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V-cycle Multigrid Methods for
Wilson Nonconforming Element

ZHONG-CI SHI', XUEJUN XU?

INTRODUCTION

In this paper, we present some optimal V-cycle multigrid algorithms for Wilson’s
element. Two types of multigrid methods are considered.

The first one uses the bilinear conforming element space as the coarse grid correction
space. Similar to [10], here we also consider the effect of numerical integrations. Both
the standard and a weak quadrature formula are discussed. As in [2], the quadrature
formula on the finest level is also used for all coarse levels. We show that the V-cycle
multigrid method for Wilson’s element with the standard or the weak quadrature
formula needs only one smoothing iteration on each level. Moreover, the result holds
for problems without full elliptic regularity (e.g., an L-shaped domain or a domain
with a crack boundary). We mention here that in [2] only the standard quadrature
formula for the conforming case is studied.

The second type of V-cycle multigrid method for Wilson’s element is the so-called
nonconforming multigrid, i.e., the both fine mesh and coarse mesh space are the same
nonconforming finite element space. Little work has been done in this direction. Many
existing nonconforming multigrid methods have been shown to converge only for W-
cycle with sufficiently many smoothing steps on each level (cf. [4] for details). One
interesting exception is the so-called rotated Q1 nonconforming finite element; see
[7], where it is shown that the W-cycle multigrid with any number of smoothing
steps converges for Laplace equation. In [6], a V-cycle nonconforming multigrid is
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proposed for the rotated Q1 element and P1 nonconforming element through a
modified quadratic form on the coarse mesh space. However, the convergence rate
is dependent on the mesh level J. Meanwhile, the numerical experiment [6] shows
that the nonconforming multigrid still converges without changing the quadratic form.
We do hope that a good choice of an intergrid operator may result in a convergent
V-cycle nonconforming multigrid method even without changing the quadratic form
on the coarse meshes. Tt has been done with Wilson’s element. Here we define a
simple intergrid operator with good stability properties for Wilson’s element. Using
this operator, an optimal V-cycle nonconforming multigrid with one smoothing step
on each level converges for Laplace’s equation, and the convergence rate is independent
of the mesh level J. It seems to be the first optimal V-cycle nonconforming multigrid
method. Similar to the rotated Q1 nonconforming element, the W-cycle nonconforming
multigrid, with any number of smoothing steps, is also shown to be convergent for
Wilson’s element.

A MODEL PROBLEM AND WILSON’S ELEMENT

We consider the second order problem

2
0 Ou )
m 2 g i) < @ (1)
u =0 on 09,

where Q@ C R? is a bounded polygonal domain, f € L?(Q), and all function a;; and
f are smooth enough. We assume that the differential operator is uniformly elliptic,
i.e., there exist positive numbers ¢, C' such that

2
€€ < Y kil < CEE V(a,y) €Q,6€ R (2)
i,j=1
If Q is a convex polygon, then the solution u satisfies the so-called full regularity
assumption

llull2 < C[fllo- (3)

However, the results of next section are independent of (3).

Here and throughout this paper, ¢ and C' (with or without subscript) denote generic
positive constants, independent of the mesh parameter J and h; which will be defined
below.

The variational form of (1) is to find u € HJ(Q) such that

a(u,v) = (f,v) Vv € Hy(Q), (4)

where the bilinear form

Ou 1
(u,v) / Z ama 3% dT Yu,v € H'(Q).

i,7=1
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Let hg and T'p, := I'g be given, where [y is a partition of Q into rectangles and
hg is the maximum diameter of all the rectangles. For each integer, 1 < k < J, let
hi = 27 %hg and [y, := 'y be constructed by connecting the midpoints of two opposite
edges of each rectangle in I'y_1, k= 1,..., J. The finest grid is [';.

On each level k, we define Wilson’s nonconforming element space as follows:

First, on the reference rectangle K = [—1, 1] x[—1, 1], the shape functions of Wilson’s
element is a quadratic polynomial p, defined by the values of p at four vertices of K

P 2.4 N
and the mean values of gTZ and g—’; on K. We have

; :(1+€)(1+n)p1+( Lt L (=00=n)  (+80=n)

(
1 8%p 1 8
2

()
where p; is the value of p at the vertex A;.

Then, for each rectangle 7k € 'k, using an affine transformation, we can define a
Wilson’s element. We denote Wilson’s finite element space on I'y by Vi. It is known
that this element is not continuous on interelement boundaries, so it is nonconforming
for a second order problem.

In the following, we also need the bilinear element space on I'y, which is denoted
by Ug. we note that Uy is a conforming element.

Define the discrete bilinear form over the space Vi by

2

Ou Ov
T Y R

TrREDE VTK § =1

where superscript F indicates that all integrals are computed exactly.
Next we define a discrete semi-norm by

o= > luf, VueV, i=12 (7)
TrE R

It i1s known that this semi-norm is also a norm over Vi. Then, the Wilson’s
nonconforming approximation of (1) on I'; is to find u% € V; such that

af (uy,vs) = (fvs) Yoy €V (8)

It is known that there exists a unique solution of (8); see [5].

We now approximate the integral in aZ(-,) by a quadrature scheme Qg over each
K ¢ FJ We first consider the reference rectangle K and approximate the integral
[# ¢(2)dz as follows:

/K ()i~ 3 wid(h),

where w; are positive weights and b; € K are quadrature points. We then define the
quadrature scheme on K € I'y by

L
/K d(e)de ~ Y wreid(br) = Qrcld], (9)
=1
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where ¢(x) = ¢(&), the weights wx,; and quadrature points bx; are defined in terms
of the w; and b; by means of the affine mapping from K onto K that takes each z in
K into # in K.

The quadrature error functional is

Fx(6) = /K o(x)dz — Qrcld). (10)

Using the quadrature scheme, we approximate a%(-,-), (f,:) by as(-,-), (f,")s as
follows

2
Oou 0
ar(uv)= Y Y Qlaijg—5—] (11)
KeTyi,j=1 P
and

(fiv)r= > Qxlfv]. (12)

Kel;
Now the Wilson’s and the bilinear element approximation u; and wj with the
quadrature scheme Qi are defined, respectively by

ay(uy,v) = (f,v)g YveV; (13)
and
aj(wy,v) = (f,v)y YveU,. (14)

Following [5], a standard quadrature scheme @Qg satisfies the following two
assumptions: (H1) The quadrature error funtional

Ek(¢) =0 Vo€ Py(K),

where Py(K) is the quadratic polynomial space on K.

(H2)
. 1
All weights wg; >0 and 1 Xl:wKJ =1.

Meanwhile, instead of (H1), there exist other weak assumptions, like
(H3) The union of all quadrature points b; on K contains a P;(K) unisolvent subset.
(H4) The quadrature scheme Qg satisfies:

Ex(d) =0 YéeQi(K),

where @1(K) is the bilinear polynomial space on K.

Here are two examples.
Scheme 1 (the standard formula with (H1) and (H2).)

- $(&)de ~ Y $(B),

where By = (%, LS), By = (%,—\%), B3 = —%, =), Ba = (—
Scheme 2 (the weak formula with (H2), (H3) and (H4).)

where A1 = (1, 1), A2 = (1, —1), A3 = (—1, 1), A4 = (—1, —1).
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V-CYCLE MULTIGRID WITH NUMERICAL INTEGRATION
FOR WILSON’S ELEMENT

In this section, we describe a V-cycle multigrid method with numerical integrations
for Wilson’s nonconforming element. An optimal V-cycle multigrid with only one
smoothing step on each level is derived. In the following, we make use of the bilinear
conforming element space Ug, k = 1,..., J — 1 as the coarse grid correction space.
It is obvious that
UrCUsC---CUj-1 CVy.

On each level k = 1,..., J, we introduce the operator Ay, : U = Ug, k=1,...,J—1,
by

(Av,v,w) = ay(v,w) Yo, w € Uy (15)

and Ay : V; - V; by
(Asv,w) = as(v,w) Yo, weE Vj. (16)

We note that we here apply the quadrature formula on the level J to all coarse levels
as in [2].

For k= 1,..,J — 1, we define the projection operator Py : Vy — Ux by
aj(Prv,w) = aj(v,w) YveVywe Uy, (17)
and PY: L%(Q) — U by
(Plv,w) = (v,w) Yv€&Vy,weUy. (18)

In order to define a V-cycle multigrid algorithm, we must choose on each level k a
smoothing operator Ry, : Uy — U, k=2,...,J — 1. We set

Ky = I — Ry, Av,
and B
Ri = (I — K{Kg) A",
where Ry, denotes the adjoint of Ry, with respect to (-,-), and K = I — Ry, Ay,
denotes the adjoint of Ky with respect to the as(-, ). We set Ry, = A(_Jll, i.e., we solve
(3.1) on the coarsest space. Finally, set Ty = Ry, PP A;. Then by (17), (18), it is easy

to check that
PPA; = Ay, Py. (19)

So we have 7}, = Ry, Av, Px. Note that 71 = P.
Now we define the following multigrid algorithm.

Multigrid Algorithm 1.

If J=1,set B; = Al_1 and if J > 1, define B;g for g € V; by
(1) Set z; = Ryg.
(2) Define Byg = x5 + q, where ¢ € Uy_1 is given by

qg=Nj_1Pj_i(9— Asay).
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Here Nj_q is defined as follows: set Ny = A(_Jll For 2 < k < J — 1, assume that Np_;
has been defined and define Nyg for g € Uy by

(1) Set 2x = Ry, g.

(ii) Define Nig = x + q, where ¢ € Ug_1 is given by

q= Nk_lpg_l(g—AUkiL‘k).
We can prove that
E=1-BjA;=(I-T)I =T ---(I-Tjy). (20)

Then, we have
Theorem 1. For the Wilson’s element, there exists a constant Cr > 1 dependent
of the constants Cy and M, but independent of hy and J such that

aj(Ev,Ev) < (1 - L)aJ(v,v) Yv € V.
Cr
It is seen that the contraction factor 1 — é < 1, is independent of hy and J, so we
have an optimal multigrid algorithm.

Remark 1. From Multigrid Algorithm 1, we see that our V-cycle multigrid method
for Wilson’s element with the standard or the weak quadrature formula needs only
one smoothing iteration on each level. Moreover, the result holds for problems without
full elliptic regularity (e.g., an L-shaped domain or a domain with a crack boundary).

V-CYCLE NONCONFORMING MULTIGRID FOR WILSON’S
ELEMENT

In this section, we consider a nonconforming multigrid method, where both the coarse
and the fine mesh space use the same nonconforming element space. In the following,
we construct a suitable intergrid transfer operator I for Wilson’s element. Using this
operator, an optimal V-cycle nonconforming multigrid method can be obtained. For
convenience, we do not consider numerical intergration, and simply write the bilinear
form af(-,) in (6) as ax (-, ).

We define the operator Ay : Vi — Vi on each level k by

(Agv,w) = ag(v,w) Yo,we Vg, k=1,... J

In the nonconforming multigrid method, the intergrid transfer operator plays an
important role. For Wilson’s element, let m;_1 be the bilinear interpolation operator;
it is easy to check that for any v € Vi _1,

Ti—1v € Up—1 C Uy C Vi (21)

So we define the intergrid transfer operator I : Vi_1 — V; as follows
I = mp_q. (22)

We can prove that the operator Iy : Vy_1 — Vi satisfies the inequality
ag(Ixv, Ixv) < ag—1(v,v) Vv € Vi_1. (23)
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Now as in above section, we define the projection operator P/_, : Vi — Vi_1 and

ng—l Ve = Ve by
ap_1(Pi_1v,w) = ag(v, w) Yv € Vi,w € Vi_1,k=1,...,J, (24)
and
(Qh_ v, w)e_1 = (v, [ryw) Yv € Vi,w € Vi1, k=1,...,J. (25)

Finally, let Ry : Vi — Vi, for k = 1,..., J, be a linear smoothing operator and let R},
be the adjoint of Ry with respect to (-, ). Define

R _{ Ry 1 odd,

-7 R, 1 even.
A general multigrid operator By : Vi — Vi can be defined recursively as follows:
Multigrid Algorithm 2

Let 1 <k < J and let p be a positive interger. Set By = Aal. Assume that Bg_q
has been defined and define Big for g € Vi by

(1) Set zq = 0 and ¢° = 0.

(2) Define 2! for I = 1,..., m(k) by

=2 4 R,(j+m(k))(g — Apz™h.
(3) Define y™*) = gm*) 4 T qP, where ¢* for i = 1, ..., pis determined by

¢ = ¢+ B (Qhoi (g — Ara™ ) — Ap_igi ).
(4) Define y' for I = m(k) + 1, ..., 2m(k) by

=y R (g - Ay,

(5) Set, Bkg = y2m(k).

In the Multigrid Algorithm 2, m(k) gives the number of pre- and post-smoothing
steps and can vary as a function of k. If p = 1, we have a V-cycle method. If p = 2,
we have a W-cycle method.

The convergence rate for the multigrid algorithm 2 on the kth level is measured by
a convergence factor §; which satisfies

lak ((I — BrAg)v,v)| < dgag(v,v). (26)

We then have

Theorem 2. For the Wilson’s nonconforming element, define By by p = 1 and
m(k) = m for all k in the algorithm 2. Then if a;; = 1, a;; = 0, ¢ # j, there exists
C > 0, independent of k, such that

C
<= C+m’

It is seen that the convergence factor dj in (26) is independent of the level I, we then
obtain an optimal V-cycle multigrid method with one smoothing step for the Wilson’s
nonconforming element for Laplace equation.

Remark 2. We can also obtain an optimal convergence order of the W-cycle multigrid
method with any number of smoothing steps for Wilson’s element.
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