable then
(VP4 lleY = {VG [l - I} +2n:{qu, -1z}
i=1

1s stable and, hence, the corresponding ASC' is robust with respect to n, p, q and t.

The conditions of this theorem are satisfied by EDRA with V..., Vg replaced by
V% or, in the case of a plate, with V3, V4, V5 replaced by the subspace V§ given by

(6)-

Numerical example.

Here we present numerical results for the shell shown in Fig. 1. The elastic moduli are:
E =4-10"" and v = 0.2 for the outer layer and E = 10' and v = 0.4 for the inner.
The left horizontal edge is clamped (i.e u = 0) and the right edge is simply supported
(i.e. uz = 0) and subject to a unit traction force in the direction of the z-axis (i.e.
Ty =1 and Ty = 0). The front edge is simply supported (i.e. us = 0). The discretised
problem is solved using the modified EDRA described briefly in the previous section.

Tables 1 and 2 show the number of the iterations of the subspace correction method
executed until the relative residual falls below 10~* for ¢/ R = 0.01 and various values of
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z

Figure 1 Two-layered thin elastic shell.

Table 1 Uniform convergence with respect to p (¢ = 20).

Polynomial degree p 1 2 3 4
Number of iterations | 13 16 16 16

111

p and ¢. Table 3 shows the number of the iterations of the subspace correction method
under the same stopping criterion for p = 2, ¢ = 20 and various values of ¢/ R. These
results clearly demonstrate that the convergence of the subspace correction method
based on the splitting given in the previous section is uniform with respect to the
thickness parameter ¢ and the discretisation parameters p and ¢. Thus, the subspace

correction method presented here is robust with respect to all these parameters.
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