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On the Choice of Krylov Methods
and Preconditioners for a Domain
Decomposed Iterative Solution of
the Exterior Helmholtz Problem

Antonini Puppin Macedo !

Introduction

From a finite element viewpoint, the solution of the Helmholtz problem has stability problems
related to its operator, in particular the loss of ellipticity for high wave numbers. Regardless of
the stability properties of the finite element method used in its discretization, the Helmholtz
problem requires always a minimal number of elements per wave length to correctly represent
the physical phenomena and to avoid an under-resolved numerical solution. The engineering
literature often refers to 10 elements per wave length kh = w/5 as providing an acceptable
resolution. Therefore realistic scattering problems intrinsically require fine meshes leading
to significantly large-scale systems of equations that must be solved to high precision in
engineering applications.

It is also important to note that the finite element discretization of the Helmholtz operator
results in systems which combine stiffness and mass terms in the form,

[K—k*MJu = f (1)
that is symmetric and indefinite for high wave numbers. Also, for the exterior Helmholtz
problem, the Sommerfeld operator adds a contribution of a general form 1AM g to the system
matrices resulting in a system often called complex, symmetric and indefinite. We note that
M is a mass matrix restricted to the dof’s on the external boundary.
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Domain decomposition - DD - methods for such problem in general lead to systems with
the same characteristics, which poses several challenges for their development. In this context,
the recent DD literature is very rich in relevant contributions to the solution of the exterior
Helmholtz problem [Des90, BD96, CCEW98, dLBFM* 98, FML98a, FML*98b]. Among these
works the so-called FETT-H method [FMT.98a, FML*98b] is one of the most efficient for large
scale systems. This method is a dual Schur complement method that comes from a modified
Lagrangian operator using Lagrange multipliers to enforce continuity between subdomains,
resulting in an interface problem that is solved by means of iterative Krylov methods. These
systems, as a result of the use of dual Schur complements, are very ill-conditioned degrading
convergence. To solve this complex, symmetric, indefinite and ill-conditioned systems we
intend to investigate the application of well-known algorithms for the Helmholtz operator,
namely: Conjugate Residuals - CR -, Generalized Conjugate Residuals - GCR -, Bi-conjugate
Gradients - BCG - and Generalized Minimal Residual - GMRES.

This paper is organized as follows. In section 2, we present the system of interface
equations resulting from the FETI-H method. In section 3, we discuss the iterative solution
of this system and appropriate preconditioners. We end the paper with a series of numerical
experiments.

The regularized FETI method for complex problems

The Euler equations associated with the FETI-H modified Lagrangian can be written as (see
[FML98a, FML* 98b] for more details):

(K° + kM) =  (K'— KM’ +ikMj)u® = £ — B A (2)
s=Ns

Y B = 0 (3)

where
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and it follows that M7 has a constant sign within a subdomain and opposite sign in its
neighbors, that is, if Vg/Q° N Q7 # {0} 9 = 1,50 Vs/QNQ° # {0} ¢¥° = —1 or both
€?® and €7 are set to zero. Note that in [FML98a] it is shown that a modified Lagrangian
approach ensures that the resulting subdomain problem matrices K* + kM7 are always
non singular and an algorithm is proposed to ensure that the signing condition imposed by
€®? is always satisfied and at least one edge of each subdomain has a non-zero e.

From (3), we find that the interface problem associated with the regularized subdomain
equations (2) is given by

FrA = d (5)
where

s=Ns -
Fr = Y B(K -KM +ikMj)~'B’

s=1

s=N;

d = ) BY(K'+ikMp)Tf

s=1
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where B is a signed boolean matrix that extracts the boundary components from a subdomain
vector, M7t is the “interface mass” emanating from the modified Lagrangian of the FETI-H
method (see [FML98al).

The performance of iterative solvers for this system is then crucial in FETI type methods
and the efficiency of the Krylov methods used will play a significant rule. Recalling the
discussion in the introduction, this system presents challenging difficulties that has required
the development of preconditioning techniques that make the solution by Krylov methods
feasible. In the next section, we discuss the appropriate Krylov methods for this problem as
well as the development of preconditioning techniques at both coarse and local levels for the

FETI-H method.

Iterative solution of the interface problem

For the iterative solution of complex systems emanating from the Helmholtz discretization,
we intend to focus on basically two approaches. First, methods that take advantage of the
symmetry of the problem are considered, namely the Conjugate Residuals - CR - and the
Bi-Conjugate Gradients - BCG - algorithms. Because of this, the inner product used for these
solvers is redefined from what is expected for complex systems and the requirement of a full-
reorthogonalization for the search directions is circumvented. Second, methods traditionally
well regarded for the solution of indefinite systems are considered, but in this case they require
full reorthogonalization of the search directions, as in the Generalized Conjugate Residuals -
GCR - and the Generalized Minimal Residuals - GMRES - algorithms. 2

The BCG algorithm, derived from the Lanczos recursion, is a Conjugate Gradient like
method and will be implemented in its transpose-free version [Fre92]. *

The CR algorithm, on the other hand, is derived from GMRES in the particular case of
a symmetric system matrix A. In this case, the residual vectors should be A-orthogonal,
i.e., they are conjugate (hence the name of the algorithm). In addition, the search directions
p, are also A orthogonal. The resulting algorithm has the same structure as the standard
Conjugate Gradients algorithm, but satisfies these conditions and requires only one more
vector update, i.e., 2n more operations, than CG [Saa95].

A very important point related to the application of these algorithms is that the definition
of the inner-product must be redefined as:

(x,y) = y'x, x,y¢€c" (6)

for symmetric complex matrices, and not as

xy) =y'%x xyec" (7)
as normaly used for complex matrices. See [Cra69, Fre92, Mac99] for a deeper discussion on
this.

The other algorithms we intend to apply to this problem, GCR and GMRES, require a
full reorthogonalization of the search directions in their standard form. For the Helmholtz
problem, within the current framework, the number of iterations may become very large and
the storage and computational requirements may become impractical. The literature is rich
in restarted and truncated versions, but they are well known to stagnate when the matrix

2 Because of the page limit for this contribution, we refer the reader to [Saa95, Fre92,
Mac99] for a detailed description of these algorithms.

3 In [ZW94], we find that the iterations of another well regarded solver for Helmholtz
problems, the Quasi-Minimal Residuals - QMR - algorithm, can be obtained from those
of BCG as a particular case of residual smoothing.
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is not positive definite. In our numerical experiments, large scale problems have a strong
tendency to stagnate for all algorithms, even when full reorthogonalization is used. The use
of preconditioning techniques is an obvious option to keep the number of iterations small
making it feasible to use any method.

For the FETI-H method the development of a two-level coarse projection approach (see
[FML98a, FML*98b] for details) represent the a most crucial point in the high performance
of the method, combined with the modified Lagrangian formulation that per se provides
scalability with respect to the element size as well as guarantees that the local subdomain
problems are solvable. In addition, we propose efficient local preconditioning techniques that
will improve convergence even more. We will compare the performance of the different
algorithms. To make this paper self-contained, we briefly present the coarse projection
technique in the next section and we then discuss the ideas of the local preconditioner.

A coarsening strategy: the improved FETI-H algorithm

The idea of the coarse projection is, in fact, the main characteristic of the FETI-H method.
It basically accelerates convergence by modifying the Krylov iterations by enforcing the
following optional admissible constraint on the residuals r* in each iteration:

™k = 0. (])

Here Q is a coarse subspace containing a set of plane waves (see [FML98a, FML* 98b] for
details). This leads to the following projector:

P = 1-Q(Q'F:Q)'Q"F; (9)
which transforms the FETI-H interface problem into:

P"F;PA = F;PX = P'd; (10)

P may be interpreted as a right preconditioner.

A suitable local preconditioning technique for the FETI-H algorithm

For FETI methods in general, it is also possible to derive another right preconditioner
similar to the coarse projector P, but instead of coming from a coarse space of optional
admissible constraint, we approximate the interface problem using a local, subdomain based
approximation.

The development of preconditioners for the traditional FETT method for elasticity problems
can be presented in terms of mechanical arguments. In each iteration the FETI solver
computes a “force” vector p* and then the corresponding jump of the displacement across
the interfaces. A simple way to accelerate convergence is then to invert this process, 1.e., to
impose the jump of the displacement field across the interface and compute the corresponding
interface forces. These forces are then added back to p* and the convergence is accelerated
[FR94].

The implementation of such a preconditioner can be interpreted as follows. The forces on
the interface are calculated by solving the following system (to simplify the notations we

replace K by K):
K:: Ki; VA\}f |0
][] =) "

The solution is



ON THE CHOICE OF KRYLOV METHODS AND PRECONDITIONERS 547

Wi = —K'Kiw, (12)

The subscripts 2 and b mean the internal and boundary d.o.f. and the brackets refers to
known values. Now the corresponding interface force vector is:

ib

Ki K wi | _ 2 0 (13)
Kol Ky ] [{wh}] 7 | K - kKD TR (W
For a more efficient implementation of this preconditioner, we assemble the primal
subdomain operator instead of approaching the inverse of the operator after assembling.
This leads to the Dirichlet preconditioner:

s=Nj

—D

1 _ () |0

Fi'o=) B [0 K K
s=1

The computation of the Dirichlet preconditioner needs an additional factorization of Ki;,

>] B (14)

ib

and storage. In each iteration, we also need one more forward/backward substitution. The
following preconditioner,

L =N

— 510 0 T

Fi'o=) B()[O Kif,)]B() (15)
s=1

does not need any addtional storage or factorization. The idea of this lumped preconditioner
is to lump all of the system matrix to the interface. From the mechanical point of view,
for elasticity problems, it tries to find a set of lumped interface forces to reproduce the
displacement jumps at the subdomains interface and only the interface nodes are allowed to
displace.

For the Helmholtz problem, we intend to filter the vanishing modes by using the
preconditioner, i.e., the modes that have a spatial frequency on the interface that is greater
than the wavenumber of the global problem, i.e, to filter the eigenmodes associated with the
eigenvalues that are close to zero. It has the drawback as it also changes the behavior of the
other modes, in particular those of low frequency [dLBFI\l"’ 98]. This process in the FETI-H
method is reminiscent of the lumped preconditioner for elasticity problems, as our physical
interpretation points out.

These considerations are logical and straightforward, but they do not consider the physical
aspects of the Helmholtz problem, in particular the Sommerfeld condition. Furthermore, in
the FETI-H method, we use a modified Lagrangian formulation that results in local interface
matrices similar to the Sommerfeld condition contribution. The simplest idea to account
for these facts is to incorporate into Ky the contribution of the local interface matrices
emanating from the modified Lagrangian. Then the lumped preconditioner is redefined as:

N e [0 0 T
Fito= ) BY [0 K + kM) B (16)
s=1
REMARK: Note that the contribution Mgz) incorporates into all of the interface of each
subdomain is restricted by the “interface signing” compatibility constraint in [FML98a,
FML* 98b]. This may be interpreted not as a Dirichlet preconditioner, but as a Dirichlet-
Sommerfeld preconditioner (at least locally). Although the numerical experiments in the
next section show that this preconditioner improves convergence, it is still not clear if other
definitions of this local Dirichlet-Sommerfeld preconditioner may provide a better option.
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Numerical experiments

Table 1 The guided wave problem in 3D) — h = 1/36, ka = 10, total size of the
problem — 46656 dofs

Ne Ng CR | cr* | Bcg | BcG* | GCR | GCR* | GMRES | GMRES*
0 3 x1 19 2 19 - 19 2 19 17
1 3x1 17 - 17 - 17 12 17 17
2 3x1 34 - 34 - 32 24 32 31
3 3 x1 23 - 21 - 19 15 19 19
0 4 x1 30 3 30 - 25 3 25 23
1 4 x 1 23 - 24 - 22 16 22 23
2 4 x1 55 - 57 - 39 32 43 39
3 4 x1 27 - 30 - 23 20 24 24
0 6 x1 41 10 40 - 34 5 34 32
1 6 x1 30 - 31 - 27 22 28 29
2 6 x 1 87 - 99 - 60 48 60 58
3 6 x1 37 - 37 - 33 27 33 32
0 2xX2x%x2 90 - 8’7 - 62 51 61 66
1 2xX2x%x2 74 - 78 - 55 45 55 61
2 2X2x%x2 61 - 70 - 51 46 51 59
3 2x2x2 68 - 83 - 50 44 50 58
0 3 x3x3 88 - 83 - 76 63 76 107
1 3x3x%x3 75 - &0 - 61 53 60 102
2 3x3x3 | 101 - 110 - 78 70 78 121
3 3x3x%x3 68 - 69 - 57 48 57 100
0 4 x4 x4 | 260 - 263 - 162 155 162 188
1 4x4x4 | 103 - 107 - 75 65 75 92
2 4 x4 x4 79 - 83 - 64 54 64 82
3 4 x4 x4 79 - 88 - 61 54 61 79
0 6 X6 X6 - - - - 381 366 - -
1 6 X6 X6 91 - 100 - 64 57 64 87
2 6xXx6x6 93 - 101 - 65 55 65 84
3 6xXx6X6 96 - 110 - 62 54 62 83

(*) indicates the algorithms with the local preconditioner and (-) stagnation

In this section we consider a 3D guided wave problem in a unit cube domain discretized using
36 x 36 x 36 linear brick elements. T'wo opposite faces are subject to an unit Dirichlet b.c.
and a Sommerfeld condition, respectively. All the other faces are subject to a homogeneous
Neumann b.c.. The wave number for this problem is fixed to ka = 10 which gives almost
20 elements per wave length. The domain is decomposed into “slices” (N x 1 subdomains)
or cubes, 1.e. N x N x N subdomains. The results for this numerical experiment are given
in Table 1 where we can assess the efficiency of the preconditioner and different algorithms.
In this table, each column, corresponding to a solver, gives the number of iterations for the
following convergence criteria: ||f —[K —k?M]u|| < le—6, where u is the solution resulting
from the FETI-H iterative process. The same criteria was used for the results in Table 2.
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Table 2 2D Submarine-shaped scatterer — SGI Origin 2000, 10 cpu’s

GCR alg. No Preconditioner | Preconditioner
[terations 69 40
Total CPU Time 584.70 487.28
Preconditioning CPU Time 0.0 0.75

Comparing the different algorithms , the GCR algorithm has the best convergence
properties and robustness, and, by using the preconditioner, we get good improvement in
iteration count, for any mesh partition, as well as when combined with the coarse space. In
contrast, the other algorithms do not get the same improvement as GCR and all of them
stagnate when the preconditioner is combined with the coarse space or when a general mesh
partition is used. For all these experiments, the residuals of the GCR algorithm are much
smoother than those of all other algorithms, except for GMRES, which are similarly smooth.
Also, it 1s important to note that the improvement of the preconditioner is worthwhile as it
costs only about 0.15 % of the total solver cpu time, for a speed-up of the order of 15 %.

In table 2, we show the significant improvement observed for the FETI-H method by using
the preconditioned GCR algorithm for an irregular mesh partition and decomposition in 2D.
This is the case presented in [FM1.98a] and it concerns a submarine-shaped 2D scatterer with
1,077,432 nodes and 1,075,264 elements partitioned in 128 irregular subdomains.
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