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The Parallel Solution of
Early-exercise Asian Options with
Stochastic Volatility

A.K. Parrott ', N.A.L. Clarke ?

Introduction

This paper describes an parallel semi-Lagrangian finite difference approach to the
pricing of early exercise Asian Options on assets with a stochastic volatility. A
multigrid procedure is described for the fast iterative solution of the discrete
linear complementarity problems that results. The accuracy and performance of this
approach is improved considerably by a strike-price related analytic transformation of
asset prices.

Asian options are contingent claims with payoffs that depend on the average price
of an asset over some time interval. The payoff may depend on this average and a
fixed strike price (Fixed Strike Asians) or it may depend on the average and the asset
price (Floating Strike Asians). The option may also permit early exercise (American
contract) or confine the holder to a fixed exercise date (European contract). The
Fixed Strike Asian with early exercise is considered here where continuous arithmetic
averaging has been used. Pricing such an option where the asset price has a stochastic
volatility leads to the requirement to solve a tri-variate partial differential inequation
in the three state variables of asset price, average price and volatility (or equivalently,
variance). The similarity transformations [WDH93] used with Floating Strike Asian
options to reduce the dimensionality of the problem are not applicable to Fixed Strikes
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and so the numerical solution of a tri-variate problem is necessary. The computational
challenge is to provide accurate solutions sufficiently quickly to support real-time
trading activities at a reasonable cost in terms of hardware requirements.

American options with stochastic volatility

American Asian options with a stochastic volatility contain the vanilla American
stochastic volatility option as a sub-problem; consequently the solution of this sub-
problem (see [CP98] for more details) is summarised here. A standard American option
with a stochastic volatility has a share price process S; and its variance process Y;
(the variance has been used rather than the volatility \/Y;) which satisfy

dS; pSedt + /Y, Syd B} (1)
dY, = a(f - Yi)dt +/V,dB; (2)

where By = (B}, B?) is a two-dimensional standard Brownian motion with correlation
coefficient p € [—1,1]. The square-root mean-reverting stochastic volatility model
described in [BR94] has been used where the reversion is to some mean value § at a
rate determined by «, and v > 0 governs the volatility of the variance process.

For an American option the following pricing in-equation must hold [WDH93] for
the price u

Du(s,y,t) <0 VY(s,y) €Q, t€[0,T), (3)

u(s,y,T) :g(SaT) (4)

in the infinite quarter-plane Q@ = {(s,y)|s > 0,y > 0}, where s and y are the asset
price and volatility variables respectively, g is the payoff and the pricing operator D
(see [BR94]) is given by

a 2 2 32

B 1., 0 . 0 9
D= E‘i‘ 5[5 ya?‘FZP’YySm‘FV yw] (5)

0 0
trsg-+ [a(B —y) — /\vx/y]% -,

where X is the market price of risk and r is the risk-free interest rate. This leads to
the following linear complementarity problem,

u(s,y,1) > g(s,1),
Du(s,y,1) < 0 Y YewneaxnT  (6)
(u(s,y,t) — g(s,t))Du(s,y, t) = 0,

with initial data u(s, y,T") = g(s,T). The boundary conditions for this problem are:
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u(0,y,t) = ¢(0,2) Yy >0 and ¢€0,7]. (7)
u(s,y,t) — 0 ass— o0 Yy>0 and ¢t €[0,77, (8)
0 t
% — 0asy—o0 Vs>0 and t € [0,7], (9)
A boundary condition is not required on y = 0 since the differential operator (5)

becomes hyperbolic here. The domain is truncated at finite values [Smaz, Ymaz] for
numerical solution, chosen sufficiently removed from the region of pricing interest for
the solution to be unaffected.

The numerical procedure described in [CP98] uses an adaptive—upwind finite
difference approximation together with a projected full approximation scheme (PFAS)
Multigrid method [BC83]. Co-ordinate stretching transformations were also used for
optimal efficiency,

sinh™1(s — k) — sinh=1(—k); Vs € [0, Smaz), (10)
In(y') =In(y/B) Yy € [vo, Ymas], (11)

2 oy
[l

where yo/8 < 1 and k is the strike price for the option. Both transformations induce
rapid coarsening at large values of § and § enabling the truncation boundary to be
placed far enough away for the asymptotic conditions (8), (9) to hold approximately.
The co-ordinate stretching produced by both these transformations is equivalent to
the use of a smooth and highly refined mesh about the strike.

A theta-method approximation of (5) on a uniform set of mesh points (5;, ;) €
Q;z - Q= [07 Sma:c] X [Oa yma:c]a is then

Du(;,§;) ~ DhU = (U = UR) /A + 0Lh UG + (1= 0)La U] (12)

where (0 < 6 < 1), Uj; is the discrete option price and Lp is an adaptive-upwind
approximation to the drift-diffusion terms in (5). This leads to the following discrete
linear complementarity problem, with initial data UZ-JJ\-T = g(si,T), to be solved at a
backwards sequence of times t",n = N — 1, N — 2,...0,

Uzr; > g(siatn)a
Up — (1= 0)A LU > UST + 0A L UG 5 V(i j) € Q4 (13)
(U = g(si, ") D)UG} - = 0

The value § = 0.5 4 ¢,¢ > 0 was used since it gives unconditional stability (essential
because of the coordinate stretching) and close to second order accuracy in the
timestep A" = "+ — " provided ¢ ~ O(h).

The conventional solution method for (13) is Projected Successive Over-Relaxation
(PSOR) however the PFAS Multigrid method described in [CP98] is much superior
as can be seen from in Table 1. Grid-independent convergence required the use of an
adapted §-line smoother.
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Table 1 Comparison of Multigrid with PSOR

Avg. Iterations CPU (s)

Grid(©2,) | MG | PSOR | MG | PSOR
33 x 13 | 1.52 22.0 0.59 1.44
65 x 25 | 2.04 42.7 2.62 5.25
129 x 49 | 2.08 72.6 9.76 | 42.1
257 x 97 | 2.52 176.4 | 49.3 | 631.6

American Asian Options

The value of Asian options depend additionally on the average price; the continuously
sampled average A; is defined as

1 !
A = ?/ Spdr, e dA = S(Si— Adl
L Jo ’

where Ag = Sy, leading to the following pricing operator

0 1 9? 9? 9?
Dau(s,a,y,t) = 8_1; + 5[821/8—;; +'2p7ysasauy +72ya—y2] (14)
—{—rsg—z + [a(f—y) — A’y\/mg—z + %(9 — a)g—z —ru

for the option price u on Q@ = {s;a,y : s > 0,a > 0,y > 0} x [0,7], with
u(s,a,y,T) = g(a,T) at t = T, for some payoff g and where a is the average-price
variable. A fixed-strike Asian has a payoff of the form g(s, a,?) = maxz(a —k,0). Early
exercise means that the option price satisfies the following LCP

u = g(a,t), (15)
Dau < (16)
(u—g)Dau = 0 (17)

with appropriate boundary conditions [Cla98]. It can be seen that the pricing
operator (14) is hyperbolic in the average price direction. Accurate approximation
in this direction requires special care so a semi-Lagrangian approach was used. The
Lagrangian derivative of u along any trajectory 7 (a,t) is

du  Ou Ouda
dt — 0t = Oda dt

and D4 can be simplified by choosing the trajectory to satisfy
da 1
dt t(

Consider a uniform 3-D set of meshpoints (s;, a;, yx) € Q. Let T (a;,t" + At; a;,t")
be a trajectory satisfying (18) where (a;,t") is the departure point and (a;,t" + At)

s—a) (18)
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Figure 1 Lagrangian trajectory from (aj, ") to (a;,t" + At).

is the arrival point of the trajectory (see Figure 1). Note that equation (18) can be
solved exactly. Integrating (16) along this trajectory gives

t" AL
u(si, aj, yk, 1" + At) — u(s;, a5, ye,t") < —/ Ludr,
tn

where £ contains only asset-price/volatility drift diffusion terms. Approximating
this integral with a weighted average of the end-point values leads to the discrete
approximation

Frn41 Frn4l

B = Ul < —AH(1 = 0)2, U, + 0L, 031
where L, is the adaptive-upwind approximation described in the previous section of
the asset price - volatility component of the pricing operator, and U;ﬁ"l is obtained
via cubic interpolation.

This semi-Lagrangian approach leads to the following discrete linear complementar-

ity problems, with initial data UZ.JJ\.Tk =g(a;,T), to be solved at a backwards sequence
of timest",n=N—-1,N—-2,...,0,

ir;'k 2 ~ g(aj,t”), .
B — (L= 0OA LR US> URE +0A LU 3 (i, k) € Qu,
(Uz?}k —g(a;,t")Dy, Ui’}k = 0

The system of equations has a block-diagonal structure so that each s — y plane
can be solved independently using a modified form of the PFAS procedure described
in Section 48. Co-ordinate stretching transformations are again essential for optimal
efficiency. The results in Table 2 demonstrate the convergence of the method for the
stochastic volatility American Asian and indicate that acceptable accuracy can be
obtained on the 65 x 65 x 25 mesh.
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Table 2 Fixed Strike Asian Put Convergence results, K = 10

Asset Grid Volatility (v/y)

Price (s) Size 0.1 0.2 0.3 0.4 0.5

33 x 33 x 13 | 0.7733 | 0.7870 | 0.8104 | 0.8353 | 0.8840
9.5 65 x 65 x 25 | 0.6372 | 0.6702 | 0.7300 | 0.8036 | 0.8869
97 x 97 x 33 | 0.6216 | 0.6646 | 0.7269 | 0.8038 | 0.8881
33 x 33 x 13 | 0.2281 | 0.2762 | 0.3569 | 0.4477 | 0.5444
10 65 x 65 x 25 | 0.2136 | 0.2762 | 0.3599 | 0.4535 | 0.5535
97 x 97 x 33 | 0.2129 | 0.2756 | 0.3594 | 0.4538 | 0.5531
33 x 33 x 13 | 0.0638 | 0.1039 | 0.1686 | 0.2453 | 0.3284
10.5 65 x 65 x 25 | 0.0592 | 0.0978 | 0.1604 | 0.2388 | 0.3287
97 x 97 x 33 | 0.0583 | 0.0972 | 0.1602 | 0.2386 | 0.3290

Parallelization

The algebraic structure of the semi-Lagrangian approach makes it very suitable for
parallelization. An s-line smoother is used in the PFAS multigrid method so it is
advantageous on small-scale parallel systems to partition in the y-direction only, since
this will not affect the smoother performance (a zebra ordering was used), non-local
memory requests can be arranged to be for contiguous data, and this choice will
keep trajectories within the partition. The surface to volume ratio for a 1-D partition
degrades fairly quickly with the number of processors p and grid-coarsening so it was
important to model the performance of this approach to establish its efficiency on
different type of parallel systems.

The American Asian algorithm described above can be described in terms of the
performance cost of a single iteration decomposed into its floating point cost, its remote
memory access cost (G, and some multiple of the processor network synchronization
cost L . G and L are expressed in units of flop using a representative megaflop rate s.
G can be written as gh where h is the maximum number of bytes read and written by
any one processor during the iteration (termed an h-relation) so that g is the average
cost in flop of accessing one remote word. This communication model i1s conservative,
emphasizing global access; however low-level parallel library optimizations (which
aggregate remote access between synchonisations to minimise latency and maximise
bandwidth) make this a practical approach. The parallelisation relied on the BSP
Library [Hil95] which uses such optimisations and for which estimates of L and g are
available for many systems (see Table 3).

The iteration cost model presented assumes that the partitioning is load balanced
and ignores the costs of restriction and prolongation operations within the multigrid
iteration (they are small in comparison to the smoothing costs). These assumptions
lead to the following

Ngrids
1teration cost = E

i=1

M i—1 o
4B, < ; ) + (32(p = )M#") g + 16T
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Table 3 BSP Parameters

Machine s (Mflops) »p L g
SGI Power-Challenge 55 2 627 7.6
4 1248 74
Pentium (400MhZ) 40 2 20500 51
4 29500 65
8 39500 66

Table 4 Parallel efficiency (%) for the SGI Power Challenge

Grid Size No. of Processors (p)
p=2 | p=3 p=4

13 x 33 x 33 | predicted 93 82 -
13 x 33 x 33 | measured 92 83 -
25 x 65 x 65 | predicted 97 90 83
25 x 65 x 65 | measured 90 86 82

where r and 7 are the grid/interface coarsening factors, M and M are the total number
of grid and interface mesh points and By =& 300 is the flop count. The cost of the semi-
Lagrangian integration is an additional Bs M /p flop where By & 100.

The parallel performance of the algorithm is shown in Table 4; the trend is
comparable to those predicted by the performance model. The 1-D partitioning and
grid coarsening limitations are visible in the trend but do not affect performance
significantly on the 4-processor system. The predicted efficiency (not shown) for the
13%33x%33 is 77%, signalling the expected turndown due to 1-D partitioning. Work is in
progress to repeat these results to other parallel systems. The fine mesh results can be
obtained in 1.5 minutes (see Table 5) for a short-dated options, demonstrating that the
semi-Lagrange algorithm combined with the PFAS multigrid approach has real-time
performance on modestly parallel systems. Furthermore the SGI system performance
can now be reproduced much more cheaply using Pentium based multiprocessor
systems making this a widely affordable approach. The longer dated options are still
rather slow to compute however the algorithm could be made more efficient with the
use of adaptive time-stepping in these cases [CP98].

Conclusions
The semi-Lagrangian time integration has been shown to be well-suited to American

Asian-options providing accurate integration of the hyperbolic terms in the pricing
operator and making two-factor early-exercise solution methods applicable. Stochastic
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Table 5 CPU times (in seconds) required for solution.

Time to 33 x 33 x 13 65 x 65 x 25
Expiry || p=1 | p=2 | p=3 | p=1 | p=2 | p=3 | p=4
0.25 20 11 8 325 | 183 | 126 | 89
0.50 40 22 16 630 | 351 | 242 | 195
1.00 80 43 32 1264 | 695 | 498 | 382

volatility Asian options with early exercise can be solved in parallel by partitioning in
the volatility direction and using a zebra-ordering; good performance was obtained on
small parallel systems giving real-time computation of option prices for a reasonable
cost. Finally the BSP performance model gave a useful indication of the portability
of this parallel application.
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