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The FETI Method for Mortar
Finite Elements

DAN STEFANICA' & AXEL KLAWONN?

INTRODUCTION

The Finite Element Tearing and Interconnecting (FETI) method is a Lagrange
multiplier based iterative substructuring method. It was introduced by Farhat and
Roux [FR91]; a detailed presentation is given in [FR94], a monograph by the same
authors. Originally used to solve second order, self-adjoint elliptic equations, it
has later been extended to many other problems, e.g. time-dependent problems,
cf. Farhat, Chen, and Mandel [FCM95], plate bending problems, cf. Farhat et
al [FCR98, FM98, FMT96], and heterogeneous elasticity problems with composite
materials, cf. Farhat and Rixen [RF97, RF99].

In this paper, we present a numerical study of the FETI method for two
dimensional self-adjoint elliptic equations, when the underlying finite elements defined
on the subdomains of Q are low order mortar finite elements. We use geometrically
nonconforming mortar finite elements of the second generation, for which no continuity
conditions are imposed at the vertices.

We have tested three different preconditioners: the Dirichlet preconditioner, which
has been used successfully for conforming finite elements (see Farhat, Mandel, and
Roux [FMR94]), a block diagonal preconditioner used by Lacour [Lac97a], and
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a new preconditioner of Klawonn and Widlund [KW99]. The last preconditioner
performs best, and has scalability properties similar to those of the classical FETI
algorithm with the Dirichlet preconditioner in the case of a conforming finite element
discretization.

For other work on preconditioners for mortar finite element discretizations, see
Achdou, Kuznetsov, and Pironneau [AKP95], Kuznetsov [Kuz95], Achdou, Maday,
and Widlund [AMW99], and the references therein.

The rest of the paper is structured as follows. In the next section, we describe the
mortar finite element method. In section 3, we present the classical FETT method, and
in section 4, our new FETI algorithm for mortars together with the preconditioner
introduced in Lacour [Lac97a]. In the last section, we present numerical results for all
the different preconditioners.

MORTAR FINITE ELEMENTS

The mortar finite element methods were first introduced by Bernardi, Maday, and
Patera in [BMP94], and a three dimensional version was developed by Ben Belgacem
and Maday in [BBM97]. They are nonconforming finite elements that allow for
a nonconforming decomposition of the computational domain and for the optimal
coupling of different variational approximations in different subregions. It has been
shown that the global error is bounded by the sum of the local best approximation
errors on each subregion. We are working with geometrically nonconforming mortars,
i.e. we do not require that the intersection of the boundaries of two different subregions
is empty, a vertex, or an entire edge.

Using mortars instead of conforming finite elements has some significant advantages.
The mesh generation is more flexible and can be made quite simple on the individual
subregions. It is also possible to move different parts of the mesh relative to each
other, which is useful for time dependent problems and in design optimization. The
mortar methods also allow for local refinement of finite element models in only
certain subdomains of the computational domain, and they are well suited for parallel
computing.

Let us briefly describe the mortar finite element space V?| restricting our discussion
to the two dimensional case. The computational domain Q is decomposed into a
nonoverlapping polygonal partition {€;},_75. The restriction of the mortar space to
any subregion €; is a conforming P; or @1 finite element space. Across the interface I,
1.e. the set of points that belong to the boundaries of at least two subregions, pointwise
continuity is not required. We partition I' into a union of nonoverlapping edges of the
subregions {Q;},_i, called nonmortars. The edges not chosen to be nonmortars, are
called mortars. Note that the mortars also form a partition of the interface. On the
two sides of an edge which coincides with a nonmortar, there are two distinct traces
of the mortar functions. We only require that the difference of these two traces is
L?—orthogonal to a space of test functions.

More formally, if 5 is a nonmortar side, let V"(y) be the continuous piecewise
polynomial space which is the restriction of V? to 4. Let 5 be the union of the parts
of the mortars opposite 4. Then w, € V" is a mortar function if its restrictions,
wy = wy, and wy = wy,, satisfy the following L2-orthogonality condition for every
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nonmortar side v:

/ (wy —w3)pds =0, Yy € ¥ (y). (1)
W

Here, W" () is the space of the test functions consisting of piecewise linear functions
from V" () which are constant in the first and last mesh intervals.

THE FETI METHOD

In this section, we review the original FETI method of Farhat and Roux for elliptic
problems discretized by conforming finite elements. We consider P; or @ finite
elements with a typical mesh size h.

We first partition the finite element mesh along mesh lines into N non-overlapping
subdomains Q; C ©,7 = 1,..., N, such that the subdomain boundary nodes match
across the interface. For all subdomains €;,i = 1,..., N, we construct local stiffness
matrices K; and local load vectors f;. Denote by K the block—diagonal stiffness matrix
with the K; on the diagonal and by f the vector [fi,..., fa]. Analogously, we denote

by u; the vector of nodal values on Q; and by u the vector [u1, ..., un].
Let B = [B1, Bs, ..., By] be a matrix which measures the jump of a given vector
u = [u1,...,un]; Bu = 0 means that the values of the degrees of freedom, at nodes

which belong to at least two subdomains, coincide.
Let us consider the following minimization problem with constraints:

1
J(u) == iutKu — f'u — min  subject to Bu = 0. (2)

By introducing Lagrange multipliers A for the constraint Bu = 0, we obtain the saddle
point problem

Ku 4+ B'X = f,

Bu = 0. (3)
Let R be a given matrix that spans the nullspace of K, i.e. rangeR = kerK. The
solution of the first equation in (3) exists if and only if f — B'A € rangeK. Then, we

have

u=K'(f — B'\) 4+ Ra,

where KT is the pseudoinverse of K which provides a solution orthogonal to the
nullspace of K and a has to be determined.
To formulate the FETI method, we need the following notation:

G:= BR,F := BK'B!, d:= BK'f, P.=T-G(G'G)"'G", e := R'f.

Note that P is an [y—orthogonal projector onto kerG* =: V. Elimination of the primal
variables u in (3) gives

BK'B'A = BK'f + BRa, (4)
which leads to

PFX = Pd
G'\A = e.
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The FETI algorithm is the solution of this dual problem with a preconditioned
projected conjugate gradient (PCG) method, where all the increments Ay — Ag are
in V.

Given an initial approximation A\g with G*)q = e, we have to solve
PFA=Pd, A€\ +V. ()

One possible preconditioner is of the form

o O O ¢
M._B[O S]B, (6)
where S is the Schur complement of K obtained by eliminating the interior degrees
of freedom. In the application of M, at each iteration step, N independent Dirichlet
problems have to be solved; M is known as the Dirichlet preconditioner. Note that
the Schur complement never has to be computed explicitly, since only the action of §
on a vector is needed.

Tt has been shown by Mandel and Tezaur [MT96] that the condition number £ of
PM PF satisfies

7\ 3
/{(PMPF)SC(l%—logF) ,

where C' is a positive constant independent of h, H.

This result is similar to estimates for other non—overlapping domain decomposition
methods; see Dryja, Smith, and Widlund [DSW94] for iterative substructuring
methods, Dryja and Widlund [DW95] for Neumann-Neumann algorithms, and Mandel
[Man93] and Mandel and Brezina [MB96] for balancing algorithms.

THE FETI METHOD FOR MORTARS

The FETT algorithm can also be applied when mortar finite elements are considered
on €. The price we have to pay for the inherent flexibility of the mortar finite elements
is related to the fact that the Lagrange multiplier matrix B is more complicated in
this case compared to that arising in the classical FETT method with conforming finite
elements. This is due to the fact that we no longer have matching nodes across the
interface.

Let us briefly describe the construction of the matrix B. From the mortar conditions
(1), we see that the interior nodes of the nonmortar sides are not associated with
genuine degrees of freedom in the finite element space V. Let w be a mortar finite
element function and 4 a nonmortar. Let w! be the vector constructed from the values
of w at the interior nodes of v, and wg be the vector constructed from the values of
w at all the nodes on the edges on the interface opposite to v. We assume that the
intersection of 4 and the support of the corresponding nodal basis functions is not
empty. Then w! is uniquely determined by w2, and the mortar conditions (1) for y

v v’
can be written in matrix form as

1 2 _
Myw; — Nywy = 0,
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where M, is a tridiagonal matrix and N, is a banded matrix. The matrix B will
have one block, B, for each nonmortar side, which consists of the columns of the
corresponding matrices M~ and N, and zeros in the other columns. The matrix K is
again a block—diagonal matrix diagfy, K;, where the local stiffness matrices K;,i =
1,..., N, are obtained from the finite element discretizations on each subdomain ;.
As in the case of conforming finite elements, we now have to solve the problem

- ty

S 4 (7

u = 0.

Note that, in contrast to the conforming finite element case, the K; can now be build
from different discretizations on each subdomain ;. For a more detailed discussion of
mortar finite elements with Lagrange multipliers, see Ben Belgacem [BB94] or Braess,
Dahmen, and Wieners [BDW98]. To obtain a dual problem as in (5), we can now
proceed completely analogously to sect. 14. Due to space limitations, we will not
repeat these steps here.

For the dual problem (5) obtained from the mortar system (7), we use the
preconditioner
O O
o S

introduced by Klawonn and Widlund in [KW99]. Tt will also be shown in [KW99] that

M is an almost optimal preconditioner in the conforming finite element case, in the

M o= (BBt)‘lB[ ] BY(BB')™, (8)

sense that

— H\?2
k(PMPF) < C(l—#logﬁ) .

Another preconditioner M has been suggested by Lacour in [Lac97a, Lac97b]. It

can be obtained from M by taking only the block diagonal part of BB, instead of
the whole matrix BB?, i.e.

0o O

M := (diagB,B.)™'B [ 0 S

] B(diagB,B.) ™, (9)

where diag B, ny has an entry on the block—diagonal for each nonmortar .

NUMERICAL RESULTS

In this section, we first present computational results for the preconditioners discussed
in the previous sections in the case of mortar finite elements. As a model problem we
have considered the Poisson equation on the unit square Q = [0, 1]2 with zero Dirichlet
boundary conditions.

In the geometrically nonconforming case, cf. sect. 14, the domain Q has been
partitioned into N € {16,32,64, 128} rectangles of average diameter H, cf. Figure
14.

We use Q1 elements of mesh size h. The local meshes on the subdomains do not
match across the interface and the mortar conditions are enforced by using Lagrange
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Figure 1 Geometrically non-conforming decompositions of the unit square
into 16,32, 64, and 128 subdomains.

Table 1 Geometrically non—conforming domain decomposition; Non-matching
grids across the interface.

Number of | H/h Precond Precond Precond
Subdomains M M M
16/32/64/128 | 4 11/12/15/16 | 20/24/32/33 | 108/233/487/1107
16/32/64/128 8 13/14/16/18 | 22/25/33/37 | 290/438/1071/1413
16/32/64/128 | 16 | 14/15/18/20 | 23/27/35/40 | 406/620/1725/1761
16/32/64/128 | 32 | 15/16/20/22 | 24/27/39/42 486/692/2130/-

multipliers. The stopping criterion used in the PCG routine is the relative reduction
of the initial dual residual by 1076, .

In Table 1, we report the iteration counts for the new preconditioner M, cf. (8), the
preconditioner M, cf. (9), and the Dirichlet preconditioner M, cf. (6).

As a comparison, we also present iteration counts for the geometrically conforming
case using the preconditioners M and M, cf. Table 2. Here, Q is partitioned in a
conforming fashion into 16, 36, 64, and 121 squares.
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across the interface.

Table 2 Geometrically conforming domain decomposition; Matching grids

Number H/h Precond Precond
Subdomains M M
16/36/64/121 4 7/9/9/9 18/23/25/25
16/36/64/121 8 9/10/10/10 | 19/24/25/25
16/36/64/121 | 16 | 10/11/11/12 | 20/26/27/27
16/36/64/121 | 32 | 11/13/13/13 | 21/28/28/28

127

Note that in order to ensure matching grids across the interface, in the geometrically

conforming case the number of nodes per edge of subdomain (i.e. H/h) is the same
for every edge, while in the nonconforming case it can be much more general.
__In both cases, geometrically conforming and nonconforming, the new preconditioner
M yields a lower number of iterations than the other two preconditioners. In the
geometrically nonconforming case, the Dirichlet preconditioner M does not seem to
yield a numerically scalable method.

In general, M needs some extra work in comparison to the other two preconditioners.
In each iteration step, when we multiply a vector by the preconditioner, we have to
solve two systems with the matrix BB*. In the conforming case, BB' is very close to
twice the identity matrix, and therefore little extra work is required. In the mortar
case, BB! is an almost block diagonal matrix, with each block corresponding to a
nonmortar v, and of size equal the number of interior nodes on 4. A more detailed
numerical study, which also takes the complexity of the different preconditioners into
account is given in [SK98].
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