49

Efficient Mesh Partitioning For
Adaptive HP Finite Element
Meshes

A. K. Patra! & D. W. Kim?

Introduction

The use of domain decomposition solvers presumes the existence of a partitioning
of the domain that distributes the computational effort equitably. Adaptive hp
finite elements which are capable of delivering solution accuracies far superior to
classical h— or p—version finite element methods, for a given discretization size
[BS94] create special difficulties in generating such load balanced partitions. Two
major difficulties that arise in partitioning such meshes are a) the choice of a good
a priori measure of computational effort; which can be equidistributed among the
processors and b) minimizing the data migration among processors as the mesh
changes and is repartitioned. In uniform meshes using simple solvers, computational
effort is directly related to the degrees of freedom in each sub-domain. In schemes
using hp meshes, and domain decomposition solvers (e.g. preconditioned iterative
substructuring [JTOF97]), the computational effort is not simply function of the
degree of freedom. The distribution of polynomial orders, cost of constructing the
preconditioner, connectivity have important effects that are difficult to quantify. In hp
methods, especially when using adaptive strategies like the ” Texas 3 step” [JTOF97]
the mesh changes in size very rapidly (often an order of magnitude more degrees

1 Corresponding Author, Department of Mechanical Engineering, University at Buffalo,
Buffalo NY 14260, email: abani@eng.buffalo.edu

2 Address same as above. Authors were supported by National Science Foundation Award
ASC-9702947, Computations were performed on NPACT computers

Eleventh International Conference on Domain Decomposition Methods

FEditors Choi-Hong Lai, Petter E. Bjgrstad, Mark Cross and Olof B. Widlund ©1999 DDM.org

448 PATRA AND KIM

of freedom in two solution cycles). Repartitioning to balance the load again usually
results in migration of large data sets.

We introduce here a new measure of computational effort and load balancing
strategy designed to mitigate these problems. The load measure introduced is error
on a coarser mesh. We will study its use for several complex adaptive hp meshes
and compare its effectivity to the degrees of freedom(DOF) normally used. Our use
of the error on a coarse mesh as a measure of computational effort has motivated a
simple strategy whereby we repartition before we refine/enrich the mesh. Thus new
elements are created on the processors on which they will eventually be used greatly
alleviating the data migration problem. Again, we will test this strategy on several
complex meshes and compare it to the traditional repartitioning after refinement. Such
a strategy will greatly reduce the need for complex dynamic rebalancing procedures.

Mesh Partitioning And Partitioners

The mesh partitioning problem may be viewed as a weighted graph partitioning
problem with either the nodes/elements representing vertices of a graph and the
edges being either the edges of the finite element mesh or the element connectivity
respectively. Vertex and edge weights can be assigned based on the computational
effort associated with different nodes and the the need for communication between
them. The abstract problem may then be stated as:

Given a graph G with n weighted vertices and m weighted edges, partition the vertices
into p sets in such a way that the sum of vertex weights is equidistributed and that of
edges crossing between sets is minimized.

This is a problem that is provably “NP hard” and hence solved with heuristics
[KK97]. Several tools are available to implement the partitioning once the weighted
graph is defined. The primary tools we use here are the Metis (Karypis and Kumar
[KK97]) and Chaco packages (Hendrickson et al.[HL93]. These tools are based on
multilevel partitioning ideas. At the coarsest level of the graph the Fiedler vector is
used to define an ordering of the nodes of the graph and this is then recursively
bisected. While broadly similar in their underlying ideas, Chaco and Metis differ
significantly in their implementation of these ideas. Another partitioner we make use
of in these studies is based on using space filling curves to order the nodes/elements
of the finite element mesh (Patra and Oden [OP95]). These curves are mappings to n
dimensional unit hypercubes ([0, 1] x [0, 1]... x [0, 1]) from the unit interval [0, 1]. The
inverse of these mappings defines an ordering of the elements which can then be used
in a k-way split or a recursive bisection to obtain the partitioning.

For adaptive meshes in which the mesh changes as the computation procedes the
partitioning must also change to reflect the changing grid. The changing of partitioning
causes data to be migrated to reflect the new partitioning. This migration can be a
serious bottleneck in obtaining good parallel efficiencies. We can now define the three
goals of partitioning such meshes as obtaining a good balance of computational effort,
minimizing communications among processors and data migration as the mesh and
partitioning change. While the basic mesh partitioning problem has been explored
by many researchers, the problem of minimizing data migration when dealing with
changing meshes(dynamic graphs) has not received much attention. Together, with the

HP MESH PARTITIONING 449

problem of estimating computational effort in hp meshes we thus have a challenging
task in formulating appropriate algorithms and strategies for partitioning adaptive hp
meshes.

A priori Measures Of Computational Effort

Load Measures

Any problem decomposition strategy for efficient parallel computing requires
an estimate of computational effort on the different tasks that are a part of
the computation. In mesh partitioning for data parallel computations on finite
element meshes, this translates to a measure of computational effort linked to the
elements/nodes that comprise the mesh. This implies that a usable measure of
computational effort must also posses the local additivity property. The total load
measure of should be the sum of the load measure associated with each element.

Difficulties With DOF based measures

In simpler uniform or h-adaptive meshes and solution strategies using direct solvers,
the number of simultaneous equations to be solved also known as degrees of freedom
(DOF) in the model is an efficient measure of computational effort in the problem.
This follows from well known results relating the operation count in the equation
solver to O(N®) where « is determined by the choice of solver and the sparsity of the
matrix, and N is the number of unknowns. This has motivated the traditional choice
of DOF as a computational load measure. Communication costs are usually measured
by counting the number of unknowns on the interfaces generated by a partitioning of
the mesh.

However, when using higher order elements and iterative solvers (preconditioned
conjugate gradient type in our applications [JTOF97]), such a simple and
straightforward count of the number of unknowns is not adequate. The spatial
distribution of computational effort for these meshes is highly non-uniform. The
element stiffness matrix corresponding to a bilinear quadrilateral element for solving
the equations of elasticity in two dimensions comprises of only 8 DOF whereas the
same matrix for a seventh order element has 64 DOF! In adaptive hp meshes where
the mix of element orders is highly non-homogeneous and determined at run time the
non-uniformity of the distribution of computational effort can thus be very severe.

We also note that degrees of freedom associated with higher orders do not involve
the same amount of computation as those associated with lower orders especially
for the degrees of freedom internal to an element as these are usually eliminated at
the element level using a substructuring technique. The cost associated with other
degrees of freedom like those on the side of the element is also significantly lower
as they are shared by only two elements. The connectivity (number of other DOF
that any DOF interacts with) thus has great influence on the computation cost. The
matrix sparsity is also dictated by this and thus this has great implications for storage
and memory requirements. The conditioning of the system (usually defined as the
ratio of the maximum and minimum eigen values of the system) will also influence

450 PATRA AND KIM

the computational effort greatly since it controls the number of iterations required
for an iterative solver to converge. While both connectivity and conditioning appear
to be good measures of computational effort they fail the local additivity test. Local
connectivities do not add up. Conditioning cannot even be defined at the local level.
Thus neither of these may be used as a suitable primary computational measure.

Numerical Error Based Measure

In the solution adaptive meshing process distribution of A and p is determined
by estimates of the error distribution in a previous coarser mesh [OP95]. Tt is
thus reasonable to assume that the local distribution of computational effort on a
refined/enriched mesh would also be determined by the error distribution in a previous
mesh. A variety of such error estimates are widely available now in the research
literature. For our study here we use an error estimator of the type introduced by
Bank and Smith [BS93] and further developed by Patra and Oden[PO97]. In this
type of error estimator the coarse mesh problem is used to define a local boundary
value problem on each element using the underlying operator and a hierarchical
discretization. For example if the mesh uses quadratic elements then the local problem
for the error in each element uses the additional shape functions corresponding to a
cubic element. We now propose that the square of the norm of the error in a
coarser mesh be used as a measure of computational effort for an adapted mesh and
compare this with the more classical degrees of freedom in the mesh (DOF) measure.
Communication costs will be factored into either measure by minimizing the number
of DOF on the interfaces.

Use of Load Measures and Weighted Graph Partitioning

The weighted graph partitioners (Metis and Chaco) can account for different
computational measures through the use of edge and vertex weights for the graph.
The partitioners then attempt to equidistribute the weights among the different
partitioners while keeping the weights associated with the edges cut by the partitioning
minimum. The conventional weighting schemes are all designed for h adaptive meshes.
We introduce here a modified weighting scheme for hp adaptive meshes. Since each
element in the mesh constitutes a node in the graph either the square of the norm of
the error or the square of the polynomial order associated with the element is used
as the vertex weight. The purpose of the edge weight 1s to minimize the number of
unknowns on the inter-partition boundary thus minimizing communications. For the
edge weight we thus use the higher polynomial order of the two elements that the
edge connects. This provides a good edge weight since the number of unknowns on
the inter-partition boundary is governed by the number of elements on the boundary
and their polynomial orders.

HP MESH PARTITIONING 451
Partitioning and Repartitioning Strategies

Basic Parallel Adaptive Algorithm

This type of error based problem decomposition can be easily embedded in an
overall adaptive algorithm using for example the ”Texas-three step” hp adaptive
strategy developed by Oden and Patra [OP95]. In this strategy the adaptive process is
started using a uniform mesh. Errors, convergence rates and other constants are then
estimated on this simple mesh. a priori estimates of the form ||e]|; < C’;—Z||u||1 where
[le]|1 is the norm of the error, C'is a constant, u and v are convergence rates, and ||ul|;
is the H'! norm of the solution, are then used to predict the level of mesh modification
required for a target error, first using only A refinements (the second step of three),
and then using p enrichment (the third step of three). When performed in a parallel
environment each step of mesh modification is followed by a repartitioning of the
mesh to balance the loads again. We call this strategy Partition After Refinement
(PAR). This type of repartitioning from scratch often results in high data migration
that can cripple the computations as repartitioning takes place. The use of the coarse
mesh error as a partitioning measure motivates an alternate strategy that promises to
greatly reduce data migration.

Partition Before Refinement (PBR)

In this strategy we take advantage of our a prior: knowledge of the computational
effort in the next mesh via the error estimate to compute a repartitioning before
modifying the mesh. The new/modified elements are then generated on the processor
that will use them — thus greatly reducing mesh migration. It is obvious that the cost
of moving a few parent elements will be significantly less than migrating a host of
child elements. We name this strategy Partition Before Refinement (PBR)).

The above parallel adaptive process can be modified to incorporate this strategy.
After the first step the mesh can be repartitioned and redistributed among the
processors based on the error in the solution. Then, the mesh modification is
carried out. Again following the solution of this step the mesh is repartitioned and
redistributed among the processors based on the error in the solution. We have
implemented both of the load measures and partitioning strategies outlined here in
an MPI (message passing interface) based parallel hp adaptive code. Results and
conclusions will be discussed in the next section.

Results and Discussion

Measures of partition quality

We define two quantities from [PO95] to measure the quality of partitioning;

Imbalance Fraction(IF): This is designed to measure load imbalance and is
defined as:. IF; = % where N; is the DOF associated with the subdomain i,
N,y and N,,,, are th"éazaverage and maximum DOF associated with the different
subdomains.

452 PATRA AND KIM

= X0/ TICOM: 2D hp~FEM GRAPHICS B

| xwad: TICOM: 2D hp~FEM GRAPHICS 1= 10

Figure 1 Test Mesh1 and 4

Shape Fraction(SF): This is defined as the percentage of interface DOF in a
particular partition with respect to the total DOF associated that partition. For the
whole domain all DOF on interfaces are compared to the total DOF in the problem.
This is a measure of interprocessor communication. SF = % where Nj,: is the
number of DOF on all the interfaces associated with subdomain i.

Test Problem

We used the model problem of heat conduction with a variety of geometries and
boundaries to test our problem. This choice of test problem helps keep the solution to
the problem used in this study simple and allows us to focus on the partitioning. Four
adaptive hp meshes are used this study (See Fig. 1 for samples) They have different
sizes ranging from 2364 to 11242 degrees of freedom. We use all the partitioners and
partitioning strategies described in the previous sections.

Error Based Partitioning

We have used error in a coarser mesh to partition the grid. New elements inherit error
from parent elements. Figure 2 show the corresponding mesh partitions for mesh 4.
We recorded the 2 measures TF and SF defined previously for all meshes. We average
their measures using different partitioners and present the results in Figure 3.

We observe here some general trends when partitioning the above test meshes using
the strategies described above. We note that the shape fractions of the partitions

HP MESH PARTITIONING 453

Figure 2 FError Based Partition & DOF Based Partition Using Linear Method
and No local Refinement on Test Mesh4

when using error as the measure are comparable (usually within 10-15%) with those
obtained from using the traditional DOF. The imbalance fractions when using error
are somewhat higher but still usually within 20%. This can be partially explained
by the limitations of the adaptive algorithm which can only refine 2 levels i.e. one
element may have no more than 16 children. However, on problems with singularties,
the error in some element may be larger by 2 orders of magnitude. In this case, the
error would not be a very good predictor of the mesh refinement and hence a bad
measure of computational load too. Further, we note that both IF and SF are DOF
based measures and hence are limited measures of partitioning effort. Again, as we
show below — error based partitioning will enable us to greatly reduce data migration
during repartitioning.

Repartitioning and Data Migration

In our studies here, each run includes 3 steps of partitioning corresponding to the 3
steps of the adaptive algorithm. We test the PBR and PAR strategies on four test
meshes and measure number of elements that have to migrate between processors.
Table 1 shows the number of elements that migrated using different partitioners for
meshes 1 and 4. We observe drastic reductions in the data migration when using
the PBR based strategy as opposed to the classical PAR.In phase 1 (repartitioning
after the h-refinement stage), we observe that PBR strategy requires 93% less data
migration than PAR for our test meshes. In phase 2(repartitioning after the hp

454 PATRA AND KIM

IF Comparison

100.0
590.0 |lErr-IFavg
800 ®OOF-IFarg
g 7.0
% 60.0
‘é 50.0
g 400
5
& 300
200
0.0
pr DORER R
T oz 2 s 8 b 3 oz 2
P AN
& O S 2 T A
Partitioners

SF Comparison

BE-SFavg
%

WDOF-SFavg

Percentage(’s)

Metis-1
C-sp-ki3
C-li-no-4

Cmu-no-1
HS-ncut-1

HE-rec-
Crmu-ki-3

Partitioner

Figure 3 Average imbalance and shape fractions for different partitioning
algorithms. Data averaged over 4 test meshes. Different partitioning algorithsm
on abscissa.(e.g.C-mu-kl-1:Chaco, Multi-level, Kernigan-Lin on Test Mesh 1,
HS-ncut-1: Hilbert space filling curve, k-way partition on Mesh 1)

HP MESH PARTITIONING

- - PBR PAR PBR PAR
Partitioner | Mesh | P1-P2 | P1-P2 P2-P3 | P2-P3
Ch-mu-no 1 253 345 400 1221

Ch-sp-kl 1 246 427 422 1261
Ch-ra-kl 1 210 335 284 1074
Ch-li-kl 1 218 349 291 733
Ch-mu-kl 1 253 345 400 1221
Ch-sp-no 1 240 412 432 1264
AVG 1 236.7 368.8 371.5 1129.0
Ch-mu-kl 4 570 1278 1278 2621
Ch-sp-kl 4 572 879 1263 2901
Ch-sp-no 4 576 1250 1242 2901
Ch-mu-no 4 566 1228 1278 2745
AVG 4 571.0 | 1156.8 1267.3 | 2792.0

Table 1 Comparison between PBR and PAR in Mesh 4. Rows show results
for different choices of partitioning algorithms.(e.g. Ch-sp-kl: Chaco, spectral,
with Kernighan-Lin)

455

refinement), this advantage goes up to 171% . Repartitioning data before refinement
can thus greatly reduce the data migration. In conclusion, we can thus state that a) we
have introduced a new measure of computational effort namely, the error in a coarser

mesh, and, b) our use of the error in a corse mesh as a measure of computational

effort has motivated a novel strategy whereby we repartition before we refine/enrich

the mesh.

REFERENCES

[BS93] Bank R. E. and Smith R. K. (July 1993) A Posteriori error estimates
based on hierarchical bases. Technical report, Institute for Mathematics and
its Applications.

[BS94] Babuska 1. and Suri M. (December 1994) The p and h — p versions of the
finite element method, basic principles and properties. SIAM Review 36(4).
[HL93] Hendrickson B. and Leland R. (1993) A multilevel algorithm for
partitioning for graphs. Technical Report SAND93-1301, Sandia National

Laboratories.

[JTOF97] J. T. Oden A. P. and Feng Y. S. (December 1997) Parallel domain
decomposition solver for adaptive hp finite element methods. STAM Journal
on Numerical Analysis pages 2090-2118.

[KK97] Karypis G. and Kumar V. (1997) Multilevel k-way partitioning scheme
for irregular graphs. Journal of Parallel and Distributed Computing .

[OP95] Oden J. T. and Patra A. (1995) A parallel adaptive strategy for hp finite
element computations. Comput. Methods. Appl. Mech. and Fngg. 121.

[PO95] Patra A. and Oden J. T. (1995) Problem decomposition for adaptive hp
finite element methods. Computing Systems in Engineering 6(2): 97-109.

[PO97] Patra A. and Oden J. (1997) Computational techniques for adaptive hp
finite element methods. Finite Elements in Analysis and Design 25: 27-39.

