52

Parallel Solvers for the Two-Group
Neutron Diffusion Equations of
Reactor Kinetics

ROBERT SCHEICHL!

INTRODUCTION

We are concerned with the solution of the transient two-group neutron diffusion
equations arising in the simulation process of nuclear reactor cores [DH76]:

0 _ o p .

o = (D Vh0) + o (01,65 (Clica,) 9 =12 (1)

aC; , .

B = hi(¢1, ¢2,Ci), 1=1,...,6 (2)

t

The unknowns in this system are the flux densities ¢; and ¢ of the “fast” (g = 1)
and “thermic” (¢ = 2) neutrons, as well as the precursor concentrations Cj; in
each precursor group 7 = 1,...,6. The linear operators f; and h;, and the diffusion

coefficients D, are determined by the underlying physics. We consider this system
on a polyhedral domain Q@ C R3, with given initial data at t = ¢ and the following
vacuum boundary condition on 9Q:

999\ _ 7 o

In this paper we investigate the excellent parallel performance of preconditioned Bi-
CGStab and Multi-Grid applied to this system of equations. Other than reported

1 Dept. Math. Sci., University of Bath, UK. Email: R.Scheichl@maths.bath.ac.uk.
This research was supported by the Siemens AG, and a Leonardo da Vinci scholarship.
Eleventh International Conference on Domain Decomposition Methods

FEditors Choi-Hong Lai, Petter E. Bjgrstad, Mark Cross and Olof B. Widlund ©1999 DDM.org

PARALLEL SOLVERS FOR NEUTRON DIFFUSION EQUATIONS 477

elsewhere in the literature (e.g. [FBT88, HP*t96, HDB96, UTK95, YN93]), we are
able to achieve optimal (linear) speedup for all tested examples up to 12 processors on
all but the coarsest grid. Moreover, the parallel execution times are better than the
parallel execution times of the established reactor simulation code PANBOX of the
Siemens AG Operating Division KWU, described in [FB*88] and [HP*96]. This is of
practical interest, especially since the multilevel method implemented in PANBOX is
one of the most efficient methods for the sequential case to date.

We use a special finite volume method (NEM-MO0), and a method that combines
Crank-Nicholson and the BDF(2)-method to discretise Equations (1-3) in space and
time, respectively. The parallelisation is based on a simple grid partitioning. The most
important features of our methods are firstly the spatial discretisation that assigns
each degree of freedom to exactly one subdomain and therefore needs no assembling
at the subdomain interfaces, and secondly an effective parallel hybrid Block-Jacobi
- Block-SOR smoother / preconditioner that makes use of the particular structure
of the linear equation systems. The implementation of the methods was carried out
on a shared memory 12-processor machine (SGI Power Challenge) using “threads”.
For more details about the methods and the implementation, and for more numerical

results see [Sch97].

DISCRETISATION

On a uniform rectangular grid 7 = {7, : m = 1...M} we discretise Equations (1-3)
by using the mixed cell-centred finite volume method NEM-MO, especially proposed in
[FBWTT] for the multigroup neutron diffusion equations. It is closely related to lowest-
order Raviart—Thomas—Nédélec mixed-hybrid finite elements [HDV93]. To simplify the
presentation let Ty = R3\Q. As for mixed finite elements, we introduce the physically
important neutron current density

jy=—-Dy,Véy,, g=1,2 (Fick's Law). (4)

To obtain semi-discrete (time dependent) approximations of Equations (1-2) we
introduce zeroth momenta ¢7' and C7* of the unknown functions ¢4 and Cj on
each element T),, like in standard finite volume approximations. The vector-valued
Equation (4) on the other hand, is integrated over each face Fn, m, = Ty N T, # 0
of the triangulation 7, leaving us with an equation for the average current density
Jg'm™2 on face Fp,, m,. The significant step is the separation of this average current
density into a current j'gm1+ from the left element T,,, and a current 7,72~ from the
right element T,,,. Let u € {z,y, 2} denote one of the coordinate directions, and let

Fin, m, be perpendicular to u. Then
j?gﬂ1,mz — (J7gﬂ1+)u _ (J;‘nz—)u) (5)

The boundary condition (3) can then be easily fulfilled by setting ngi = 0. After a
simple linear transformation of the resulting system we get the following differential-
algebraic equations:

478 SCHEICHL

dor m {om am (el = m

d—tg = fg (1)¢2) (Jé +)u€{$,y,z}) (Jg)UE{x,y,z}) (CZ)i:1"“’6) (6)

acr -

T8 = wpeer.op.op) M
(G5%), = kg (o7 G50, G),,) (®)

The operators f7", hi", and k;’;’f are all linear again, and [, (resp. r,) denotes the left
(resp. right) neighbour of m in u-direction.

The system of differential Equations (6-7) is stiff and it is necessary to use stable
implicit methods for its integration. As a first-order method we use implicit backward—
Euler, as a second-order method we use TR-BDF(2), a composition of Crank-Nicholson
with the second-order backward differentiation formula proposed in [BCt85]. This
method combines the desirable properties of both methods. Tt is as stable as BDF(2),
but it has a smaller truncation error.

The integration of (7) leads to an explicit equation for C!*, and C™ can be
substituted in (6). Integrating (6) for all energy groups g and elements m and coupling
it with (8) finally leads to a (14 M)-dimensional non-symmetric linear equation system

Ax=Db (9)

for x = (61,63, G1)xs s G5)zy oo oo LM, Y Y)x, o, (§31F)2) in each time
step.

PARALLEL SOLVERS

We solve these non-symmetric linear equation Systems (9) using standard Multi-
Grid [Hac85] and left-preconditioned Bi-CGStab (P-BiCGStab) [VAV92] on grids of
different fineness, where the fine grids are obtained by uniform refinement of the coarse-
grid in each coordinate direction. The key components of Multi-Grid are as follows:
the coarse-grid correction is obtained using a W-cycle (y = 2); the systems on the
coarsest grids are solved iteratively using P-BiCGStab; the prolongation P is chosen
to be piecewise constant for the fluxes ¢7, and piecewise linear for the currents j'gmi;
the restriction R = 1/8 PT using the Galerkin approach; the smoother is a hybrid
Block-Jacobi - Block-SOR method that will be discussed in more detail at the end of
this section. If we use u (resp. v) pre- (resp. post-) smoothing steps in the Multi-Grid
method, we will denote the method by MGy, v). We will also use this hybrid method
for the preconditioning of Bi-CGStab.

All these solution methods can be fully described in terms of vector operations and
matrix-vector multiplications. To parallelise these operations we have to partition the
matrices and vectors. We partition the grid(s) 7 = {7, : m = 1,..., M} into evenly
sized parts 7; (homogeneous parallelisation), and assign each part and all unknowns
and equations that are defined thereon to one processor. The advantage that the NEM-
MO discretisation has over other discretisations is that each component of a vector can
be assigned to exactly one element T,, and therefore to one part 7; of the grid. An
important consequence of this property is that vectors do not have to be assembled
on the interfaces between two parts of the grid. In the following we will talk of local

PARALLEL SOLVERS FOR NEUTRON DIFFUSION EQUATIONS 479

calculations, if we are concerned only with calculations on one part 7; of the grid.
The local parts of a matrix A and a vector x on 7; will be denoted by A; and x;
respectively.

For the basic vector operations the individual computations for each component are
independent and can be carried out entirely in parallel. In scalar products and matrix-
vector multiplications on the other hand, data dependencies arise, and communication
or synchronisation is needed. Scalar products ¢ = (x,y) can be parallelised by
reduction. In a first step local scalar products o; = (x;,y;) are calculated on each
processor. In a “critical section” in which the calling processor has sole access to
the statements contained within it, they are added to the global scalar product o.
Any other processor, on encountering the occupied section, is forced to wait until
the section 1s cleared. For the matrix-vector multiplications on the other hand, in
particular for A - x and the restriction R -x, we need synchronisation. Each processor
needs components of the vector x that are assigned to its neighbouring processors.
Since the processors have shared memory access, we only have to synchronise them at
the beginning of each matrix-vector multiplication to guarantee that.

Let us finally discuss the smoother in MG(y,v) and the preconditioner for Bi-
CGStab. The matrix A in (9) is built up by 14 x 14 diagonal blocks A, and a small
number of off-diagonal entries. The diagonal blocks have the following structure

and can be inverted fast and easily. In the sequential case this fact can be exploited in
an effective Block-SOR, smoother/preconditioner. However, the solution of each block
system in the Block-SOR method always depends on the solution of the previous
blocks. A straightforward parallelisation of the Block-SOR method is therefore not
effective, since the processors would have to wait for each other. The natural way
to avoid this, is the application of a hybrid Block-Jacobi - Block-SOR method.
Locally each processor uses one iteration of the original Block-SOR method for the
approximate inversion of the diagonal block of his part A; of A, and calculates the
local components of the next iterate using Block-Jacobi relaxation. These operations
to find the next iterate are independent of the calculations on all other processors,
and can be done entirely in parallel. Tt is only necessary to synchronise the processors
prior to each iteration. If the number of elements 7T, per part 7; is reasonably high,
the hybrid method only differs in very few components from the sequential method.

NUMERICAL RESULTS

We applied both solution methods in the simulation process of real three-dimensional
reactor problems to test their robustness, speedup, and efficiency on three grids of
different fineness. The numbers of unknowns N of the systems that arise in each time
step are about 5.5-10%, 4.5-10°, and 3.5 10% on the three different grids. Finer grids
were not possible because of a lack of computer memory. Coarser grids are hard to

480 SCHEICHL

introduce because of the difficult geometry of a reactor. It was therefore only possible
to run MG(p,v) on the two finer grids. If not otherwise stated, the results have all
been obtained using TR-BDF(2) as the time discretisation. One composite time step
therefore involves the solution of two linear equation systems.

Robustness and comparison of MG(3/2) and P-Bi-CGStab

The methods converge robustly and the parallelisation has no effect on the
convergence, for all the tested problems. In Figures 1 and 2 the iterations and execution
times for a short transient of one of the examples on the second grid are given. The
time steps are determined adaptively. To check for convergence we use the residual
test with ¢ = 107°. The iterations and the execution times are almost constant after
a short start-up period. In comparison, MG(3/2) is about 2.5 times faster than P-
Bi-CGStab throughout the simulation for this problem. It is important to note that
the modification of the Block-SOR method in the parallel case does not effect the
convergence of the algorithms significantly, and the iterations are in average not higher
than in the sequential case.

More generally (see [Sch97]), we can conclude that for the tested examples MG(3/2)
is about 2 to 3 times faster than P-BiCGStab on the second grid, and about 3 to 4
times faster on the finest grid. The convergence of both methods does not depend on
the partitioning. For MG(3/2) the rate of convergence lies between 0.3 and 0.5 for all
examples, and does not depend strongly on the number of unknowns N. However, for
a more thorough investigation of the asymptotics we would need more results for other
values of N. For P-Bi-CGStab, on the other hand, the rate of convergence increases
from 0.5 on the coarsest grid to 0.85 on the finest. Since one iteration of MG(3/2) is
only 20 % more expensive than P-Bi-CGStab on all grids we can conclude as expected:
the finer the grid becomes the more MG(3/2) outperforms P-Bi-CGStab.

Speedup

The speedup of both methods is optimal (linear) for all tested examples on all but the
coarsest grid. On the coarsest grid the speedup for P-Bi-CGStab is also optimal, if less
than 10 processors are used. For a higher number of processors the speedup curve starts
to level off slightly. In Figure 3 the speedup graphs for one of the examples are shown.
We can see the claimed excellent behaviour. The reasons for the superlinear speedup
on the second grid are different numbers of iterations and cache-effects. Moreover,
these results suggest a good performance even for a much higher number of processors
which were unfortunately not available.

Comparison to other parallel reactor simulation codes

An exact comparison of the speedup results with the results reported in the literature
[FBt88, HDBY6, UTK95, YN93] is difficult, since they are all obtained on different
computer systems, for different examples, and for different problem sizes. Nevertheless,
none of them obtains optimal speedup for full three-dimensional problems. The best
comparison are the results in [HP*96]. They were obtained on exactly the same
computer for the same examples, also using threads for the parallelisation of the

PARALLEL SOLVERS FOR NEUTRON DIFFUSION EQUATIONS

NSO~ PO —

So =g noxm

CDE-—urr

120 T T T T
Parallel MGM (3/2) ---+---
Parallel Bi-CGStab —>—
110 Sequential MGM (3/2) ---%---
Sequential Bi-CGStab &
100
90
80
70 q
60 B
50 B
40 B
30 1
Heoanczzgprosacmn K
20 B
10 B
0 1 1 1 1 1
500.05 500.1 500.15 500.2 500.25 500.3 500.35
Simulation time (to = 500.05)
Figure 1 Number of iterations (parallel: 9 processors)
600 T T T T
Parallel MGM (3/2) ---+---
Parallel Bi-CGStab —>—
550 Sequential MGM (3/2) ---%---
Sequential Bi-CGStab &
500 q
450 B
g8 g e = ST 8 .
400 -]
350 q
300 B
250 B
200 X g
X \X\ e WemmmTTTTT K D S—— Ko e L
150 | *7* N * * T > N
"
100 B
50
+ +—+~~'+---T-¢....+ ----------- T ----- RERREE R —T --------- R SRREREEEE T ------ RaREEEEEERAR T """"" RaRRRREEEEE r
500.05 500.1 500.15 500.2 500.25 500.3 500.35
Simulation time (o = 500.05)

Figure 2 Execution time (in seconds) (parallel: 9 processors)

481

482 SCHEICHL

» 159
15 | 2
14 | o
13 | 127
12 L ‘A
11)
10 | A e
g 9 R
'g 8 | LA
g8 L
6 | /A/im"
4 | &~ MGM (3/2) (N = 445536)
3 | -a- P-Bi-CGStab (N = 445536)
2 | o —&- P-Bi-CGStab (N = 55692)
1

1 2 3 456 7 8 9 10 11 12
processors

Figure 3 Speedup for one time step (dt = 0.01 s)

established reactor simulation code PANBOX of the Siemens AG Operating Division
KWU. On the coarsest grid they report a speedup of 2.7, 3.5, and 3.7 for 4, 6, and 8
processors respectively (see Fig. 7 in [HP*96]). Even for higher numbers of processors
the speedup will not be much higher than 4. The corresponding speedup factors of
P-Bi-CGStab are 3.8, 5.7 and 8.0, and the speedup can be increased to more than 10
for higher numbers of processors. On a finer grid (N = 2.2 10°) the speedup factors
of PANBOX are 4.1, 5.8, and 7.3 for 4, 6, and 8 processors respectively. In comparison
to the speedup obtained with MG(3/2) and P-Bi-CGStab on the second grid, the
speedup curve of PANBOX seems to start to level off already at 8 processors.

For the comparison of the execution times we calculated 10 time steps of a control
rod ejection benchmark problem on the coarsest grid using PANBOX and P-Bi-
CGStab. This is of practical interest, since PANBOX is one of the most efficient
methods for the sequential case to date. The solution of 10 time steps of the
benchmark problem takes 53 seconds using PANBOX on the SGI Power Challenge.
In PANBOX, Equations (1-3) are discretised using NEM-MO0 and a special first-order
heuristic exponential integration scheme related to implicit backward-Euler. Using
P-Bi-CGStab to calculate the same 10 time steps of the benchmark problem with
the implicit backward-Euler method takes 115 seconds on the same machine. For
a fair comparison we also used the same convergence test as in PANBOX. We see
that the sequential version of P-Bi-CGStab is about two times slower than PANBOX.
Nevertheless, the far better speedup of P-Bi-CGStab makes it possible to catch up with
PANBOX already for 8 processors. For higher numbers of processors, P-Bi-CGStab is
therefore going to be faster than the established reactor simulation code PANBOX.

PARALLEL SOLVERS FOR NEUTRON DIFFUSION EQUATIONS 483
ACKNOWLEDGEMENTS

The author would like to thank Prof. U. Langer from the University of Lingz,
Dr. M. Paffrath from Siemens ZT Munich, and Dr. I. Graham from the University
of Bath for their helpful advice and comments.

REFERENCES

[BC*85] Bank R., Coughran W. M., et al. (1985) Transient simulation of silicon
devices and circuits. [EEE Transactions on Computer Aided Design of
integrated circuits 4(4): 436-451.

[DH76] Duderstadt J. J. and Hamilton L. J. (1976) Nuclear reactor analysis. J.
Wiley & Sons, New York.

[FB*88] Finnemann H., Brehm J., et al. (1988) Mulitgrid solution of diffusion
equations on distributed memory multiprocessor systems. Atomkernenergie /
Kerntechnik 52(3): 169-174.

[FBW77] Finnemann H., Bennewitz F., and Wagner M. R. (1977) Interface
current, techniques for multidimensional reactor calculations. Atomkernener-
gite / Kerntechnik 30: 123-128.

[Hac85] Hackbusch W. (1985) Multi-grid methods and applications. Springer,
Berlin.

[HDB96] Han G. Joo, Downar T. J., and Barber D. A. (1996) Methods and
performance of a parallel reactor kinetics code PARCS. Proceedings Int. Conf.
Physics of Reactors pages J42-J51.

[HDV93] Hennart J. P. and Del Valle E. (1993) On the relationship between
nodal schemes and mixed-hybrid finite elements. Numerical Methods for Partial
Differential Fquations 9: 411-430.

[HP*96] Hammer C., Paffrath M., et al. (1996) Performance of the coupled
thermalhydraulics /neutron kinetics code R/P/C on workstation clusters and
multiprocessor systems. Proceedings Int. Conf. Physics of Reaclors .

[Sch97] Scheichl R. (1997) Parallel solution of the transient multigroup
neutron diffusion equations with multi-grid and preconditioned Krylov-subspace
methods. (Master’s Thesis), volume C 21 of Schriften JKUL. Trauner, Linz.

[UTK95] Uematsu M., Tsuiki M., and Kubota K. (1995) Parallel processing of
boiling reactor core analysis. Journal Nuclear Science and Technology 32(6).

[VAV92] Van der Vorst H. A. (1992) Bi-CGSTAB: A more smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM
Journal on Scientific and Statistical Computing 13: 631-644.

[YN93] Yong H. Kim and Nam Z. Cho (1993) Parallel solution of the neutron
diffusion equation with the domain decomposition method on a transputer
network. Nuclear Science and Fngineering 114: 252-270.

