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Comparison of three algorithms for
nonlinear metal cutting problems

C.J.Palansuriya', C-H.Lai?, C.S.Ierotheou?,
K.A.Pericleous?, & D.E.Keyes®

Introduction

The properties of a metal can alter and the quality of the cut may degrade considerably
due to high temperatures generated in a cutting process. Therefore, the determination
of the temperature generated in applying a cutting tool is of industrial interest. The
cutting process can be regulated, by actively controlling the speed of the cutter, as well
as the application of coolant fluid at the cutter points. This active control may also
lengthen the lifetime of the cutter. The active control of the cutting process requires
real-time simulation of the temperature distribution. This implies the requirement of
fast algorithms.

This paper compares three alternative numerical algorithms applied to a nonlinear
metal cutting problem. One algorithm is based on an explicit method [PLIP98] and
the other two are implicit. Domain decomposition (DD) is used to break the original
domain into subdomains, each containing a properly connected, well-formulated and
continuous subproblem. The serial version of the explicit algorithm is implemented in
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FORTRAN and its parallel version uses MPI (Message Passing Interface) calls. One
implicit algorithm is implemented by coupling the state-of-the-art PETSc (Portable,
Extensible Toolkit for Scientific Computation) [BGLS] software with in-house software
in order to solve the subproblems. The second implicit algorithm is implemented
completely within PETSc. PETSc uses MPI as the underlying communication library.
Finally, a 2D example is used to test the algorithms and various comparisons are made.

The dimensionless 2d nonlinear metal cutting problem

The metal cutting problem considered here is a 2D thin sheet of metal defined in the
domain D = {(z,y) : 0 < < 1 and 0 < y < 1}. The material properties are assumed
to be homogeneous across the domain of interest and the following assumptions are
made for idealised cutting :- (a) the application of a cutting tool at the cutter points
is equivalent to the application of a heat source at these points, (b) no phase changes
occur during cutting and (c) the thickness of the cutter is negligible. The cutting is
considered to be applied along the y-axis at x = z.. These assumptions lead to the
following dimensionless 2D nonlinear, unsteady, parabolic, heat conduction equation,

Ou 0 Ou 0 Ou
k + @(k‘(u)@) + QC(yat)J(m_mc) € D; (1)

Fr %( (“)%)

subject to initial condition u(z,y,0) = Ui(z,y), boundary conditions u(0,y,?) =
Bo(y,t), u(l,y,t) = Bi(y,t), u(z,0,t) = Co(z,t) and u(z,1,t) = Ci(z,t). Here
u(z,y,t) is a dimensionless temperature distribution, k(u) is the conductivity of the
metal, Q.(y,?) is the unknown source being applied at z = z., §(z — z.) is the Dirac
delta function and U;, By, By, Cy and C; are known functions. The unknown source
strength may be retrieved by integrating (1) from =z = z; to z = z} [PLIP9g].
Temperature sensors which are located at x = z;, where 0 < z, < z; < 1, are used to
record the temperature variation.

For simulation purposes, the sensor temperatures are modelled by using a periodic
function u(z,,y,t) = ay(y — 1)?sin(wt). The maximum value is generated by the
amplitude «, and the variation with respect to time is generated by the angular
frequency w.

Problem partitioning

Problem partitioning is by a DD method applied at the mathematical/physical
problem level [Lai94]. This decomposition provides the primary level of parallelism
to the algorithms as discussed in Section 35. In order to solve the inverse problem
given in (1) with the additional condition available at = x,, problem partitioning is
carried out to produce three subdomains, such that each subproblem may be solved
using a different numerical algorithm. The three subdomains are:

Di={(z,y):0<z<z;and 0 <y < 1}
Dy ={(z,y) zs <z <zcand 0 <y <1}
Dy ={(z,y) ;ze<z<land 0<y<1}
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This problem partitioning removes the unknown source term Q.(y,t) and the
Dirac delta function which are associated with the differential equation. The three
subproblems (SPs) can be written as follows:

SP: G = L)) + Sk %) € D
subject to wi(z,y,0) = Ui(z,y), u (O,y, ) = Bo(y, 1),
ui(zs,y,t) = u*(y,t), ui(z,0,t) = Co(z, ), u(z,1,t) = Ci(x,1).

SPy: Gt = f(k(ua) G2) + £ (k(us) G2) € Do
subject to us(z,y,0) = Ui(z,y), Uz(rs,y,t) = u*(y, 1),
auz(gmyﬂf) — 3u1(§;yy7t)) UQ(I,OJt) = C()(I‘,t), Uz(I, 1,t) = 01(-73,t)

T

SPy G2 = filkus) 52) 4 f(kus)5) € Dy

subject to wua(z,y,0) = Ui(z,y), us,(acc, y,t) = ua(ze, y, 1),
uz(1l,y,t) = Bi(y, 1), ua(x,0,t) = Co(z,1), us(z, 1,y) = Ci(z,1).

Since the temperature values are given at y = 0, y = 1, = 0 and there are
temperature sensors located at & = =z, Dirichlet boundary conditions are defined
at the boundary of D;. The solution of the differential equation provides the required
data to calculate the heat flux —(xs,y, ). Therefore, with the knowledge of the
temperatures u(z,,y,t) acquired by the temperature sensors at £ = x,, an initial
value problem can be formulated in Ds. u(z., y,t) values may be obtained by solving
this initial value problem. Finally, with the calculated temperatures u(z., y,t), another
Dirichlet problem can be formulated in Ds. The above three subproblems are well-
defined [BBSJ85] [Zwi89]. Hence a unique solution exists for each subproblem and the
union of these gives the temperature distribution of the original problem.

Algorithms

Algorithm 1

To solve the probelms in SP; and SPs, a first-order forward difference approximation
of the temporal derivative and a second-order Finite Volume (FV) approximation of
the spatial derivatives leads to a five-point explicit scheme. Dropping the subscript
used in denoting the subdomains, the explicit scheme for the subdomains Dy and Ds
can be written as,

uz(-j}+1) = rzbl(-n)u,z(-r_l)lj + rzaz(-n)uz(-i)lj +(1- rxaz(-n) — rxbz(-n) — ryc;n) — ryd;n))ul(-j})%—
T'ydg'n) z(r;) 1+ Tyey o8 573)4-1 (2)
(n) (n)
where (i, j) denotes the (4, j)-th grid point, r, = (AA;)E, ry = (AA;)E, az(-n) = %,
(n) (n) L) E(m) k() )
b(.”) = 716’ ! 12+k ;.n) = 7’ i th , d;n) = 7’ =it , (n) denotes the time-

step, At is the step size along the temporal axis and Am Ay are the grid spacmgs
along the spatial axis z, y, respectively. The initial Value problem in SPs is solved
by employing a second-order Euler Predictor-Corrector (P-C) method along the z-
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axis for each time-step. Again, the spatial derivatives are discretised using second-
order FV approximations and the time derivative with a first-order finite difference
approximation. The two step P-C method can be written as:

(w*:(z)“l’i’ <3>new=<3>+%{i+f}, (3)

u —_ u —_ v
we v = 8 0= £(1) = (- gemg-ro ) ™

*

i* =f :j ) . A second order spatially accurate solution may be obtained for each

of the three subproblems. Therefore, it is expected to have a second order spatially
accurate global solution for the inverse problem (1). The effect of the local truncation
error for SP is minimised because of the small size of the subdomain which usually
consists of only a few Euler P-C steps. All experiments showed stable results as long
as the CFL condition 7., 7, < 0.25 was satisfied.

Algorithm 2

Newton’s method is applied to Dy and D3 and leads to an implicit method. Using
Newton’s method, the iterative scheme for solving an equation of the type F(U) =0
may be implemented as,

{ Solve
F'(Un)Vim = —F(Unm)

Update
Um+1 = Um + Vm

} Repeat until [|V]|| < Tol

For the metal cutting problem, F(U)
F'(U) is,

FU) = K(U)(32) + 20(0)?

+E(U)(55)7 + 2K(U)5

Subdomain Dj uses the same Euler P-C method as in Algorithm 1. This algorithm is
fully implicit and PETSc is used to solve the linearised systems in Dy and Ds.

'<U)2j’£ + k(U) gz

o + ;
vy T RO g + MU)gE - 5

|q§’|tz

Algorithm 3

All three subdomains are solved by using the Newton’s method as described in
algorithm 2. This algorithm leads to a global linearised system for all three subdomains
and they are solved using PETSc.

The implementation of the above three algorithms highlights the fact that the
generation of homogeneous and continuous subproblems due to problem partitioning
facilitates the use of general purpose libraries, as well as the coupling of subdomain-
specialized software solutions.
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Exploiting parallelism

The problem partitioning is referred to as “domain parallelism” [ILPP98]; using this
concept, each subdomain generated due to the problem partitioning can be mapped
directly to a processor and these subproblems may be solved concurrently. However,
domain parallelism has an obvious limitation in that it is limited by the number of
subdomains and therefore it does not scale with an increasing number of processors.
Data partitioning may then be carried out within each subdomain and this is referred
to as “domain-data parallelism” [ILPP98].

The parallel implementation of Algorithm 1 is carried out as follows. Dy is assigned
to one group of processors and Dy and D3 are assigned to another group of processors,
see [PLIP98, ILPP98] for further explanation. Each processor in a group exploits the
data-parallelism within the subdomain or subdomains it owns. For Algorithm 2, three
groups of processors are created, one subdomain for each group. In order to re-use the
in-house software for initial value problem, Ds 1s isolated. Again, each processor within
a group exploits the data-paralellism in the subdomain it owns, see Figure 1 (dotted
lines represent data partitioning). In Algorithms 1 and 2, there is a homogeneous data
dependency within each subdomain. Therefore, data partition along z- and y- axises
can be carried out arbitrarily within each subdomain.

In Algorithm 3, all three subdomains are solved using one global linearised system.
Therefore, data parallelism is used to partition the global linearised system into blocks.
However, data partitioning along the z-axis may produce blocks with different sparsity
structures, depending upon how Ds is allocated between the blocks, and therefore with
potentially different load balances and interprocessor message patterns. Hence, we only
partition along the y-axis.

[
=4
c

FTTTT

D1 D2 D3

Figure 1 An example of partition for Algorithm 2

Numerical results

Thermal results are obtained for equation (1) with z, = 0.5, z. = 0.6, U;(z,y) = 0,
Bo(y,t) = 0, Bi(y,t) = 0, Co(x,t) = 0 and Ci(z,t) = 0. The sensor points are
modelled as u*(y,t) = ay(y — 1)%sin(wt), with @ = 0.1 and w = 2. The nonlinear
heat conductivity is given by k(u) = 1+1u2. The temperature fields and the retrival

of source/sink strength may be found in [PLIP98]. Figure 2(a) shows the numerical




ALGORITHMS FOR METAL CUTTING PROBLEMS 327

comparison between the three Algorithms, which shows virtually the same numerical
results. The sequential implementation of the algorithms was tested for performance
in a Sun Sparc 5 workstation. The runtimes are shown in Figure 2(b). Algorithm
1 does not perform very well since it is using a very small At, necessary in order to
satisfy the CFL condition. There is no significant difference between the discretizations
of Algorithm 2 and Algorithm 3. The latter is more efficient since it solves the
subproblems using one system matrix, with a better load balance.

Temperature distribution at y=0.4 & t =0.1
0.014

Algorithm 1 ——
0012 Algorithm 2 - Serial execution tines
X Algorithin 3 +--0--- Agorithm 1 -
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Figure 2 Horizontal solution profile and serial execution times for all three

algorithms.

The parallel implementations of the Algorithms were tested on a network of Sun
Sparc b workstations connected together by an ethernet network. The execution times
and the speedups are given in Figures 3, 4 and 5. Algorithm 1 shows very good
scalability with increasing number of processors. This is due to the explicit methods
in the Algorithm which avoid global synchronisations. Only halo (ghost) points need
to be communicated between processors. The other two Algorithms require additional
communications in each step of the iterative scheme that lead to more moderate
speedups.

Sun Sparc 5.0 timings Sun Sparc 5.0 Speedups

—+— 10000 (100x100)
—X— 20000 (100x200)
—— 40000 (200x200)
—5— 80000 (200x400)

Speedup

10000
5000
— X

— %

Serial 2 4 6 8 10 12 2 4 s 8 10 12
Number of processors Number of processors

Figure 3 Parallel performance results for Algorithm 1.
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Serial and parallel run timesfor algorithm 2 Speedups for algorithm 2
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Figure 4 Parallel performance results for Algorithm 2.
Serial and parallel run times for algorithm 3 Speedups for algorithm 3
(Sun Sparc 55) (Sun Sparc 5s)
0 — £ - 20000 (200¢10D) 8
6004 — -0 4000 (AT 4
50 -2 - BODO(A00C00) s,
T e g1
g oo B a 2%
200 o TO—llo g o 1
100 -0 - D - O —-——___71 0+
od 3 5 7 11 2
3 5 7 M 12 Number of processors
Number of processors
Figure 5 Parallel performance results for Algorithm 3.
Conclusions

The use of alternative numerical algorithms developed by applying DD to the problem
domain, in order to calculate the temperature field and to retrieve the unknown source
term at the cutter is presented. The three algorithms perform the computation to the
same effective accuracy. Algorithms 2 and 3 give better sequential execution times
than Algorithm 1. Tt is shown that good parallelism can be exploited from the DD-
based algorithms by using domain-data parallelism and pure data parallelism. An
MPT implementation is used to investigate the parallel performance of domain-data
parallel versions of the algorithms in a distributed computing environment, that is
in a network of Sun Sparc workstations. The parallel performance results show that
the two parallelisation strategies can be used effectively in a distributed computing
environment.
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