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Parallel Solution of General Sparse
Linear Systems using PSPARSLIB

Yousef Saad', Sergey Kuznetsov?, Gen-Ching Lo?

Distributed Sparse Linear Systems

PSPARSLIB [SM95] is a portable package for solving sparse linear systems on parallel
platforms. The package adapts a number of methods based on domain decomposition
concepts to general sparse irregularly structured linear systems. It is implemented
in FORTRAN 77 with a few C functions and uses the MPI communication library
for message passing. This paper describes some of the methods implemented in the
package and examines a number of strategies used to improve their performance.

Given a large sparse nonsymmetric real matrix A of size n, we consider the linear
system

Ax = b, (1)

that can arise, for example, from a finite element discretization of a partial differential
equation. To solve this system on a distributed memory computer, it is common
to partition the finite element mesh and assign a cluster of elements representing
a physical subdomain to each processor. Each processor assembles only the local
equations associated with the elements assigned to it. When the system is already in
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Figure 1 A local view of a distributed sparse matrix.

assembled form, subsets of equations-unknowns are assigned to processors. In either
case, each processor will wind up with a set of equations (rows of the linear system)
and a vector of the variables associated with these rows. A distributed linear system
is a set of linear equations that are assigned in this fashion to a distributed memory
computer.

This paper presents the general principles used in a parallel iterative sparse linear
system solver with an emphasis on defining preconditioners for distributed sparse
linear systems. These (global) linear systems of equations are regarded as distributed
objects and solution methods must be developed by exploiting the local data structures
associated with the distributed linear system. The first step of any parallel sparse
iterative solver is to set up these local data structures. In this preprocessing phase,
the local equations are represented along with the dependencies between the local
variables and external variables, and any other information needed during the iteration
phase. We will give a brief overview of the local representation of the linear system
and discuss how the solution package is built around this representation. A number
of variations of some known preconditioning techniques will then be presented.

The Local System.

Figure 1-(a) shows a ‘physical domain’ viewpoint of a sparse linear system which is akin
to that used in the domain decomposition literature. A point (node) in a ‘subdomain’
is actually a pair representing an equation along with an associated unknown. It is
common to distinguish between three types of unknowns: (1) Interior variables which
are coupled only with local variables by the equations; (2) Local interface variables
which are those coupled with non-local (external) variables as well as local variables;
and (3) External interface variables which are variables in other processors that are
coupled with local variables. We can also represent the related local equations as
shown in Figure 1-(b). Note that these equations are not contiguous in the original
system. The matrix represented in the figure can be viewed as a reordered version of
the equations associated with a local numbering of the equations/unknowns pairs.
As can be seen in Figure 1-(b), the rows of the matrix assigned to a certain processor
have been split into two parts: a local matrix A; which acts on the local variables and
an interface matrix X; which acts on remote variables. These remote variables must
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be received from other processor(s) each time that a matrix-vector product with the
matrix A is performed. It is common to list the interface nodes last, after the interior
nodes. This local ordering of the data leads to efficient interprocessor communication,
and reduces local indirect addressing during matrix-vector products. The zero blocks
shown are due to the fact that local internal nodes are not coupled with external
nodes.

Each local vector of unknowns x; consists of the subvector u; of internal nodes
followed by the subvector y; of local interface variables. The right-hand side b; is
conformally split into the subvectors f; and g;, and the local matrix A; residing in
processor i as defined above is block-partitioned according to this splitting. The local
equations can therefore be written as follows.

(? g) <Z> * (ZjEN(z)Eijyj> N (s{) .

The block matrix on the left side is the local matrix A;. Here, N; is the set of
subdomains that are neighbors to subdomain . Each term FE;;y; in the sum in the
left-hand side is the contribution to the local equation from neighboring subdomain
number j.

The subvectors of external interface variables are grouped into one vector called
Yi ezt and the notation

Z Fijyj = Xiviext
JEN;
will be used to denote the contributions from external variables to the local system (2).

In effect, this represents a local ordering of the external variables. With this notation,
the left-hand side of (2) becomes

w; = Azl'z + Xiyi,ezt (3)

The vector w; is the local part the matrix-by vector product Az in which z is a vector
which has the local vector components z;, ¢ = 1,...,s.

To facilitate matrix operations and communication, an important task is to gather
the data structure representing the local part of the linear matrix as was just
described. In this preprocessing phase it is also important to form any additional
data structures required to prepare for the intensive communication that will take
place during the solution phase. In particular, each processor needs to know (1) the
processors with which it must communicate, (2) the list of interface points and (3) a
break-up of this list into pieces of data that must be sent and received to/from the
“neighboring processors”. A complete description of the data structure associated with
this boundary information is given in [SM95] along with additional implementation
details.

Matriz-vector operations.

The matrix-vector product is carried out according to equation (3). First, the external
data y; ezt needed in each processor is obtained. The matrix-vector product with
the matrix A; on the local data z; can be carried out at the same time that this
communication step is being performed. Then the matrix-vector product with the
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matrix X; on the external data y; st can be carried out and the result is added to
the result obtained from A;z;. The following is a code segment for performing this
operation as it is implemented in PSPARSLIB.

¢ send local interface data to neighbors
call MSG_bdx_send(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
¢ do local matrix-vector product for local points
call amux(nloc,x,y,aloc,jaloc,ialoc)
¢ receive remote interface date from neihgbors
call MSG_bdx_receive(nloc,x,y,nproc,proc,ix,ipr,ptrn,ierr)
peform matrix-vector product with external data and add it
to current result vector y
nrow = nloc — nbnd + 1
call amuxi(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))
return

Here MSG_send and MSG_receive are subroutines that invoke the proper MPI calls for
sending and receiving the interface data to and from neighboring processors. The send
is non-blocking. The set of parameters nproc, proc, ix, ipr, ptrn, contains precisely
the data structure needed for the interface variables.

Distributed Krylov Subspace Solvers

The main operations in a standard Krylov subspace acceleration are (1) vector
updates, (2) dot-products, (3) matrix-vector products and (4) preconditioning
operations. If we exclude the matrix-vector products (discussed above) and
preconditioning steps (to be seen later), the rest of the operations in an algorithm
such as CG or GMRES are mainly dot-products and vector updates. Since vector
quantities are split in the same fashion, a global SAXPY of two vectors across p
processors, consists of p independent SAXPYs. In contrast, a global dot product
requires a global sum of the separate dot products of the subvectors in each processor.
The dot products are mainly used in orthogonalizing sets of Krylov vectors and this
constitutes one of the potential bottlenecks in a parallel implementation of Krylov
subspace procedures. Experience shows however, that in most practical situations the
loss of efficiency due to inner products is usually minor unless the sub-problems become
relatively small[KLS97].

One of the main Krylov accelerator used in PSPARSLIB is the flexible variant of
GMRES [SS86] known as FGMRES [Saa93]. This is a right-preconditioned variant that
allows the preconditioning to vary at each step. Since the preconditioning operations
require solving systems associated with entire subdomains it becomes important to
allow the preconditioner itself to be an iterative solver. This means that the GMRES
iteration should allow the preconditioner to vary from step to step within the inner
GMRES process. A variant of GMRES which allows this 1s called the flexible variant
of GMRES (FGMRES), see [Saa93] for details.

It is important to implement the accelerators (e.g. FGMRES) with “reverse
communication”, a mechanism whose goal is to avoid passing data structures to the
accelerator. When calling a standard FORTRAN subroutine implementation of an



468 SAAD, KUZNETSOV, AND LO

D1 ©Ds D3 Dy

Si o] oo S
D5 D6 D7 DS

Table 1 An example of splitting eight domains on the plane into two groups

iterative solver, we normally need to pass a list of arguments related to the matrix A
and to the preconditioner. This can be a burden on the programmer because of the
rich variety of existing data structures. The solution is not to pass the matrices in any
form. When a matrix — vector product or a preconditioning operation is needed, the
subroutine exits and the calling routine performs the desired operation and then calls
the subroutine again, after placing the desired result in one of the vector arguments

of the subroutine. For details, see [SW95, Saa95, Saa96].

Variants of Additive Schwarz Preconditioners.

The additive Schwarz procedure 1s a form of block Jacobi iteration, in which the blocks
refer to systems associated with entire domains. Each iteration of the process consists
of the following steps: (1) Obtain external data y; es:; (2) Compute (update) local
residual r; = (b — Az); = b — Aizi — Xiyiexr (3) Solve A;6; = r;; and (4) Update
solution z; = x; 4+ d;. To solve the systems in step 3, a standard (sequential) ILUT
preconditioner [Saa96] combined with GMRES or one step of an ILU preconditioner
is used. Of particular interest in this context are the overlapping additive Schwarz
methods. In the domain decomposition literature, see e.g., [Bjg89, BW89, SBGI6]
among others it is known that overlapping is a good strategy to reduce the number
of steps. There are however several different ways of implementing overlapping block
Jacobi iterations, for example, we can replace the data in the overlapping subregions
by its external version or use some average of the data.

It is sometimes possible to reduce the number of outer iterations required by
block Jacobi preconditioners by using a 2-level clustering of the subdomains. The
subdomains are split into groups 51, Ss, ..., Sp. The assignment of the subdomains to
groups can be determined from knowledge of neighboring subdomains. Figure 1 shows
an example in which 8 subdomains are split into two groups. Consider a certain group
of subdomains, say Sk, and the set of equations-unknowns corresponding to all the
subdomains belonging to S. The local system for subdomain ¢ € Sy can be rewritten
in the form:

Az + Zizi ext + (XiYi ewt — ZiZient) = Wi

where z; ¢pt is a part of the vector y; eqs corresponding to remote variables in the same
group as subdomain ¢, 7; is a part of the interface matrix X; which acts on the remote
variables z; ¢pt. Thus the solution of the linear system

Aixi + ZiZiewt = W5

will provide a preconditioner for the (outer) block Jacobi iteration. This nested two-
level form of the block Jacobi iteration, can be described as follows.
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ALGoRrITHM 1 Hierarchical Block Jacobi Iteration

1. Obtain external data y; et

2. Compute (update) local residual r; = (b — Ax); = b; — Ajx; — XYi ent
3. Doi=1,...0

4, Obtain external data z; ext

5. Compute (update) local residual s; = rj — Z;2j eqt

6. Solve A;d0; = s;

7. End
8. Update solution z; = xz; + §;

The number of inner iteration 7; depends on the problem. Often, the choice i; = 2
achieves a good compromise between accuracy for the local block solver and overall
performance. The hierarchical block Jacobi iteration presents several advantages over
the traditional block Jacobi iteration. It allows to reduce the number of outer iterations
due to increased accuracy in the preconditioning step. On the other hand, this
approach increases communication costs which can be reduced by using small groups.

Variants of Multiplicative Schwarz Preconditioners.

The multiplicative Schwarz preconditioner uses the same extended domains as the
additive Schwarz method, but the subdomain solves are sequential: every processor
uses interface variables defined by preceding local solves. The simplest form of
the multiplicative Schwarz is the block Gauss-Seidel algorithm used in domain
decomposition techniques [BW86, SBG96, CM94].

A partial remedy to the sequential nature of the multiplicative Schwarz technique
is to use multi-coloring. Thus, if the domains are colored, the multiplicative Schwarz
as executed in each processor would involve a color loop through all the colors - and
execution of the loop is performed only when the color variable equals the color of
the processor, see [SBG96, Saa96]. The rest of the iteration is identical with that of
Additive Schwarz. A problem with multicoloring is that as the domain associated with
the given color is active, all other colors will be inactive. As a result it 1s typical to
obtain only 1/numecol efficiency where numcol is the number of colors. To reduce this
effect, one can further block the local variables into two blocks: interior and interface
variables. Then the global SOR iteration is performed with this additional blocking.
In effect, each local matrix A; is split as

B E.\_ (B 0 0 B
Ai:(ﬂ- CZ->_(O Ci)+<Fi 0) (4)

where the B; part corresponds to internal nodes. The resulting segregated
multiplicative Schwarz is as follows,

ALGORITHM 2 Segregated multiplicative Schwarz
1. Solve B;dj z = 7i 5

2 x; =2+ 51'}1-

3. Docol =1,..., numcols

4, If (col.eq.mycol) then
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Obtain external data y; ext

Update y-part of residual r;

Solve C36; .y = 1i 4y

Update interface unknowns y; = y; + i 4
EndIf

© NS =

The advantage of this procedure is that the bulk of the computational work in each
domain is done in parallel. Loss of parallelism comes from the color loop which involves
only solves with interface variables, which are of lower complexity.

Numerical Experiments

In this section, we report on some results obtained when solving distributed sparse
linear systems on an IBM SP2 with 14 nodes, an IBM cluster of 8 workstations,
and an SGI Challenge cluster and a 64 processor CRAY-T3E. The SGI challenge
workstation cluster consists of three 4-processor Challenge L servers and one 8-
processor Challenge XL server. The processors on the Challenge L. and XL are the
same (R10,000) but the memory sizes are different. Communication between different
SGI cluster workstations (respectively, IBM RS/6000 workstations) can be performed
via a HiPPI (High Performance Parallel Interface) switch or a Fibre-Channel switch.
On the IBM cluster, an ATM switch is used. The MPI communication library is used
for all communication calls. The ATM and HiPPT are high speed interfaces and can
transfer data at 155 Mbps and 800 Mbps, respectively. The IBM RS/6000 Model 590
workstations are based on the Power2 architecture. The SP2 nodes communicate with
an internal switch which achieves a bandwidth of 320 Mbps bandwidth and has a
latency of about 40 microseconds. The CRAY-T3E has 64 nodes and 128 Megabytes
of memory per node. The processors are connected in a 3-D torus by a network capable
of 480 Mbps in each direction for each link.

Experiments with block Jacobi preconditioning. First, we compare the three
different overlapping options mentioned at the end of Section 51, when they are used
in conjunction with the block Jacobi iteration using. The results are summarized in
Figure 2. In the figures, jacno stands for block Jacobi with no overlapping, jaco_av
for block Jacobi with overlapping and averaging of the overlapping data, jac for block
Jacobi with overlapping and exchange of overlapped data.

A standard ILUT preconditioner combined with GMRES was used as a local solver
and the number of inner iterations was equal to its = 11. We select its = 11 because
it minimizes the execution time for a small number of processors if preconditioned
GMRES is used as a local solver. Note that the optimal set of parameters depends
on the number of processors and the problem considered. It is sometimes reasonable
to use a smaller number for the level of fill or a smaller number of inner iterations
if the number of processors is large. The results are for the matrix VENKATO1 of
dimension 62,424 with 1,717,792 non-zero entries on the CRAY-T3E, using a relative
tolerance of ¢ = 107%, a Krylov subspace dimension of m = 50 and a fill-in of 25
for the ILUT preconditioner. The comparison shows that overlapping can reduce the
number of outer iterations and jac usually requires fewer iterations.
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Figure 2 Comparison of FGMRES with distributed block Jacobi
preconditioner for three different overlapping strategies on the CRAY-T3E. Left
plot: execution times. Right plot: lterations
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Number of processors 1 3 5 10 16 24
preconditioned GMRES time 16.34 | 9.64 | 5.59 | 2.96 | 2.35 1.66
speed-up 1.69 | 292 | 5,52 | 6.95 9.84

its 13 16 17 18 19 19

TLU solver time 8.85 | 3.78 | 2.49 [ 1.39 | 1.04 0.77
speed-up 2.34 | 3.55 | 6.37 | 8.51 11.49

its 15 18 20 21 21 21

Table 2 Execution times in seconds, speed-up and number of outer iterations
for the block Jacobi preconditioner with two different local solvers

PHs 8 10 16 20
Matvecs 399 493 589 727
Seconds 308.21 254.38 170.85 165.66

Table 3 Number of matrix-vector multiplications and execution times

(seconds) for the BARTH1S matrix.

The ILUT factorization is often more economical. Table 2 gives timing results, speed-
ups and iteration counts for the block Jacobi preconditioner with overlapping using
two different local solvers. Table its shows the number of FGMRES steps. These results
are given for the VENKATO1 matrix on the CRAY-T3E, using a relative tolerance
of ¢ = 1079, a Krylov subspace dimension of m = 50 and a level of fill of 25 for the
ILUT preconditioner. These tests and others, indicate that using ILUT as a local solver
(without any acceleration) is faster than using preconditioned GMRES preconditioned
with TLUT.

Several approaches can be used to improve the load balance among processors. One
approach is to adapt the number of inner iterations for each processor based on the
time consumed by the preconditioning step for a few first iterations. Numerical tests
on the SP2 and on the IBM RS6000 show that this ‘forced load balancing’ approach
can yield a 10% to 25 % reduction in the execution time when the number of processors
is small, see [KLS97] for details.

The next matrix, referred to as BARTH1S, was supplied by T. Barth of NASA Ames,
see [CSW96]. Tt models a 2D high Reynolds number airfoil problem, with turbulence.
The matrix has a 5x5 block structure and has 189,370 rows and 6,260,236 nonzero
entries. This linear system is very ill-conditioned (see [CSW96]) and very hard to solve
iteratively. We had to use a deflated version of GMRES [CS97]. The local systems are
solved using one step of an TLU solve, where the LU factors are obtained from a block
ILU(k) preconditioner (see [CSW96]) where k denotes a level of fill. Table 3 gives
the timing results, and the number of matrix-vector multiplications. The following
parameters have been used: the level of fill was 4, the number of deflated eigenvectors
was 8, the Krylov subspace dimension was 50, and the tolerance threshold was 1.E-5.
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Method its = 1 its =2 | its =3 | its =5 | ILU sol
Matvecs 238 108 127 106 238
Seconds 15.23 9.88 15.08 18.02 15.147

Table 4 Performance of the hierarchical Jacobi preconditioner with different
number of inner steps and for the ILU solve.

Experiments with hierarchical block Jacobi. We now compare the overlapping
Jacobi preconditioner with the forward-backward LU solver and the hierarchical
Jacobi preconditioner for 2-D elliptic problems. It is assumed that all processors
have been split into groups by means of the following function fi(j) defined by:
fo(4) = (7 — 1)/b] + 1, where b is a blocking factor for processors. Table 4 shows
performance results for the hierarchical block Jacobi preconditioner using four different
numbers of inner iterations. The results are for a Poisson equation on the unit square.
The number of processors i1s 8, the problem size is 90,000. A standard forward-
backward local TLU solver was used. The blocking factor for processors is 2, the
tolerance is 107%, the level of fill is 5, and the Krylov subspace dimension is 30.

An increase in the number of inner iterations leads to a significant reduction in the
number of outer iterations. However, the execution time increases as the number of
inner iterations increases from 2 to 5 due to higher computational costs of each step.
The number of inner iterations of 2 seems to give the best compromise in this case.

Experiments with Multiplicative Schwarz. Figure 3 shows a comparison of
multiplicative Schwarz for four different types of local solution strategies on the CRAY-
T3E for the VENKAT(1 matrix. As was already explained, the Multicolor SOR, scheme
used here involves substantial idle time for each processor since only one color is active
at any given time. It is therefore much less efficient than the other methods. The
figure shows once again that requiring more accuracy for the ILU local solves leads to
a reduction in the total time. Also the use of a single ILU solve leads to good savings
in computational time.
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