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Domain Decomposition Methods
for the Steady Stokes Equations

EINAR M. RONQUIST !

Introduction

We compare and discuss four different steady Stokes solvers: the Uzawa algorithm,
an iterative substructuring method, and two new domain decomposition methods.
The methods are tested in the context of high-order spectral element discretizations.
The new domain decomposition methods can be categorized as an additive-type
preconditioner for the global Stokes system comprising the solution of a coarse Stokes
system, the solution of local, non-overlapping pressure systems, and the solution of
either local, overlapping viscous systems or a global viscous system. A comparison of
the four methods by solving the driven cavity problem in two and three dimensions
shows that the new domain decomposition methods applied to the global Stokes
system can yield excellent convergence rates. The results for the new methods also
indicate that the treatment of the pressure and the velocity degrees-of-freedom in
the preconditioner can be quite different; in particular, a non-overlapping treatment
suffices for the pressure while an overlapping treatment can be used for the velocity.

Additive Schwarz methods are well established in the context of solving systems of
equations derived from the finite element discretization of elliptic problems [DW94,
SBG96]. Even though the concept of an overlap is less well-defined for high-
order spectral element discretizations, the additive Schwarz methods can also be
used in this context. This follows from the fact that the original spectral element
system is spectrally equivalent to a finite element system derived from a linear
triangulation/tetrahedrazation of the underlying spectral element mesh. Hence, the
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additive Schwarz preconditioners used for standard, low-order finite element systems
can also be used as preconditioners for the spectral element systems. Numerical
experiments demonstrating this approach were first presented in [Pah93] in the context
of solving the Poisson problem, and later analyzed in [Cas97]. Similar techniques
have also been used with success in order to solve the consistent pressure Poisson
operator [Fis97, FMTar].

Additive Schwarz methods have only recently been used for the full (indefinite)
Stokes system in coupled form. In [KPar], a Krylov space method such as the
GMRES method is used in combination with an indefinite preconditioner based upon
overlapping Schwarz techniques. The additive version of this preconditioner comprises
a coarse (indefinite) Stokes system and local (indefinite) Stokes subproblems associated
with the overlapping subdomains. The work in [KPar] was done in the context of stable,
mixed, linear finite elements.

In the context of high-order spectral element methods, primarily iterative
substructuring methods have been considered for the global, coupled Stokes system
in the past [Rgn96, Rgn98, Cas96, PWIT]; the techniques reported in [Rgn96, Rgn98]
have also been extended to solve the steady Navier-Stokes equations in three
dimensions. Recently, however, the methodology presented in [KPar] has also been
extended to spectral elements; see [Pavar].

In this paper, we consider a new overlapping, additive Schwarz approach for the
steady Stokes system in three dimensions. In contrast to the work presented in [KPar]
in the context of linear finite elements, and to the work in [Pavar] in the context of
spectral elements, we abandon the concept of considering the “full” Stokes operator
for the local problems associated with the subdomains. Instead, we consider two
new domain decomposition methods where the local pressure solutions are computed
based upon non-overlapping techniques, while the velocity degrees-of-freedom are
preconditioned either based upon overlapping methods for the local problems or by
solving a global problem for the viscous system.

The steady Stokes problem

We consider here the solution of the steady Stokes equations in a domain Q C R, d =
2,3: Find a velocity u = (u1, .., uq) C H}(Q)? and a pressure p C L2(Q) such that

/,uVu:Vde—/pV~de = /f~de Yv € HY(Q)¢
Q Q Q

/qV-udQ = 0 VYge L3(Q) .

Q

Here, p is the viscosity and f is a body force.

The continuous Stokes problem is discretized using the spectral element
method [MP89]. Following this approach, we first decompose the computational
domain  into K (conforming) spectral elements,

Q = Ule gk

Each spectral element Qy is a quadrilateral element in R?, and a hexahedral element



332 RONQUIST

in R3. Throughout this paper, a single spectral element will also be synonymous with
a single subdomain.

On the reference element Qe =] — 1, l[d associated with each spectral element,
the velocity components are approximated as polynomials of degree N in each spatial
direction, while the pressure is approximated as a polynomial of degree N — 2. That
is, each spectral element is a Qn — @Qn_2 element. More precisely, if we denote the
discrete space for the velocity as V' and the discrete space for the pressure as W, these
spaces are defined as

vV = {’U:’UlﬁkOFkEQN(Qref)d}mHé(Q)d ’
W = {w:wgq, o Fr € Qno2(Qrer) } N LE(Q) .

Here, Fj represents the isoparametric (or affine) mapping from the reference domain
Qrer onto Qy, that is, Qp = Fi(Qres), k= 1,..., K.

In order to derive a set of algebraic equations, we choose (local) tensor-product bases
for our discrete spaces V and W, and we evaluate the integrals in the variational
formulation by tensor-product (Gauss-Lobatto-Legendre) quadrature. The resulting
set of discrete equations can then be written as

=8 (1)

=[5 T ] = [3] e [e]

Here, A is the discrete viscous operator (in this case, the vector Laplacian), D is the
discrete divergence operator, and its transpose D7 is the discrete gradient operator.
The vector u contains the nodal velocity values, p represents the nodal pressure values,
and the components of f are the nodal forces. Boldface symbols are associated with
multi-dimensional quantities, while non-boldface symbols are associated with scalar
quantities.

S

[»4

where

19 >
CRE

Solution methods

There exist many iterative algorithms for solving the indefinite saddle point
problem (1); see for example [MMPR93, EIm96, Cas96, PW97, Pav97, Rgn96]. In this
section, we will focus our attention on a few iterative methods. In the next section,
numerical results will be presented, and the methods will be compared.

Method U: The Uzawa algorithm

A classical solution method, the Uzawa algorithm, consists of first decoupling the
Stokes saddle point problem into a positive semi-definite form for the pressure,

DA™'D"p=-Df. (2)

Eliminating the hydrostatic mode, the pressure system can be solved iteratively via
a nested conjugate gradient (CG) iteration. Note that each (outer) pressure iteration
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involves the inversion of the discrete viscous operator, A. Since this operator is
symmetric, positive definite, the viscous system can also be solved via an (inner)
conjugate gradient iteration.

Once the pressure has been computed, the velocity can be found by simply solving
the viscous system

Au=D"p+f. (3)

_An excellent preconditioner for the pressure system (2) is the mass matrix,
M, associated with the pressure degrees-of-freedom. Denoting the Uzawa pressure
operator as U = Qé_lgT, it can be shown that the condition number

w(M'U) < er/B}

where ¢y is a constant and 3} is the inf-sup parameter [MPR92, PW97].

In order to solve the viscous system (the system (3), as well as the solution of the
viscous system associated with each outer pressure iteration), we can choose from a
plethora of available preconditioners. For example, for low-order finite elements, an
overlapping Schwarz method [DW94, SBG96] yields a condition number

K(B™'A) < ca (14 H/5) . (4)

Here, B is the additive Schwarz preconditioner corresponding to the viscous operator
(in this case, the vector Laplacian), ¢, is a constant, H is the diameter of the
subdomains, and J is the overlap. As mentioned in the Introduction, we can also
recover the result given in (4) for spectral elements; see [Pah93, Cas97].

Method S: An iterative substructuring algorithm

In this section, we briefly review an iterative substructuring method (i.e., a non-
overlapping preconditioner) originally proposed in [Rgn96]. This method has been
extended to solve a variety of steady, incompressible flow problems;, including problems
described by the steady, three-dimensional Navier-Stokes equations with free surface
boundary conditions; see [Rgn98]. For comparison reasons, we present this method
(here, for the Stokes system only) in a slightly different manner than in [Rgn96]
and [Rgn98]. First, the preconditioned Stokes system is written as

Q'sx=Q7'g. (5)

This preconditioned system is solved using a Krylov space method such as the
Generalized Conjugate Residual (GCR) method. The preconditioner can be expressed
as

K K
Q'=Q7"+> 97 +> Qr +9; (6)
k=1 k=1
where
_ —1
0 ! Rg SO EO )
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_k_l = Ezgk R, k=1..K,
-1 _ l Q -1
kv 0 0 —k
-1 _ 00 =1
Zkp Q l ko
K
Q7' = RYdiag(a)'Rr[1 +D"(3 Q)]

k=1

Briefly explained, the preconditioner consists of a sum of three contributions: (i) a
global, coarse Stokes solution (95]); (i1) local Stokes solutions associated with the
K subdomains (gk_], k =1,..., K); (iii) an approximation to the velocity along the
interface I' between the subdomains (g;l) The operators Ry, Ry, k = 1,.., K and
R denote the restriction operators associated with the coarse problem, the local
subdomain problems and the interface problem, respectively; the transpose of these
operators denote the corresponding prolongation (or extension) operators.

The coarse solution is obtained by restricting the residual from the original
@n — Qn_o spectral element mesh to a low-order Q3 — P; finite element mesh. In
what follows, the coarse mesh has the same number of elements as the fine mesh (i.e.,
the coarse mesh is induced by the fine mesh). The operator So represents the coarse
Stokes operator which is inverted by a direct solver. The indefinite Stokes system is
made solvable by insisting that the average (global) pressure be zero.

Each local Stokes system assumes homogeneous velocity boundary conditions.
Hence, each local Stokes operator, S, , is also indefinite, and the average (local)
pressure 1s assumed to be zero. Each local Stokes system is solved by explicitly
constructing and factoring the symmetric Uzawa pressure operator locally within each
element; only back substitution is thus necessary in order to obtain the pressure
within each subdomain. Once the local pressure solution has been computed, each
local velocity can be found by solving a local system of the form (3); see [Rgn96] for
more details.

Finally, the velocity along the subdomain interfaces is found simply by inverting
the diagonal of the viscous operator, A (which is trivial). The associated extension
operator Eg: represents an extension by zero to all the interior subdomain nodes;
again, for more details, see [Rgn96].

Method H1: A hybrid Schwarz/substructuring algorithm

In this and the next section, we present two variants of a preconditioner which we will
refer to as a hybrid Schwarz/substructuring method. Note that the word “hybrid” is
here used to emphasize the fact that part of the preconditioner is of a non-overlapping
type, and part of the preconditioner is of an overlapping type. Using the notation from
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the previous section, the preconditioner can be expressed as

K K
_ _ ~—1 _
Q=9 +> Q. +> Q) (7)
k=1 k=1

We see that we no longer have an interface system for the velocity degrees-of-freedom.
Instead, we solve K (local) overlapping systems for the velocity,

K
~ =1 T  ~ =1 _ -
Q., =Ry AL R, [I +QT(ng;)] k=1,.. K. (8)
k=1

Here, Ek,v is an operator which restricts the residual of the momentum equations
to the nodes associated with Q plus one layer of nodes outside this subdomain; we
denote this extended subdomain as ﬁ; Hence, for this preconditioner, we consider the
minimum-overlapping case for the velocity only. Next, an approximation of the discrete
viscous operator is constructed based upon a triangularization/tetrahedrazation of the
Gauss-Lobatto-Legendre nodes associated with the overlapping subdomain ﬁ;, linear
finite elements are used within each triangle/tetrahedron. The resulting local systems
Ak, k = 1,.., K are then assembled and factored. Hence, only back substitution is
required in order to obtain the local velocities during each preconditioning step. (Note
that it is sufficient to only assemble and factor the scalar Laplacian associated with
each extended subdomain.)

The restricted residual for the local velocity problem consists of two contributions:
the original residual from the momentum equations plus the gradient operator D’
acting on the local (discontinuous) pressure solutions; see (8). A natural way to
motivate this approach is to consider (3) with f playing the role of the original
momentum residual, and the pressure p playing the role of the local pressure solutions.

An important observation here is the fact that we have abandoned the framework of
carrying along the “full” Stokes operator when going from the original, global operator
to the operators associated with the local subproblems. Here, a non-overlapping
method is used in order to obtain the local pressure solutions, while an overlapping
method is used in order to compute the local velocities.

Method H2: A hybrid Schwarz/substructuring algorithm

The next variant of the hybrid Schwarz/substructuring preconditioner can be
expressed as

K
Q=9 +Q ' +> Q, (9)
k=1
where
K
Q'=A"'L +D"(}q; )] (10)

k=1
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In this case, we abandon the process of computing local velocity solutions associated
with the subdomains. Instead, we imagine a process in which we extend each
overlapping subdomain to cover the entire domain. One way to look at this variant is as
an extreme case of an overlapping method. By comparing Method H1 and H2, we can
compare the case of minimum and “maximum” overlap. Any reasonably constructed
variant between these two cases could be expected to have a performance (in terms of
conditioning) which is between the performance of Method H1 and Method H2.

Similar to the Uzawa method, any good preconditioner for the viscous operator (in
this case, the vector Laplacian) can be used to invert A.

Numerical Results

In this section, we compare the convergence behavior for the different Stokes solvers
by solving the driven cavity problem. The computational domain © is the unit square
in two dimensions, and the unit cube in three dimensions. On one of the faces, a unit
velocity is imposed. On all the other faces, homogeneous velocity boundary conditions
are imposed. The extension from homogeneous velocity boundary conditions to non-
homogeneous boundary conditions is straight-forward; the previous discussion does
not change. All the results were performed in double precision on an SGI Indigo 2
workstation.

For the Uzawa algorithm, a nested conjugate gradient iteration is used. The
numerical results reported below indicate the number of outer CG iterations required
in order to reduce the initial residual in (2) with five orders of magnitude.

For the three domain decomposition solvers, the numerical results indicate the
number of GCR iterations necessary in order to reduce the initial residual with five
orders of magnitude. For these solvers, the associated coarse grid is based upon Q2 — Py
finite elements.

In Table 1 and Table 2, we report the two-dimensional results. The total number of
degrees-of-freedom, Ny, ¢ , is also indicated together with the total number of degrees-
of-freedom on the coarse grid, Mg, ;. Table 1 shows how the number of iterations
varies when varying the order N of each spectral element. Here, K = 4 x 4 = 16 equal
spectral elements (or subdomains) are used. The results in Table 1 are also plotted in
Figure 1.

The results in Table 1 show that the convergence rate for Method U and Method H2
depends very weakly upon the order of each spectral element, in particular for higher
values of N. The results are consistent with the results in [MMPR93] for the Uzawa
algorithm, where it is found that the inf-sup parameter depends only weakly upon N
in two dimensions. Thus, these results indicate that Method H2 also has a very weak
dependence upon N.

The results for Method H1 are similar to Method S for N < 10. However, for
N > 10, the number of iterations for Method S appears to grow linearly with N, while
the growth rate is sublinear for Method H1. Note that Method H1 corresponds to a
minimum overlap for the velocity degrees-of-freedom, and that the ratio H/§ ~ O(N?)
as N = oo. Hence, based upon the estimate (4), one might expect the iteration count
to grow linearly with N for Method H1. Tt appears that this estimate is somewhat
pessimistic, at least for N < 20.
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The results in Table 2 are obtained by keeping the order of the elements fixed to
N = 10, while using 2 different decompositions, K =4 x 4 = 16 and K = 8 x 8 = 64.
As expected, the convergence rate does not depend upon the number of subdomains,
K.

In Table 3, we report the corresponding three-dimensional results. The
decomposition we have used corresponds to K = 4 x 4 x 4 = 64. These results are
also plotted in Figure 2. We do not yet have results for Method H1 in R3. Because of
the rapidly increasing problem size with N in R3 | we have not been able to use very
high values of N. Hence, we have probably not seen the asymptotic behavior of the
methods in R?; see [MMPRO3]. However, even these limited results indicate that the
number of iterations does not grow faster than linearly with the polynomial degree N
for any of the methods (at least for N < 8).

TABLE 1

N[UJH2[HI| S | Naoy | Mooy
4 110 14|23 [22] 593 145
6 | 11| 18 | 28 | 27 | 1,457 145
8

10

1] 20 | 33 | 32| 2,705 | 145
11| 22 | 36 | 38 | 4,337 | 145
T2 12|23 | 38 | 43 | 6,353 | 145
14| 12 [ 23 | 40 | 50 | 8,753 | 145
16 | 13 | 24 | 44 | 57 | 11,537 | 145
18 | 14 | 24 | 49 | 61 | 14,705 | 145
20 [ 14 | 25 | 53 | 69 | 18,257 | 145

TABLE 2

KTU[H2[HI] S [ Naos | Maoy
16112236 |38 4,337 145
64 | 11| 22 | 35 [ 40 | 17,665 | 641

TABLE 3

U | H2 | S | Naos | Maoy.
15| 17 | 26 4,504 1,284
15| 22 |33 ] 11,852 | 1,284
16 [ 25 | 39 | 24,672 | 1,084
18 | 29 | 46 | 44,500 1,284
19 32 [ 52 | 72,872 | 1,284
21| 35 | 60 | 111,324 1,284

|~ o ot | wo| =

Discussion

We now discuss the computational complexity for the Stokes solvers. From the
numerical results for the driven cavity problem, we notice that the minimum number
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Figure 1 Two-dimensional convergence results
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Figure 2 Three-dimensional convergence results

of iterations is achieved for the Uzawa algorithm, both in two and three dimensions.
On the other hand, each CG pressure iteration in the Uzawa algorithm involves the
inversion of the multi-dimensional viscous operator, as well as global matrix-vector
products involving the gradient and divergence operator. The dominant work per
iteration is associated with solving the viscous system; the work associated with
preconditioning the Uzawa pressure operator is small.

For all the domain decomposition methods, each GCR iteration involves two matrix-
vector products with the full Stokes operator. Note that, in contrast to the Uzawa
algorithm, the viscous operator here enters as part of the matrix-vector product, and
not as an operator that needs to be inverted. The preconditioning step involves the
solution of a coarse Stokes system (effected by a back substitution), as well as the
solution of local Uzawa pressure operators (effected by a set of K back substitutions).
In addition, for Method S and Method H1, a set of K local viscous systems are solved
(effected by a set of d- K back substitutions). For Method S, this corresponds to local,
interior solves, while for Method H1, a minimum overlap is used. For Method H2,
however, a global viscous system is solved in each preconditioning step.

The number of iterations for Method H2 is almost twice the number of iterations
for Method U for larger values of N. Hence, the cost of Method H2 is about 4 times
the cost of Method U. Both methods can be regarded as examples of nested iterative
methods, with Method U representing a nested CG/CG iteration, and Method H2
representing a nested GCR/CG iteration.

The above comparison of Method U and Method H2 definitely favors the Uzawa
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method for a standard Stokes problem. However, there are several reasons why Method
H2 is interesting. First of all, the results for Method H2 (as well as for Method H1)
demonstrates that it is, in fact, possible to separate the treatment of the pressure and
the velocity when constructing the Stokes preconditioner. This observation gives rise
to an added flexibility.

Second, Method H2 demonstrates that close to optimal convergence rates may be
achieved using high-order spectral elements. Even though no theory yet exists for this
method, it is doubtful that the convergence rate can be expected to be better than the
convergence rate for Method U (i.e., the dependence on the inf-sup parameter may be
the limiting factor).

If the number of inner CG iterations in the Uzawa algorithm is higher than about
ten, Method S and Method H1 will have the lowest computational cost of all the
Stokes solvers tested here; this will, indeed, be the typical case. The computational
cost associated with Method S and Method H1 is roughly the same.

In the context of using low-order finite element methods, the results presented in this
paper, combined with those in [KPar], offer strong evidence that low-order methods,
with a separate velocity and pressure treatment, can yield excellent convergence
rates. More numerical results are necessary in order to determine whether a separate
treatment of the velocity and the pressure (i.e., an overlapping approach for the
velocity and a non-overlapping method for the pressure) is better than associating
the “full” Stokes operator on each extended subdomain; see [KPar, KP98].

Finally, we mention that for all of the domain decomposition methods we have
considered here, the coarse grid is essential in order to obtain the correct solution. This
is due to the fact that the local pressure solutions are based upon a non-overlapping
approach, and a zero mean is enforced in each subdomain. Thus, only the coarse
system will provide the correct pressure levels in each subdomain.
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